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Problems with artificial neural networks originate from their deterministic nature and inevitable prior learn-
ings, resulting in inadequate adaptability against unpredictable, abrupt environmental change. Here we show
that a stochastically excitable threshold unit can be utilized by these systems to partially overcome the envi-
ronmental change. Using an excitable threshold system, attractors were created that represent quasiequilibrium
states into which a system settles until disrupted by environmental change. Furthermore, noise-driven attractor
stabilization and switching were embodied by inhibitory connections. Noise works as a power source to
stabilize and switch attractors, and endows the system with hysteresis behavior that resembles that of stereopsis
and binocular rivalry in the human visual cortex. A canonical model of the ring network with inhibitory
connections composed of class 1 neurons also shows properties that are similar to the simple threshold system.
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I. INTRODUCTION

Sensory nerves of several biological systems including
crickets �1�, crayfish �2�, and paddlefish �3� exploit the phe-
nomenon of stochastic resonance �SR� for weak signal detec-
tion within a noisy environment �4�. Previous studies con-
cerning cerebral physiology have provided evidence of SR
following analysis of hippocampal slices from rat �5� and
human �6,7� brains. For an adaptive system to successfully
operate in an environment, it would be preferable to utilize a
certain number of attractors, which represent quasi-
equilibrium states into which the system settles until dis-
rupted by environmental change, and an autonomous selec-
tion mechanism for one appropriate attractor in the
environment. However, the conventional view of SR phe-
nomena lacks the concept that a process switches stochasti-
cally to the most preferable attractor. Recently, the concept
of neuronal computations with stochastic network states in
the brain has also been accepted �8�. However, the functional
role of noise in neuronal activity remains unknown. In this
article, we assembled attractors composed of reverberating
electronic circuits in order to investigate the functional role
of noise. The results obtained using an SR system based on
an excitable threshold system �9� revealed a higher-order
function of the SR system and noise-driven attractor switch-
ing with a hysteresis phenomenon, which is beyond the well-
known functions of noise-driven enhancement on both sen-
sitivity to weak signal detection and signal propagation. In
order to examine whether the higher-order function can be
extended to more general neuronal models than the simple
excitable threshold system, we also performed a numerical
simulation for a canonical model of a class 1 neural network
�10–16�.

II. METHODS

A. A simple excitable threshold unit by an analog electronic
circuit

Figure 1 shows an example of an analog operational am-
plifier circuit of the simple excitable threshold unit. The cir-
cuit is composed of seven functional parts: multiple signal
inputs, adder, inverter, comparator, inverter, negative clipper,
and an output port. The negative feedback circuits of opera-
tional amplifiers with a gain of unity were used for the adder
and inverters. We used quad operational amplifiers, TL084
�Texas Instruments, Inc.�. The positive and negative electric
power source used for the amplifiers was �12 V. The diode
for the negative clipper was 1S1558 �Toshiba, Corp., Japan�.
All the resistors used here are standard metal-film resistors.

B. Implementation of an inhibitory connection by an analog
electronic circuit

Localization of neuronal excitations is a basic feature of
brain function. In order to select an appropriate attractor in a
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FIG. 1. Analog electric circuit diagram of a simple excitable
threshold unit �McCulloch-Pitts neuron �9��. The unit consists of
external signal inputs including sensory signals and signals from the
other modules or rings, external noise input, a summation of these
components, a successive comparator, and an output port. The nega-
tive clipper is inserted between the comparator and output port in
order to insure that an output with asymmetric voltage is obtained.
R1 and R2 are 10 and 100 k�, respectively. We used quad opera-
tional amplifiers, TL084 �Texas Instruments, Inc.�. The positive and
negative electric power source used for the amplifiers was �12 V.
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certain environment, inhibitory connections are crucial to the
localization of neuronal excitations. It would also be impor-
tant for the connection to realize attractor switching against
environmental change. An inhibitory connection was realized
using the variable threshold of the excitable unit. The shut-
down of noise generators that is triggered by the output of
the other units can also be used as an inhibitory connection.
Alternatively, the signal input of the inverted output of the
other unit will be available for this purpose.

C. Electronic circuit experiments

All data of output voltage for the attractor switching elec-
tronic circuit �Figs. 1 and 3� were collected by a multifunc-
tion data logger �USB-6008; 12-bit longitudinal digital reso-
lution; maximum sampling rate of 10 kS /s, National
Instruments, Corp.�, which was controlled through a general
purpose interface bus �GPIB� via a high-speed universal se-
rial bus �USB 2.0�. The GPIB and data logger were handled
using a graphical user interface built using LABVIEW 8.2 �Na-
tional Instruments, Corp.�. Input signals and threshold volt-
ages were synthesized by standard function generators
�WF1974, NF, Corp., Japan�. Gaussian white noise was syn-
thesized using a function generator �33120A, Agilent Tech-
nologies, Inc.� and fed into the input port of the simple ex-
citable units through an eighth-order Butterworth low-pass
filter with a cutoff frequency of 50 kHz �two VT-4BLA in
box No. 3334, NF, Corp., Japan�. The sampling rate of data
collection was 1 k /s. The average firing rate was determined
by averaging digitized output signals during 0.1 s �100
points�. The response to the sinusoidal input signal �0.1 V
�sin��t�; � /2�=0.3 Hz� was recorded for 18 cycles �only
data for the first three cycles is shown in Fig. 3�b��. The
parameters used in Fig. 3�b� were shown in Table I.

D. Numerical simulation for the network of simple excitable
units

The numerical simulation for simple excitable threshold
systems was performed using McCulloch-Pitts neurons �9�.

Let us consider a ring circuit �Fig. 2�c�� of M modules �Fig.
2�b��, where each module is composed of N parallel neurons
�Fig. 2�a��. The output of the mth module with N parallel
neurons in ring X, Vm

X�t�, at time t is calculated using the
following equation:

Vm
X�t� =

1

N
�
n=1

N

H�xmn
X �t� − VX

Th�t�� �1�

�x1n
X �t� = x1n

s �t� + �M
X VM

X �t − �� + �1n
X �t� if m = 1,

xmn
X �t� = �m−1

X Vm−1
X �t − �� + �mn

X �t� if 1 	 m 
 M ,
�
�2�

where H�u� is a Heaviside step function

H�u� = �1 if u � 0,

0 otherwise.
� �3�

VX
Th�t�, xmn

s �t�, �mn
X �t�, and � are the threshold value, sensory

signal input, noise for the nth excitable unit in the mth mod-
ule, and delay time, respectively. For simplicity, all the
threshold units in a ring X have the same threshold value
�VX

Th�t��. Note that the delay time is important to realize the
recurrent network. �m

X is the coupling constant between the
mth and �m+1�-th modules and is defined as the ratio of the
input amplitude of �m+1� module to the output amplitude of
the mth module. Noise is represented by the mutually inde-
pendent and uncorrelated functions

��mn
X �t��pq

X �t��	 = D�mp�nq��t − t�� , �4�

��mn
X �t�	 = 0, �5�

where �¯	 denotes time autocorrelation. The distribution
function p�x� with �mn

X �t�=x is defined as

TABLE I. Parameters for the numerical simulation of simple threshold units shown in Figs. 2�d�–2�f� and
4�a�–4�c�.

Figure No.

Numerical simulations Elec. circuit

2�d� 2�e� 2�f� 4�a� 4�b� 4�c� 3�b�

M 4 4

N 1-1000 100 1 1-100 100 1

Vm
Th 0.10 0.20

�Vm 0.16 0-0.50

tpw 128

VA
Th 0.05 0.03 V

VB
Th 0.20 0.06 V

�Vm
A 0.30 0.16 V

�Vm
B 0.30 0.25 V

� /2� 6.25�10−2 �=1 /16� 10−5-100 0.3 Hz

D 0.10 0-0.50 0.05-0.13 0.11 1.6-2.8 V

� 16

time step 1 1�10−3 s

averaging time 64 0.1 s
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p�x� = 
const.: uniform noise,

1
��D

exp�−
x2

D

 : Gaussian noise. � �6�

The numerical simulations for simple excitable threshold
systems were performed on a personal computer with a Core
2 processor �1.86 GHz� and 1 GB of random access
memory. A simulation program was written using GNU Oc-
tave �version 2.1.73� under the Vine Linux OS �version
3.3.6�. All the parameters used in the simulation were dimen-
sionless and summarized in Table I.

E. Numerical simulation for the ring network with
asymmetric inhibitory connections using a canonical model for

class 1 neurons

A canonical model of class 1 neurons was employed to
further investigate the properties of a two-ring system of sto-
chastically excitable threshold units with inhibitory connec-
tions �vide infra�. Based on the theory by Ermentrout
�10,11�, Izhikevich �12,13�, and Kanamaru �15,16�, we inter-
preted the Langevin equation in the Stratonovich’s sense


̇mn
X �t� = �1 − cos 
mn

X �t�� + �1 + cos 
mn
X �t��

��rX + �mn
X �t� + Km

ring,X�t� + Km
inh,X�t� + Km

stim,X�t�� ,

�7�

where X=A or B and 
mn
X �t�, rX, and �mn

X �t� are internal states
of the nth neuron in the mth module, the bifurcation param-
eter for ring X, and noise applied for the nth neuron in the
mth module, respectively. �mn

X �t� is uniform white noise with
a correlation of

��mn
X �t��m�n�

Y �t��	 = D�XY�mm��nn���t − t�� , �8�

where m ,m�=1, . . . ,M and n ,n�=1, . . . ,N. �XY, �mm�, and
�nn� are Kronecker delta and ��t− t�� is Dirac’s delta func-
tion. D is the noise amplitude. Km

ring,X�t�, Km
inh,X�t�, and

Km
stim,X�t� are signal inputs from the module of the upper

stream in the ring, inhibitory signals from ring B to ring A,
and the external sinusoidal input, respectively.

Km
ring,X�t� = �ex

X Im−1
X �t� �if m � 1�,
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FIG. 2. �a� An excitable unit is composed of the following four parts: signal input ports �an external sensory input, the signals from the
other units, and external noise�, summation of these input signals, a successive comparator, and an output port. The dimensionless output
amplitude of the comparator is set to unity. �b� A summing parallel network module �number of units N� of the excitable units of �a�, with
time delay. This is a version of the so-called Collins-type excitable network �20� with time delay. The input signal is fed into the input port
of each unit. Signal averaging is performed prior to the delay. �c� A ring circuit consists of M directionally coupled modules �b�. The value
� denotes the coupling constant between rings, which scales the output voltage of the rings. �d� Variation of transients of the output signal
of the ring circuit of M =4 as a function of the number of parallels in a module N. The other parameters used for the simulation were as
follows and summarized in Table I in the Appendix. �Vm �Vm is the output amplitude�: 0.16, threshold amplitude of comparators �Vm

Th�: 0.10,
noise amplitude �D�: 0.10, signal delay at each excitable unit: 16, input signal function: cos�2�t /16�, input pulse width �tpw�: 128, and time
step for all simulations: 1. Simulated �� ,D� phase diagrams for relaxation rate �e� and signal-to-noise ratio �SNR� �f� for the ring with
�M ,N�= �4,100� are shown. Vm

Th was 0.20. “NF” at the scale bar of �e� stands for “nonfiring.” Note that the scale bar of �f� is nonlinear.
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Km=1
ring,X�t� = �ex

X IM
X �t� , �9�

where �ex
X is the excitatory coupling constant between mod-

ules in ring X. The asymmetric inhibitory connection is ex-
pressed as follows:

Km
inh,A�t� = − �inh �

m�=1

M

Im�
B �t� ,

Km
inh,B�t� = 0, �10�

where output current of the mth module Im
X�t� is expressed as

an averaging over individual output currents Imn
X �t� of the nth

neuron in the mth module of ring X because of the parallel
structure of modules �see Fig. 2�b��

Im
X�t� =

1

N
�
n=1

N

Imn
X �t� , �11�

Imn
X �t� = −

1

�X
�Imn

X �t� − ��
mn
X − ��� , �12�

and �inh is the inhibitory coupling constant between rings. A
sinusoidal sensory input is applied to the first module �m
=1� in each ring.

Km
stim,X�t� = Asig sin��t� �if m = 1� , �13�

where Asig and � are the amplitude and angular frequency of
the sinusoidal input signal, respectively. From Eqs. �7�, �11�,
and �12�, the dynamics of 
mn

X was numerically calculated
using an ordinary differential equation solver LSODE �17�. All
the parameters in the simulation are given in Table II.

III. RESULTS AND DISCUSSION

We focus on a simplified version of a recurrent neural
network: a ring circuit. In this architecture, positive feedback

is localized to a single ring, which is the minimum compo-
nent of a complex web of the neural network. We first as-
sembled a memory ring circuit driven by noise. The ring
circuit shows a fundamental property of positive feedback
that is found in the hierarchy of complex information pro-
cessing in the human brain �18,19�. We explored the proper-
ties of a single-ring circuit �Fig. 2�c�� of M modules �Fig.
2�b��, where each module was composed of N parallel
threshold excitable units �Fig. 2�a��. This module is the so-
called Collins model �20� with time delay, and it enhances
the system’s sensitivity to weak inputs without adjusting the
nonzero level of noise amplitude, leading to enhancement of
weak signal detection and therefore signal propagation in
sensory neurons. The numerical simulation for simple excit-
able threshold systems was performed using McCulloch-Pitts
neurons �9� with uniform white noise, and dimensionless pa-
rameters were used to maintain the generality of the prob-
lem. The threshold and output amplitudes are defined as Vm
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FIG. 3. �Color online� �a� A circuit diagram of the attractor
switching device. A detailed electric circuit design is presented in
Sec. II A. �b� The experimental result of the device with �M ,N�
= �4,1� rings. The firing rates of the fourth module in both rings was
monitored as functions of the input signal and noise amplitudes.
The parameters for the experiment were as follows. �Vm

A: 0.16 V,
�Vm

B: 0.25 V, VA
Th: 0.03 V, and VB

Th: 0.06 V. D was varied from
1.6 to 2.8 V with a step of 0.2 V. See Sec. II C for the details of the
experiments.

TABLE II. Parameters for the numerical simulation shown in Fig. 6.

Figure No. 6�a� 6�b� 6�c�

M 4

N 50 1,4,10,25,50 50

rA −0.008

rB −0.020

�ex
A 0.5

�ex
B 0.5

�inch 3.0

Asig 0.019

� /2� 1.0�10−3 2.0�10−4-5.0�10−3

D 6.0�10−4-1.4�10−3 1.0�10−3 1.0�10−3

�A 1.5

�B 1.5

time step 0.05

averaging time 50
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and Vm, respectively, and the details of the simulation are
shown in Sec. II D and the caption of Fig. 2. We looked at
the stochastic response of the ring as a function of the num-
ber of parallels �N� in each module �Fig. 2�d��. In Fig. 2�d�,
the pulsed sinusoidal signal is stored in the ring as a form of
summed neuronal spikes if independent noise with appropri-
ate amplitude is applied to each unit. An extended lifetime of
the stored signal was observed with increasing N �Fig. 2�d��.

In addition to the structural factor of ring circuits, we
found that the noise amplitude and intermodule coupling
constant were important in determining the decay rate of
transient memory storage. Phase diagrams of the decay rate
of memory �Fig. 2�e�� and signal-to-noise ratio �SNR� of the
peak at a frequency of sinusoidal input in the Fourier power
spectrum �Fig. 2�f�� were obtained by numerical simulation
�see Sec. II D� as functions of the intermodule coupling con-
stant ��� and noise amplitude �D� for the single ring of
�M ,N�= �4,100�. The rate was determined from the full-
width at half-maximum ���� of the peak at the dimension-
less input frequency �� /2�=6.25�10−2� of a fast Fourier
power spectrum, and the value of SNR was defined as the
ratio of the peak intensity with the averaged noise intensity
at 100 points of the proximate baseline over the higher fre-
quency than �+��. A transient memory domain appears
between the nonfiring �NF� domain and the reverberating
domain �R� �Fig. 2�e��. The SNR under conditions of a noise
amplitude comparable to the perithreshold signal tends to be
largely irrelevant with regard to the coupling constant when
��0.05 �Fig. 2�f��, and � slice �slice at the constant ��0.05
	�	0.20�� of Fig. 2�f� indicates the typical property of sto-

chastic resonance, where application of noise with nonzero
amplitude enhances SNR of the spectrum �4�. Apparently,
variation of the decay rate depended on the noise amplitude,
suggesting that noise plays an important role for signal trans-
mission in the ring and that the various energetic states of the
reverberating circuit can be defined using the firing rate,
leading to the creation and stabilization of attractors �vide
infra�.

Taking into account the behavior of transient memory
storage of the ring, we designed an attractor switching elec-
tronic circuit integrated with inhibitory connections �Fig.
3�a��. Inhibitory connections are important in various neural
functions such as binocular rivalry in the visual cortex �21�
and dynamical encoding of an olfactory system �22�. In par-

input

a) b) c)

0

1
0

1
0

1
0

1
0

1

0 0.15 0.30

m
ea

n
fir

in
g

ra
te

0.5

1.0

1.1

1.2

1.3

10D
ring A
ring B

0

1
0

1
0

1
0

1
0

1
0

1

0 0.15 0.30

5

4

3

2

1

0

-log10(ω/2π)

0

1
0

1
0

1

0 0.15 0.30

1

10

100

N

FIG. 4. �Color online� �a� The simulated mean firing rate for the devices with �M ,N�= �4,1�. The parameters for the simulation were as
follows. VA

Th: 0.05, VB
Th: 0.20, �Vm

A: 0.30, and �Vm
B: 0.30. D was set to 0.05, 0.10, 0.11, 0.12, and 0.13. The other parameters were set to values

as indicated in Fig. 2 and also in Table I in the Appendix. The inhibitory connection was implemented by varying the threshold amplitude
VA

Th=0.05 at the disinhibition state and 2.00 at the inhibition state. �b� The response of the device was explored as a function of N while D
was fixed at 0.11. �c� The frequency response of the device with N=100 and D=0.11 is shown. The moderate sweep frequency was
necessary for hysteresis behaviors.
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FIG. 5. �Color online� A circuit diagram of the attractor switch-
ing device. The output signals of all the modules in ring B were fed
into the signal input ports of all the modules of ring A.
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ticular, the spatiotemporal dynamics of the locust olfactory
system are important for the coding of odor intensity and
identity �23�. Our device is composed of two ring circuits
with excitable modules. The output of ring B ��Vm

B

=0.25 V� is inhibitory and connected to ring A via feeding
into the threshold setting port of ring A �Fig. 3�a�; see also
Secs. II A and II B for details�, insuring that either ring A or
B can fire. From the electronic circuit experiment and nu-
merical simulation, the behavior of transient memory storage
brings about a switching effect in the device �Figs. 3�b� and
4�a�–4�c��. The default threshold value of ring A �VA

Th

=0.03 V for the experiment and 0.05 for the simulation� was
set much lower than that of ring B �VB

Th=0.06 V for the
experiment and 0.20 for the simulation�, which forces ring A
to be more likely to fire than ring B. If the input signal
amplitude or mean pulse input rate is large enough to fire
ring B, then output A is depressed. Even if the input signal
decreases to subthreshold for ring B, ring B reverberates for
a while due to its transient nature. But ring A is disinhibited
after the rest of ring B. In such a system, we can define a
two-dimensional attractor as �RA,RB� in the phase space,
where RA and RB are the firing rates of rings A and B, re-
spectively.

The application of noise with an appropriate amplitude
endows the electronic circuit with a hysteresis effect �Fig.
3�b��, and the numerical simulation of the device qualita-
tively reproduced this experimental tendency �Fig. 4�a��. In-
terestingly, noise with an appropriate amplitude �see the
curves for D=2.2 and 2.4 V in Fig. 3�b� and for D=0.11 and
0.12 in Fig. 4�a�� is required for the device to show a clear
hysteresis curve. The hysteresis effect is due to the noise-

driven transient memory storage effect of ring B and the
asymmetric inhibitory connection. During the down-
sweeping process of the input signal amplitude, the switch-
ing voltage becomes much lower than VB

Th because of the
above-mentioned reverberation of ring B. During the up-
sweeping process, the onset voltage of the firing of ring B
can be determined only by VB

Th and the noise amplitude, giv-
ing a higher switching voltage than that of the down-
sweeping process. Thus, the ring network circuit of the ex-
citable threshold system with inhibitory connections allows
attractor switching with a hysteresis phenomenon. Addition-
ally, the number of N greatly affected the hysteresis �Fig.
4�b��. A device with the larger N produced the larger coer-
civity in the hysteresis loop, indicating that the device would
be tied to past memory rather than new environmental sen-
sory input. Furthermore, the device with larger N behaved
more deterministically and less probabilistically, and vice
versa. From the above discussion, we found the higher-order
function that originated from SR; that is, noise-driven signal
propagation causes the transient memory effect of the ring,
which in turn provides the function of a noise-driven attrac-
tor switching effect with hysteresis.

In order to investigate whether the above-mentioned prop-
erty of the two-ring system with asymmetric inhibition can
be generalized to other neuronal models, we performed the
similar simulation using a canonical model of a class 1 neu-
ral network �10,12,14�. Details of the conditions for the
simulation are given in the caption of Fig. 6 and Sec. II E.
Figures. 6�a�–6�c� show the variation of dependence of mean
firing rate for the fourth module �m=4� of rings A and B on
noise amplitude �D�, the number of parallels �N� in a mod-
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FIG. 6. �Color online� The simulated mean firing rate for the canonical model of class 1 neurons as a function of noise amplitude �D� �a�,
the number of N �b�, and input frequency ��� �c�. �M ,N�= �4,4�, rA=−0.008, and rB=−0.020. The excitatory coupling constants ��ex

A and �ex
B �

were 0.5 and the inhibitory connection ��inh� from ring B to ring A was 3.0. For �a� and �b�, the input sinusoidal signal is 0.019�sin��t�,
where � /2�=1.0�10−3. For �b� and �c�, D=1.0�10−3. For �a� and �c�, N=50 The network is composed of slowly connected class 1
neurons with the time constant �A=�B=1.5. Details of the simulation are given in Sec. II E and Table II in the Appendix.
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ule, and input frequency ���, respectively �see Fig. 5 for
device architecture�. The qualitative tendencies with respect
to D, N, and � were the same as those for the simple thresh-
old system described above �Fig. 4�; that is, �i� noise with
proper amplitude is required for the device to show clear
hysteresis, �ii� the larger the number of N and input fre-
quency, the larger the coercivity of hysteresis, and �iii� the
moderate sweep frequency is required to draw clear hyster-
esis.

The results shown by the simple threshold system and the
canonical model of a class 1 neural network are phenomeno-
logically consistent with recent results showing hysteresis
effects in stereopsis and binocular rivalry in humans �24�. In
the literature, hysteresis is measured as a function of orien-
tation disparity in tilted gratings in which a transition is per-
ceived between stereopsis and binocular rivalry. A fast tilting
rate, which corresponds to high-frequency input in our case,
results in enhancement of coercivity. Furthermore, a smaller
optical Michelson contrast of a sinusoidal grating causes a
larger coercivity. A previous functional magnetic resonance
imaging study concerning a general mechanism for percep-
tual decision making indicated that several brain regions as-
sociated with the attentional network show a greater re-
sponse when the task becomes more difficult �25�. Since a
test with a smaller grating contrast involves a more difficult
task, the region requires more attentional resources for cor-
rect performance; that is, the number of neurons �corre-
sponding to N� associated with the task could be larger. This
is consistent with our result that the device with larger N
gives larger coercivity.

The current type of stochastically excitable threshold de-
vice in our study essentially requires two parts: a noise gen-
erator and comparator. If these components are represented
by novel materials beyond silicon materials, novel bioin-
spired devices will be realized. Critical dynamics near the
phase transition point at ambient temperature will be avail-
able to the noise generator if the dynamics are coupled to
physical properties such as electric conductivity. Further-
more, field-induced phase transition will be of practical im-
portance in realizing the comparator. Future development on
suitable materials for the comparator with a threshold volt-
age much lower than that of conventional analog operational
amplifiers �namely, conventional transistors� will yield at-
tractor switching devices with ultralow energy consumption
similar to the brain.

IV. CONCLUSION

Problems with artificial neural networks originate from
their deterministic nature and inevitable prior learnings, re-
sulting in inadequate adaptability against unpredictable,
abrupt environmental change. In this article we showed that
a stochastically excitable threshold unit can be utilized by
these systems to partially overcome the environmental
change; that is, timing of attractor switching is varied de-
pending on not only on the sensory input but also on the
memory stored in the ring. Noise-driven attractor stabiliza-
tion and switching were embodied by a multiple ring net-
work with inhibitory connections. Noise works as a power
source to stabilize and switch attractors, and endows the sys-
tem with hysteresis behavior that resembles that of stereopsis
and binocular rivalry in the human visual cortex. In order to
further investigate the property of the multiple ring network
with inhibitory connections, we performed the numerical
simulation of a canonical model of class 1 neurons, where
the result showed properties that were similar to the simple
threshold system. The device shown in this article will also
inspire the material science and engineering in fabrication of
noise generators and comparators using functional materials
with critical dynamics near the phase transition at ambient
temperature and/or field-induced phase transition.
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APPENDIX: PARAMETERS FOR NUMERICAL
SIMULATION AND ELECTRIC CIRCUIT EXPERIMENTS

Here we provide all the parameters for the numerical
simulations. For the simulation of simple threshold units, the
parameters for the simulations in Figs. 2�d�–2�f� and 4�a�–
4�c� were tabulated in Table I. For the simulation of the
canonical model of a class 1 neurons �Fig. 6�, all the param-
eters are tabulated in Table II.
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