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We investigate the effects of particle size and shape on the quadrupolar �Saturn-ring-like� defect structures
formed by a nematic liquid crystal around nm-sized and �m-sized particles with spherical and spherocylin-
drical shapes. We also report results for the potentials of mean force in our systems, calculated using a
mesoscale theory for the tensor order parameter Q of the nematic. Our results indicate that for pairs of
nm-sized particles in close proximity, the nematic forms “entangled hyperbolic” defect structures regardless of
the shape of the nanoparticles. In our calculations with nanoparticles we did not observe any other entangled
or unentangled defect structures, in contrast to what was reported for pairs of �m-sized spherical particles.
Such a finding suggests that the “entangled hyperbolic” defect structures are the most stable for pairs of
nanoparticles in close proximity. For pairs of �m-sized particles, our results indicate that the nematic forms
entangled “figure-of-eight” defect structures around pairs of spheres and spherocylinders. Our results suggest
that the transition between “entangled hyperbolic” and figure-of-eight defect structures takes place when the
diameter of the particle is between D=100 nm and 1 �m. We have also calculated the torques that develop
when pairs of spherocylindrical nanoparticles in a nematic approach each other. Our calculations suggest that
the nematic-mediated interactions between the nm-sized particles are fairly strong, up to 5700 kBT for the case
of pairs of spherocylindrical nanoparticles arranged with their long axis parallel to each other. Furthermore,
these interactions can make the particles to bind together at specific locations, and thus could be used to
assemble the particles into ordered structures with different morphologies.
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I. INTRODUCTION

Systems of particles dispersed in liquid crystals �LCs�
have recently attracted attention for the development of
novel materials based on the controlled assembly of the par-
ticles. The inclusion of the particles in the LC produces a
distortion in its director field. As a result, both the colloids
and the LC will reorganize as to minimize the elastic pertur-
bations, giving rise to long-range interparticle interactions
that can induce the formation of a number of ordered colloid
structures �1–7�. The LC-mediated interparticle interactions
are anisotropic and can be large, up to several thousands of
kBT, according to recent experimental measurements
�1,3,4,6–11� and computer simulations �4,6–10,12–14�. Such
interactions are reversible and disappear when the LC is
driven into the isotropic phase. The LC-mediated colloidal
interactions depend on the size and shape of the particles, the
local anchoring of the LC at the surface of the colloids, the
alignment of the director field far away from the particles,
and the geometry of the surroundings �i.e., presence of walls,
channels and other confining elements�.

Most of the experimental work mentioned above has fo-
cused on systems of spherical, micron-sized colloids in LCs.
A number of experimental studies �for reviews see, e.g., Ref.
�15�� have considered systems of nanoparticles in LCs. LCs
have been used to manipulate and organize spherical
�16–20�, as well as rodlike nanoparticles such as nickel
nanowires and carbon nanotubes �21–24�. These systems
have potential applications in light-scattering devices,
electro-optical switches, electromechanical actuators, func-

tional coatings, photonics, nanoscale electronics, and LC dis-
plays. The behavior of systems of nanoparticles in LCs is
also relevant for the development of optical sensors. Recent
experiments �25–28� and calculations �29–31� have demon-
strated that the binding of chemicals, biomolecules, and vi-
ruses at solid-LC and liquid-LC functionalized interfaces
perturbs the local ordering of the LC, and triggers the forma-
tion of inhomogeneous textures. Due to the long-range order
of the LC, these inhomogeneities can be amplified over sev-
eral length scales and detected using polarized optical mi-
croscopy.

The behavior of a dispersion of particles in LCs is dic-
tated by the formation of defects around the particles. The
uniform alignment of a LC is usually distorted by the inclu-
sion of particles, due to the local constraints imposed by the
anchoring of the LC at the surfaces of the particles. These
constraints impose conflicting orientations to the liquid crys-
tal, which results in the formation of topological defects.
These defects are characterized by discontinuities in the di-
rector field n�r�, strong biaxiality and a pronounced decrease
in the scalar order parameter S�r�, reflecting the fact that the
LC locally melts at the defect core �32�. For the simplest case
of a single spherical particle in a nematic liquid crystal, three
types of defects have been observed experimentally: the di-
pole configuration �where the nematic forms a point defect
known as hyperbolic hedgehog� �1,33�, the Saturn ring or
quadrupolar configuration �where the particle is surrounded
by a disclination loop� �33–35�, and the surface ring configu-
ration �where the nematic forms a disclination ring sitting at
the surface of the particle� �1,33�. These defect structures
have been the focus of several theoretical and computational
studies �33,36–41�. The dipole configuration was found to be
stable for strong surface anchoring and micron-sized spheri-
cal particles. The Saturn ring �quadrupolar� configuration*frhung@lsu.edu
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was predicted to become stable upon reduction of particle
size, which was confirmed experimentally very recently �42�.
Magnetic and electric fields �43�, and confinement conditions
�35,40,44� were also shown to stabilize a Saturn ring con-
figuration. A surface ring defect is observed upon reduction
of the surface anchoring strength �33,38�. Systems involving
two spherical particles exhibiting dipole �45� and Saturn ring
�12� configurations have been recently examined using a me-
soscale theory where the nematic is described using the ten-
sor order parameter Q�r�. In the latter series of studies, the
predictions of the mesoscale theory were compared to those
of molecular simulations, thereby providing a measure of the
validity of the theory at nm-length scales. Given the good
agreement between the defect structures and the potentials of
mean force obtained from Monte Carlo simulations and the
mesoscale theory, the latter approach �which is computation-
ally less expensive� was used to study the stability of arrays
of several spherical nanoparticles in a nematic in the bulk
�12� and inside channels of nanoscopic dimensions �14�. The
continuum approach was also used to study the stability of
arrays of spherocylindrical nanoparticles in a nematic �13�.
Classical density functional theory has been used recently to
study the structure of a LC around a cylindrical particle of
infinite length and to calculate the forces between two of
these particles �46�. Very recently, several groups have per-
formed dynamical simulations in 2D and 3D systems, where
disks or spherical particles are free to move due to the many-
body forces mediated by the LC �47–50�.

Recent calculations for systems of spherical nanoparticles
in a nematic �12� indicate that when two spherical nanopar-
ticles are close to each other, the nematic forms a defect
structure consisting of one large Saturn ring �which arises
from the fusion of the two Saturn rings that surround each
particle when they are far from each other� and another dis-
clination ring, which is orthogonal to the first one and forms
in the interparticle space �see, e.g., Fig. 3�a��. Hung et al.
�13� also observed similar defect structures for systems of
spherocylindrical nanoparticles in a nematic. These defect
structures were also observed by other groups in recent ex-
perimental �9� and computational �9,48� studies involving
systems of micron-sized spherical particles in a nematic liq-
uid crystal. In these studies �9,48� it was argued that these
quadrupolar defect structures, termed “entangled hyperbolic”
by Ravnik et al. �9�, were metastable and thus eventually
evolve into another entangled defect structure with the shape
of a “figure of eight” �9,48�. Such a defect structure consists
of a single disclination loop that is twisted in the interparticle
space and surrounds both particles �see, e.g., Fig. 3�b��. Nev-
ertheless, one fundamental difference between these studies
is that Ravnik et al. �9� and Araki and Tanaka �49� consid-
ered micron-sized particles, whereas de Pablo et al. �12,13�
studied nm-sized particles. Furthermore, these studies used
different versions of a mesoscale theory in terms of Q�r�,
also with different numerical parameters. Moreover, de Pablo
et al. �12,13� considered the case of infinitely strong homeo-
tropic anchoring at the particles’ surfaces, whereas Ravnik et
al. �9� and Araki and Tanaka �49� also studied homeotropic
anchoring but subject to a finite value of the anchoring con-
stant W.

The objective of this paper is twofold. First, we use the
same mesoscale theory and numerical parameters as pro-

posed by Ravnik et al. �9�, to consider a system with a pair
of nm-sized spheres and another with two micron-sized
spheres. With such a study we aim at establishing how the
entangled defect structures change with the size of the par-
ticles. However, it is not our objective to determine the exact
particle size at which the transition between entangled defect
structures occurs; such an objective could be the subject of
follow-up studies. The second objective of our study is to
determine the nature of the defect structures formed around
nm-sized and micron-sized spherocylindrical particles with
different aspect ratios �21–24�. In all cases, the stability of
the systems will be determined by calculating their free en-
ergies. The formation of defect structures around groups of
particles in a nematic is important since strong, anisotropic
interparticle interactions usually develop. Furthermore, the
strength and degree of anisotropy in the interparticle interac-
tions is expected to vary when particles of shape other than
spherical are considered. These interparticle interactions can
thus be used to direct the spherical and nonspherical particles
to assemble into ordered arrays with a number of different
morphologies, which is a subject that has attracted a great
deal of attention recently �51,52�. The paper is organized as
follows. In Sec. II we present a description of our model
systems and details of the computational methodology. Sec-
tion III contains our results and discussion, and our conclud-
ing remarks are presented in Sec. IV.

II. MODELS AND METHODS

A. Details of the model systems

The model system considered in this work consists of a
rectangular box of dimensions Lx, Ly, and Lz, containing one
or two particles immersed in a nematic liquid crystal. A sche-
matic representation of the model system for one spherical
particle is shown in Fig. 1�a�. Periodic boundary conditions
are imposed in the x and y directions of the simulation box.
We have placed walls at the top and bottom faces of the
simulation box, imposing homeotropic anchoring to the liq-
uid crystal �LC�. Homeotropic anchoring is also imposed to
the LC at the surfaces of the particles. Such conditions can
be easily achieved experimentally, e.g., by coating the sur-
faces with self-assembled monolayers of alkanethiols �53�. In
the absence of particles, the system exhibits a homogeneous
texture in which the director field n�r� of the nematic is
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FIG. 1. Schematic representation of �a� model system and one
spherical particle and �b� spherocylindrical particle.
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parallel to the z axis. Strong variations in the director field
and in the scalar order parameter S�r�, as well as topological
defects are observed when particles are inserted, due to the
conflicting orientations imposed to the nematic by the ho-
meotropic anchoring conditions.

In this study we considered �m- and nm-sized particles of
spherical and spherocylindrical shape. The spherical particles
have a diameter D, whereas the spherocylindrical particles
consist of a cylinder of length l terminated by spherical caps
of diameter D, so that the total length of the spherocylinder
is equal to L= l+D �Fig. 1�b��. The relevant dimensions of
the systems considered in this study are summarized in Table
I. We only considered systems of two particles in this work.
In most cases, the centers of the particles were placed in the
center of the simulation box, in the plane z=0. For the case
of spherocylindrical particles, we considered two arrays
where the particles have their long axis oriented along the x
direction, but their centers are placed in different ways �Fig.
5�: �a� centers are on the x axis �linear array� and �b� centers
are on the y axis �parallel array�.

B. Landau–de Gennes theory for the nematic liquid crystal

The behavior of the nematic was modeled using a mesos-
cale theory for the tensor order parameter Q�r�, which is free
of discontinuities even at the defect cores where the director
field n�r� becomes discontinuous. The local values of the
scalar order parameter S�r� and the director n�r� can be ob-
tained from Q through its largest eigenvalue 2S /3 and its
associated eigenvector �32�. In previous studies of spherical
nanoparticles in a nematic �12�, results for the potentials of
mean force and the defect structures from the theory were
compared with those from molecular simulations. In the lat-
ter methodology the nematic was represented as Gay-Berne
ellipsoids. The researchers found good agreement between
both simulation procedures, down to length scales compa-
rable to the size of a LC molecule. Such a comparison pro-
vides a measure of the validity of the mesoscale theory even
at nanometer length scales. The theory corresponds to a par-
ticular case of the Beris-Edwards formulation of the thermo-
dynamics of fluids with internal microstructure �54�. The free

energy F of the liquid crystal includes three contributions

F =� dVf + � dSfs =� dVfLdG +� dVfe + � dSfs.

�1�

For these three terms we have adopted the same expressions
used by Škarabot et al. and Ravnik et al. in their studies
�8–10�. The first term in Eq. �1�, fLdG, represents a
Landau–de Gennes expansion �32� describing the short-
range interactions that drive the bulk isotropic-nematic phase
transition

fLdG =
A

2
QijQji +

B

3
QijQjkQki +

C

4
�QijQji�2, �2�

where i , j ,k�x ,y ,z, and the Einstein summation convention
over repeated indexes is used. The phenomenological coeffi-
cients A, B, and C depend on the specific nematic liquid
crystal. The second term in Eq. �1� describes the long-range
elastic forces of the liquid crystal, and introduces a free en-
ergy penalty associated with gradients of the tensor order
parameter field. For simplicity, in our calculations we have
used the one-elastic-constant approximation �32�, where the
splay, twist, and bend elastic constants K11, K22, and K33
have a common value. In our previous simulation study for
systems of spherocylindrical nanoparticles in a nematic �13�,
we obtained similar results for the defect structures and po-
tentials of mean force when we used the one-elastic-constant
approximation and a three-constant expression that is cubic
in Q and its gradients �54,55�. The elastic free energy in the
one-elastic-constant approximation takes the form

fe =
L1

2

�Qij

�xk

�Qij

�xk
, �3�

where the constant L1 is related to the elastic constants K11,
K22, and K33 by the following relations �54�: 2L1=K11 /S2

=K22 /S2=K33 /S2. The third term in Eq. �1� represents the
surface contribution to the free energy, and accounts for the
liquid crystal anchoring at the surfaces

TABLE I. Summary of the relevant dimensions of the systems considered in this study.

System

Particle size Box size

D ��m� L ��m� f ��m� Lx ��m� Ly ��m� Lz ��m�

Spheres, nm sized 0.100 1.17 0.520 0.200

Spheres, �m sized 1.00 3.00 2.00 2.00

Spherocylinders, nm sized, L /D=1.44, linear 0.100 0.144 1.17 0.520 0.200

Spherocylinders, �m sized, L /D=1.44, linear 1.00 1.44 4.00 2.00 2.00

Spherocylinders, nm sized, L /D=1.44, parallel 0.100 0.144 0.780 0.780 0.200

Spherocylinders, �m sized, L /D=1.44, parallel 1.00 1.44 2.40 3.00 2.00

Spherocylinders, nm sized, L /D=3.00, linear 0.100 0.300 1.17 0.520 0.200

Spherocylinders, �m sized, L /D=3.00, linear 1.00 3.00 7.00 2.00 2.00

Spherocylinders, nm sized, L /D=3.00, parallel 0.100 0.300 0.780 0.780 0.200

Spherocylinders, �m sized, L /D=3.00, parallel 1.00 3.00 4.00 3.00 2.00
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fs =
W

2
�Qij − Qij

0 ��Qji − Qji
0 � , �4�

where W is a constant representing the strength of the surface
anchoring and Qij

0 is the preferred orientation of Q at the
surfaces. We have only considered the case of strong homeo-
tropic anchoring at all surfaces. All the values of the numeri-
cal parameters are the same as those used by Škarabot et al.
and Ravnik et al. �8–10�, which are representative of a low
molecular-weight liquid crystal �e.g., 5CB�: A=−0.172
�106 J /m3, B=−2.12�106 J /m3, C=1.73�106 J /m3, L1
=4.0�10−11 N. These values give a bulk scalar order param-
eter of Sbulk=0.533 and a nematic coherence length �i.e., a
characteristic length scale for spatial variations of Q� �56� of
�N=6.63 nm �8–10�. We have used different values of W as
to ensure that all our systems exhibit strong �but finite� ho-
meotropic anchoring. In their studies, Škarabot et al. �8�
fixed W=10−2 J /m2 for a spherical particle of radius R
=0.5 �m, corresponding to a reduced extrapolation length
�33,38� of �S=L1 / �WR�=0.008. We kept the same value of
W=10−2 J /m2 for our �m-sized particles �D=1 �m� and for
our nm-sized particles �D=100 nm�. For the latter case, we
also obtained results using W=0.1 J /m2; such a value was
used in order to obtain the same extrapolation length �S as in
the study of Škarabot et al. �8�. We have performed simula-
tions for nm-sized particles with values of W as high as
10.0 J /m2, without finding any appreciable difference from
the results obtained for the case of W=0.1 J /m2.

The behavior of the tensor order parameter Q as a func-
tion of position r is determined by minimizing the free en-
ergy F �Eqs. �1�–�4�� according to the Euler-Lagrange for-
malism, which leads to the following partial differential
equations for Q �8–10�:

− �AQij + BQikQkj + CQij�QklQlk�� + L1
�

�xk
� �Qij

�xk
� = 0,

�5�

L1
�Qij

�xk
�k + W�Qij − Qij

0 � = 0. �6�

Equation �5� governs the behavior of Q away from the sur-
faces, and represents a system of partial differential equa-
tions. All the surfaces in the system are subject to the bound-
ary conditions given by Eq. �6�, which determines the
behavior of Q at the surfaces. Following our previous studies
�13,14�, in this work we have numerically solved the follow-
ing equivalent time-dependent problem, ensuring that t is
long enough as to observe negligible time variations in Q:

− �AQij + BQikQkj + CQij�QklQlk�� + L1
�

�xk
� �Qij

�xk
�

=
�Qij

�t
	 0. �7�

The system of equations given by Eq. �7�, subject to the
surface boundary conditions �6�, was solved for the five in-
dependent components of Q �Qxx, Qyy, Qxy, Qxz, and Qyz,
since Q is traceless� using finite elements and the COMSOL

Multiphysics package �57�. The initial conditions of Q in our
simulations are such that the scalar order parameter S was
initially fixed to the equilibrium value Sbulk=0.533; the scalar
order parameter at the nanoparticles’ surface was also set to
S=Sbulk. The director n�r� was initially aligned along the z
direction. In order to solve the equations, we used the time-
dependent algorithm DASPK, combined with the linear sys-
tem solver GMRES and the incomplete LU preconditioner
�57�. Following our previous studies �13,14�, we performed
three-dimensional simulations using unstructured meshes
containing tetrahedral, linear Lagrange elements automati-
cally generated by COMSOL �58�. Different grid densities
were used, and it was found that up to 66 000 finite elements
were required for the numerical solutions to be independent
of further mesh refinements. The mesh was significantly finer
in the immediate vicinites, where important curvature effects
and strong variations in Q are present. In all our simulations,
the minimum length of the finite elements in our finest grid
size is approximately 1.1�10−4D, which is comparable to
that reported by Fukuda et al. �39� in their adaptive mesh
refinement scheme. Different methods are available to depict
the NLC defect structures �the regions where the director
field of the nematic becomes discontinuous� �59,60�. In this
work, we have followed the work of Škarabot et al. and
Ravnik et al. �8–10� and adopted the contour S=0.48 to vi-
sualize defects around �m-sized particles in 3D. For nm-
sized particles, the isosurfaces of S=0.48 lead to defect cores
that looked somewhat thick. Therefore we have followed our
previous work �13,14� and used the contour S=0.30 instead,
which is approximately the smallest value of S that leads to a
stable bulk nematic for our theoretical model �54,56�. The
free energy values used in the computation of the potential of
mean force �PMF� were determined by numerical integration
of Eqs. �1�–�4� over the volume and the surfaces of the sys-
tem. For the case of spherocylindrical particles, we also com-
puted the total torque T transmitted by the nematic to each
spherocylinder using the following equation �61�:

T = � L�dS , �8�

Where � is the vector normal to the surfaces of the sphero-
cylinders and the integration is done on the surfaces of each
of the spherocylinders. L is the couple stress tensor �61�

Lij = 2�iklQkm
�f

���Qml/�xj�
, �9�

where �ikl is the Ricci’s alternator and f is the free energy
volume density introduced in Eq. �1� as 
dVf . The compo-
nents of the torque transmitted by the nematic to each
spherocylinder were computed via numerical integration of
Eqs. �8� and �9�.

III. RESULTS AND DISCUSSION

A. Spherical particles

We first considered a system of two spherical particles in
a nematic, aiming at elucidating how the size of the particles
affect the morphology of the entangled defect structures

FRANCISCO R. HUNG PHYSICAL REVIEW E 79, 021705 �2009�

021705-4



formed when the particles are close to each other. First we
studied systems with two spherical nanoparticles �D
=100 nm� approaching each other along a direction parallel
to the x axis, and determined the potential of mean force
�PMF� as a function of the minimum surface-to-surface in-
terparticle distance d. These results are presented in Fig. 2,
together with similar results for spherocylindrical nanopar-
ticles �Sec. III B�. The PMF in this case represents the dif-
ference in free energy between any given two-particle con-
figuration and a situation where the particles are infinitely
apart. Afterwards, we determined the defect structures
formed by the nematic around the spherical nanoparticles,
when they are separated by a distance dmin,nm corresponding
to the minimum in the PMF. 3D visualizations of these de-
fect structures are depicted in Fig. 3�a�. In a similar way, we
also present in Fig. 3�b� the defect structures observed when
two spherical micron-sized particles �D=1 �m, ten times
larger than the nm-sized particles� are separated by a dis-
tance d=10dmin,nm.

Our results for two spherical nanoparticles �W
=0.1 J /m2� indicate that when the distance d is reduced to
about 55 nm, the PMF first becomes slightly positive, sug-
gesting that the particles first experience a repulsion as they
approach each other. Visual inspection of the defect struc-
tures formed by the nematic at d=55 nm �not shown� indi-
cates that the Saturn rings around each particle start to inter-
act with each other, and thus become distorted with respect
to the Saturn rings observed when the particles are at d
�55 nm. These distortions in the Saturn rings cause the total

PMF to become positive �Fig. 2�a��. These findings are in
agreement with results from previous computational studies
�12,36�. Previous numerical results �12� also suggest that this
initial repulsion decreases in magnitude as the particle size is
reduced. Moreover, experimental and numerical results �7�
indicate that this repulsion is observed only when both par-
ticles approach each other along a plane containing both Sat-
urn rings entirely. This repulsion can be avoided by making
one of the spheres to approach the other via an off-center
trajectory �i.e., making one of the particles to leave the plane
z=0 and then come back to this plane at interparticle dis-
tances small enough; see, e.g., Fig. 1 in Ref. �7��. Further
reductions in d makes the total PMF to become negative,
reaching a minimum of about 1500 kBT at dmin,nm=7.5 nm.
At this distance, the nematic forms a defect structure consist-
ing of one large Saturn ring �which arises from the fusion of
the two Saturn rings that surround each particle when they
are far from each other� and a new disclination ring arises.
This new ring forms in the interparticle space and is orthogo-
nal to the original Saturn rings around each particle �Fig.
3�a��. This defect structure was first reported in the compu-
tational study of Guzmán et al. �12�, and was later observed
in other computational studies �9,48�. Such a defect structure
was also observed experimentally for micron-sized particles
by Ravnik et al. �9�, who termed it the “entangled hyper-
bolic” defect structure. The results described previously were
obtained for two spherical nanoparticles with a surface an-
choring strength of W=0.1 J /m2 �Fig. 2�a��. For the case of
two nanospheres with W=0.01 J /m2, the PMF curve �Fig.
2�b�� exhibit the same features previously described for the
case of W=0.1 J /m2. The magnitudes of the initial repulsion
and the PMF minimum observed for the case of W
=0.01 J /m2 �Fig. 2�b�� are very similar to those observed for
the case of W=0.1 J /m2 �Fig. 2�a��. The whole PMF curve
for W=0.01 J /m2 is shifted to the left �i.e., towards smaller
values of d� when compared to the PMF curve for W
=0.1 J /m2 �Fig. 2�a��. In consequence, the initial repulsion
and the PMF minimum for the case of W=0.01 J /m2 �Fig.
2�b�� are observed at slightly smaller interparticle distances
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FIG. 2. �Color online� Potential of mean force �PMF� as a func-
tion of the minimum surface-to-surface interparticle distance d, for
all the two-nanoparticle systems considered in this study. Two dif-
ferent values for the surface anchoring strength were considered: �a�
W=0.1 J /m2 and �b� W=0.01 J /m2.

x

y

z x

y

z

(a) (b)

FIG. 3. �Color online� 3D visualizations of the defect structures
formed by the nematic around two spherical particles that are close
to each other. �a� nm-sized particles �D=100 nm� separated by a
distance d=7.5 nm �the minimum in the PMF, Fig. 2�; the nematic
forms an entangled hyperbolic defect structure. �b� �m-sized par-
ticles �D=1 �m� separated by a distance d=0.075 �m; the nematic
forms a figure-of-eight defect structure. The defect structure pre-
sented in �b� looks more irregular than that in �a�, since the mini-
mum length of the finite elements for the case of �m-sized particles
is ten times larger than that in the case of nm-sized particles �how-
ever, the meshes used in both calculations have a similar number of
finite elements�
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�40 and 5 nm, respectively� when compared to the case of
W=0.1 J /m2 �55 and 7.5 nm, respectively; see Fig. 2�a��.
The defect structure observed at dmin,nm=5 nm for the case of
W=0.01 J /m2, is very similar to that depicted in Fig. 3�a�
�W=0.1 J /m2, dmin,nm=7.5 nm�, and therefore it is not
shown here.

In Fig. 3�b� we present the defect structure observed when
two spherical �m-sized particles �D=1 �m� with W
=0.01 J /m2 are at a distance d=0.075 �m, equal to ten
times the distance at which the minimum in the PMF is
observed for nm-sized particles �Fig. 2�. Such a choice of
interparticle distance was arbitrary and may not correspond
to the distance at which the minimum in the PMF is observed
for the case of two spherical particles with D=1 �m. Nev-
ertheless, the defect structure observed for �m-sized par-
ticles separated by an interparticle distance d=0.075 �m
consists of a single disclination line that surrounds both par-
ticles and twists in the interparticle region, forming a figure
of eight �as termed by Ravnik et al. in Ref. �9��. Such a
defect structure was also observed in the computational stud-
ies of Araki and Tanaka �48�, and in the experimental and
computational study of Ravnik et al. �9�. We have not in-
cluded results for the PMF for micron-sized particles;
Ravnik et al. �9� have already presented results for the ener-
getic interactions between pairs of �m-sized spherical par-
ticles. Those results �9� exhibit the same shape and features
as those observed by us in this work for nm-sized particles,
differing in the values of the interparticle distances d and the
magnitude of the energies ��14 000 kBT at d /D�1.04, for
two spheres with D=4.7 �m �9��.

Our results suggest that pairs of nm-sized spherical par-
ticles tend to form entangled hyperbolic defect structures,
whereas the nematic around �m-sized particles in close
proximity tends to form figure-of-eight defect structures. We
note that our calculations typically stated from an initial con-
figuration where the director field n�r� was aligned parallel
to the z direction. For the case of micron-sized particles, we
did not attempt to start our simulations from an isotropic
phase that is later quenched into the nematic phase; Ravnik
et al. �9� already did so using both experiments and computer
simulations. They report that when the final state consists of
entangled defect structures, a figure-of-eight defect is ob-
tained in about 70% of the cases; the rest of the final states
consisted of entangled hyperbolic and “figure of omega”
structures �9�. They also report that they found entangled
structures in 52% of the cases; 48% of the final states were
not entangled. For pairs of �m-sized spheres, Ravnik et al.
�9� and Araki and Tanaka �48� also observed entangled hy-
perbolic defect structures, but they were metastable. Araki
and Tanaka �48� argue that in their calculations, the en-
tangled hyperbolic structures eventually evolve into figure-
of-eight structures. In contrast, our results for nm-sized
spheres strongly suggest that the entangled hyperbolic defect
structure is the most stable. We have repeated our calcula-
tions with a pair of nanoparticles with W=0.1 and 0.01 J /m2,
separated by their corresponding distance dmin,nm �7.5 and
5 nm, respectively�, and starting from 20 different random
configurations for n�r� �i.e., the LC is in an isotropic phase�.
After quenching the LC into the nematic phase, we always
obtained entangled hyperbolic defect structures similar to

those observed where we started with the LC directly in the
nematic phase. For nm-sized spheres, we did not observe any
other entangled or unentangled defect structure, in contrast to
what was reported by Ravnik et al. �9� and Araki and Tanaka
�48� for pairs of �m-sized spheres. Our results also suggest
that the most stable defect structure changes from/to a figure
of eight to/from an entangled hyperbolic defect, at some
point where the particle diameters are between D=100 nm
and 1 �m. We emphasize that we have not aimed at deter-
mining the exact particle size at which the transition occurs.
Establishing the transition point would require calculating
and comparing the free energies of the entangled defect
structures as a function of particle size, including physical
situations for which the structures are metastable. Such de-
tailed calculations could be the subject of follow-up studies.

B. Spherocylindrical particles

In this section we present results for the PMF and the
defect structures observed when a pair of nm-sized and
�m-sized spherocylindrical particles is immersed in a nem-
atic. We have considered spherocylinders with two different
aspect ratios L /D=1.44 and 3.00, and the particles approach
each other in the x-y plane in two ways �Fig. 5�: �1� keeping
their long axes aligned �linear array� and �2� keeping their
long axes parallel �parallel array�. Results for the PMF as a
function of the minimum surface-to-surface interparticle dis-
tance d for nm-sized particles �D=100 nm� are presented in
Fig. 2�a� for the case of W=0.1 J /m2 and Fig. 2�b� for the
case of W=0.01 J /m2. As in the case of spherical particles,
the total PMF first becomes positive as the particles approach
each other, due to the same reasons previously discussed for
spherical nanoparticles. Previous calculations for smaller
spherocylindrical nanoparticles �13� did not show any sig-
nificant repulsion effects, which suggests that a reduction in
particle size leads to a decrease in the initial repulsion expe-
rienced by the particles as they approach each other. Further
reductions in d makes the PMF to become negative, reaching
a minimum of �1600 kBT �L /D=1.44, linear�, �1600kBT
�L /D=3.0, linear�, �2300kBT �L /D=1.44, parallel�, and
�5400kBT �L /D=3.0, parallel�. In analogy to what was ob-
served for the case of spherical nanoparticles, the magnitudes
of the PMF minima observed for our spherocylindrical nano-
particles seem to be independent of the values of W. The
PMF curves observed for spherocylinders are similar for
both values of W. For the case of W=0.01 J /m2 �Fig. 2�b��,
the interparticle distances at which the maxima and the
minima in the PMF curves are observed are slightly smaller,
and the whole PMF curves are slightly displaced to smaller
distances, when compared to the PMF curves obtained for
spherocylinders with W=0.1 J /m2 �Fig. 2�a��.

In Fig. 4�a� we present results for the torque transmitted
by the nematic liquid crystal to the spherocylindrical nano-
particles �D=100 nm� as they approach each other in the x-y
plane. The components of the torque were computed by nu-
merical integration of Eqs. �8� and �9� over the surfaces of
each spherocylinder. The magnitude of the components of
the torque acting over the first spherocylinder were found to
be approximately equal to the magnitude of their counter-
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parts acting over the second spherocylinder, and therefore in
Fig. 4 we have presented the average value of these torques.
Furthermore, the results presented in Fig. 4 do not depend on
the value of W �the mathematical expressions for the torque
only depend on L1�. Our results for spherocylinders that ap-
proach each other keeping their long axes parallel �parallel
arrays� indicate that Ty �Tz�0 for all the interparticle dis-
tances considered; variations in the magnitude of Tx are ob-
served at some values of d �Fig. 4�, suggesting that sphero-
cylinders approaching each other in a parallel array tend to
develop torques in the x direction. The torque Tx�0 for
spherocylinders with L /D=3.00 in a parallel array, when
they are separated by a distance d�100 nm. However, as d
is reduced, the value of Tx slightly increases and then goes to
negative values, reaching a minimum of �−14 nN nm at d
�60 nm. Such a negative torque in the x direction will tend
to make the spherocylinders to rotate around their long axis

in a clockwise direction, without swinging out of the plane
z=0; their long axes are always perpendicular to the director
field n�r� 
z �Fig. 4�b��. When the interparticle distance de-
creases from d�60 to 50 nm, the torque Tx changes from a
negative value �Tx�−14 nN nm� to a positive value �Tx
�13 nN nm, see Fig. 4�a��. Such a positive torque in the x
direction will make the spherocylinders to rotate around their
long axis in an anticlockwise direction, without swinging out
of the plane z=0 �Fig. 4�b��. Further reductions in d make Tx
to decrease and go to zero at d�20 nm. Similar effects are
observed for a pair of spherocylinders with L /D=1.44 in a
parallel array �Fig. 4�a��. In this case, the spherocylinders
first experience a positive torque �d�50 nm�, which then
becomes negative �d�40 nm� before finally decaying to
zero �d�20 nm�. The magnitude of the torques Tx observed
for the pair of spherocylinders with L /D=1.44 are smaller
than those experienced by the larger spherocylinders. The
magnitude of the torques Tx acting over the long spherocyl-
inders can be somewhat reduced by making the particles ap-
proach each other via a “diagonal” trajectory �Fig. 4�c��. In
this approach, particle 1 is initially in a plane z�0 and par-
ticle 2 is in a plane z�0, and they reach the plane z=0 when
the interparticle distance is small �d�2 nm�. When the angle
�=45° �Fig. 4�c��, our results indicate that the particles still
experience a negative nematic torque Tx, but its magnitude
decreases by about 45% with respect to the situation where
the particles approach each other in the plane z=0 �Fig.
4�a��. Another way to overcome these torques would be to
“manually” apply similar torques of the same magnitude and
direction but opposite sign.

For pairs of spherocylinders that approach each other
keeping their long axes aligned �linear arrays�, our results
indicate that Tx�Tz�0 for all the interparticle distances
considered, whereas Ty �0 for some values of d �Fig. 4�.
These results suggest that spherocylinders approaching each
other in a linear array tend to develop torques in the y direc-
tion. These torques Ty tend to rotate the particles and make
their long axis to align parallel to the director field n�r� 
z
�Fig. 4�d��. Previous simulation results for a system contain-
ing only one spherocylindrical particle with homeotropic an-
choring in a nematic �13,62� indicate that a configuration
where the spherocylinder is aligned with its long axis parallel
to the director n�r� has to pay a large free energy penalty
�13�; moreover, a nematic torque will develop �62� that will
make the particle to align with its long axis perpendicular to
the director n�r�. Our results �Fig. 4�a�� also indicate that the
magnitude of the torque Ty seems to be independent of the
value of L /D. Moreover, these torques Ty are small when
compared to the torques Tx experienced by spherocylinders
in a parallel array. As a result, rather than a full rotation that
will make the particles to align with their long axis parallel
to the z direction, particles should only experience small “vi-
bration” effects as they approach each other in a linear array.
The alternative discussed previously to overcome the torques
in parallel arrays of spherocylinders also applies for particles
in a linear array.

The defect structures formed by the nematic when the
nanoparticles are separated by an interparticle distance
dmin,nm �corresponding to the minimum in the PMF, Fig. 2�a��
are depicted in Fig. 5 for the case of W=0.1 J /m2. The de-
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FIG. 4. �Color online� �a� Torque transmitted on each sphero-
cylinder as a function of the minimum surface-to-surface interpar-
ticle distance d, for all the systems of two spherocylindrical nano-
particles considered in this study. Closed symbols are for particles
approaching each other through the plane z=0; open symbols are
for particles approaching each other in a diagonal trajectory �Fig.
4�c��. Diamonds: x component of the torque, spherocylindrical
nanoparticles in a parallel array, L /D=3.00. Triangles: x component
of the torque, spherocylindrical nanoparticles in a parallel array,
L /D=1.44. Circles: y component of the torque, spherocylindrical
nanoparticles in a linear array, L /D=3.00. Squares: y component of
the torque, spherocylindrical nanoparticles in a linear array, L /D
=1.44. The rest of the components of the torque that are not de-
picted here have a value close to zero for all values of d considered
here. �b� For a pair of spherocylindrical nanoparticles in a parallel
array �their long axes are parallel to the x axis�, the torques Tx tend
to make the spherocylinders to rotate around their long axis without
swinging out of the plane z=0; the particles keep their long axes
perpendicular to the director field n�r� 
z. �c� Spherocylindrical
nanoparticles approaching each other via a diagonal trajectory,
where particle 1 is initially in a plane z�0 and particle 2 is in a
plane z�0; both reach the plane z=0 when the interparticle dis-
tance is small �d�2 nm�. For the results presented in Fig. 4�a�, the
angle �=45°. �d� For a pair of spherocylindrical nanoparticles in a
linear array, the torques Ty tend to make the spherocylinders to
align with their long axis parallel to the z axis.
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fect structures observed for nm-sized spherocylinders at a
distance dmin,nm for the case of W=0.01 J /m2 are very simi-
lar to those depicted in Fig. 5. As found in our previous study
�13�, and in analogy to what was found for spherical par-
ticles, the nematic forms entangled hyperbolic defect struc-
tures when the nanoparticles are close to each other. These
defect structures consist of one large Saturn ring �which is
elongated due to the shape of the nanoparticles, and arises
from the fusion of the two Saturn rings that surrounded each
particle when they were far from each other�, and another
disclination ring which is orthogonal to the first large one
and forms in the interparticle space. The interparticle discli-
nation ring can be elongated or not depending on the array
formed by the particles �parallel or linear, Fig. 5�. As we
discussed in our previous work �13�, the magnitude of the
minimum in the PMF depends mainly on the size of the
interparticle disclination ring, which is filled with a highly
ordered nematic phase. As a result, �1� a parallel array of
spherocylindrical nanoparticles exhibits a lower minimum in
the PMF, as compared to a linear array of nanoparticles with
the same aspect ratio, �2� when the spherocylinders are in a
parallel array, nanoparticles with larger values of L /D ex-
hibit lower minima in the PMF, and �3� when the spherocyl-
inders are in a linear array, the minimum in the PMF does
not change significantly with L /D. Furthermore, the value of
the minimum in the PMF in a linear array of nm-sized
spherocylinders is similar to that observed for the case of two
spherical nanoparticles with the same diameter �Fig. 2�.

For the case of micron-sized spherocylindrical particles
with W=0.01 J /m2, in Fig. 6 we present 3D visualizations of
the defect structures formed by the nematic when the par-
ticles are close to each other, at distances equal to ten times
the distance at which the minimum in the PMF is observed
for nm-sized particles. As was mentioned when discussing
our results for micron-sized spheres, such a choice of inter-
particle distance is arbitrary and may not correspond to the
distance at which the minimum in the PMF is observed for
the case of micron-sized spherocylindrical particles. We did
not include results for the PMF for micron-sized spherocyl-
inders; these are expected to be similar to those presented in
Fig. 2 for nm-sized spherocylinders, differing in the magni-
tude of the energies and the distances d, as we have dis-
cussed for the case of spherical particles �Sec. III A�. For the

case of pairs of micron-sized spherocylinders that are close
to each other, the nematic forms entangled “figure-of-eight”
defect structures around the particles, in analogy to what was
observed for micron-sized spherical particles �Fig. 3�b��.
These defect structures are elongated when compared to
those observed for spherical particles; the shape of the en-
tangled defect structures naturally depends on the way the
spherocylinders approach each other �linear, parallel�. We
did not attempt to calculate the torques between pairs of
micron-sized spherocylindrical particles; these are expected
to follow the same trends as those shown in Fig. 4 for nm-
sized spherocylinders, with differences in the magnitude of
the torques and the distances at which they are observed.

Our results for spherocylindrical particles suggest that
pairs of nm-sized particles close to each other tend to form
elongated entangled hyperbolic defect structures, whereas
the nematic around micron-sized particles tends to form
elongated figure-of-eight defect structures. These results are
analogous to those obtained for spherical particles �Sec.
III A�. For each array of nm-sized particles separated by a
distance dmin,nm �corresponding to the minimum in the PMF�,
we repeated our calculations starting from 20 different ran-
dom configurations for n�r�, as we did for the spherical
nanoparticles �Sec. III A�, and again we always obtained en-
tangled hyperbolic defect structures; we did not observe any
other entangled or unentangled structure. Our results for
spherocylindrical particles with L /D between 1.44 and 3.00
also suggest that the most stable defect structure changes
from/to a figure of eight to/from an entangled hyperbolic
defect, at some point when the particle diameters are be-
tween D=100 nm and 1 �m. We note again that determining
the exact particle size at which the transition between defect
structures takes place was not an objective of this study.
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FIG. 5. �Color online� 3D visualizations of the “entangled hy-
perbolic” defect structures formed by the nematic around two nm-
sized spherocylindrical particles that are close to each other �at the
distance d at which the PMF reaches its minimum, Fig. 2�. �a�
L /D=1.44, linear array. �b� L /D=1.44, parallel array. �c� L /D
=3.00, parallel array. �d� L /D=3.00, linear array.
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FIG. 6. �Color online� 3D visualizations of the figure-of-eight
defect structures formed by the nematic around two �m-sized
spherocylindrical particles that are close to each other �at a distance
d equal to ten times the distance at which the nm-sized particles
reach the minimum in the PMF, Fig. 2�. �a� L /D=1.44, linear array.
�b� L /D=3.00, linear array. �c� L /D=1.44, parallel array. �d� L /D
=3.00, parallel array. For �c� and �d�, two different views of the
same configuration are presented for clarity. The defect structures
presented here look more irregular than those presented in Fig. 5,
because the minimum length of the finite elements for the case of
�m-sized particles is ten times larger than that in the case of nm-
sized particles �however, the meshes used in both calculations have
a similar number of finite elements�
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Our results suggest that the LC-mediated interactions be-
tween pairs of particles are strong and anisotropic, and vary
with the shape and dimensions of the particles. These inter-
actions can be used to bind the particles together and as-
semble them into ordered structures with unconventional
morphologies. As an example, in Fig. 7 we depict an ordered
structure that could be assembled using spherocylindrical
particles immersed in a nematic liquid crystal “sandwiched”
between two parallel walls forming a thin cell. The particles
would be held together in such an ordered structure by the
defects formed by the nematic around the spherocylinders.
Such an ordered structure could be assembled in principle
following the same ideas of the work presented by Muševič
et al. �6–10� for the assembly of spherical particles in a
nematic. In fact, an experimental study considering systems
of rodlike particles in a nematic has been carried out very
recently �63�, suggesting the feasibility of assembling or-
dered arrays of these particles in a nematic. Ordered particle
structures with symmetries different from the hexagonally
close-packed crystals typically formed by spherical colloids
could be relevant for applications in photonics and nanoscale
optoelectronics �51,52�.

IV. CONCLUDING REMARKS

Using a mesoscale theory for the tensor order parameter
Q, we have investigated the effects of particle size and shape
on the quadrupolar �i.e., Saturn-ring-like� defect structures
formed by a nematic liquid crystal around pairs of particles
that are close to each other. We considered systems of nm-
sized and �m-sized particles with spherical and spherocylin-
drical shapes. Our results for pairs of spherical particles that
are in close proximity suggest that the nematic forms en-
tangled hyperbolic defect structures around nm-sized par-
ticles, and figure-of-eight defects around micron-sized
spheres. The former defect structure consists of one large
Saturn ring �which arises from the fusion of the two Saturn
rings that surround each particle when they are far from each
other� and another disclination ring, which is orthogonal to
the first one and forms in the interparticle space �Fig. 3�a��.
The “figure of eight” defect structure consists of a single
disclination loop that is twisted in the interparticle space and

surrounds both particles �Fig. 3�b��. According to our calcu-
lations, the potential of mean force between two nanospheres
�D=100 nm� reaches a minimum of �1500kBT when the
particles are separated by a distance of about 5–7.5 nm. For
spherocylindrical particles, we considered two different as-
pect ratios �L /D=1.44 and 3.00�, and two different arrange-
ments for the particles �linear and parallel�. Results for all
these systems follow the same trends observed for spherical
particles: the nematic forms entangled hyperbolic defects
around the nm-sized particles �D=100 nm, Fig. 5�, and
figure-of-eight defects around the �m-sized spherocylinders
�D=1 �m, Fig. 6�. These entangled defect structures exhibit
distorted shapes as compared to those observed for spheres,
due to the spherocylindrical shape of the particles and their
arrangement in linear or parallel arrays. For spherocylin-
drical nanoparticles, the potential of mean force depends di-
rectly on the size of the third disclination ring that forms in
the interparticle region. As a result, the potential of mean
force �PMF� can reach a minimum of �5700kBT for the case
of spherocylindrical nanoparticles with L /D=3.0, when their
long axis are parallel and they are close to each other. For all
our systems of nm-sized particles, we have considered two
values for the surface anchoring strength, W=0.01 and
0.1 J /m2. The curves of PMF vs interparticle distance d for
W=0.01 J /m2 are shifted to the left �i.e., towards smaller
values of d� when compared to the PMF curves observed for
W=0.1 J /m2 �Fig. 2�. The values of the maxima and minima
in the PMF curves seem to be unaffected by the choice of W
for the systems considered in this study �Fig. 2�. Although
we have not determined the exact particle diameter at which
the transition between entangled defect structures takes
place, our results for spherical and spherocylindrical particles
�L /D=1.44 and 3.00� suggest that such a transition occurs
when the particle diameters are between D=100 nm and
1 �m. Our results for pairs of nm-sized spherical and
spherocylindrical particles that are in close proximity
strongly suggest that the entangled hyperbolic defect struc-
ture is the most stable configuration, as we did not observe
any other entangled or unentangled defect structure. Such an
observation contrasts to the results of Ravnik et al. �9� for
pairs of �m-sized spheres, which form entangled structures
in 52% of the cases; of these, in 70% of the cases a figure-
of-eight defect structure is formed, and in 30% the nematic
forms metastable entangled hyperbolic and figure-of-omega
structures around the particles.

We have also calculated the torques that develop when
pairs of spherocylindrical nanoparticles immersed in a nem-
atic approach each other. Spherocylinders approaching each
other in the plane z=0 with their long axis parallel to each
other develop torques in the x direction at intermediate val-
ues of interparticle distances d �Fig. 4�. The magnitude of
these torques depend on the L /D ratio of the particles, and
tends to make the particles to rotate around their long axis
without swinging out of the plane z=0 where their long axes
are initially located. These torques Tx change signs in a small
range of values of d �e.g., d=50–60 nm for the case of
L /D=3.00�, and become equal to zero at large and small
values of d. Particles in a linear array, in contrast, develop
torques in the y direction as they approach each other. These
torques Ty tend to rotate the particles to align them with their
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FIG. 7. �Color online� Representation of an ordered structure
that could be assembled using spherocylindrical particles immersed
in a nematic liquid crystal. The particles are held together by the
defects formed by the nematic around the spherocylinders.
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long axis parallel to n�r� 
 z. The magnitude of these torques
Ty is very small when compared to the nematic torques Tx
observed for spherocylinders in a parallel array. These
torques can be somewhat reduced by making the particles
approach each other via a “diagonal” trajectory �Fig. 4�c��;
our results indicate that the particles still experience a nega-
tive nematic torque Tx as they approach, but its magnitude
decreases by about 45% with respect to the situation where
the particles approach each other in the plane z=0 �Fig.
4�a��.

Our results suggest that the LC-mediated interactions be-
tween pairs of particles are strong and anisotropic, and vary
with the shape and dimensions of the particles. These inter-
actions can be used to bind the particles together and as-

semble them into ordered structures with unconventional
morphologies. Similar studies for particles with shapes other
than spherical, spherocylindrical and cubic immersed in LCs
are currently underway in our group, and could be relevant
for ongoing research in light-scattering devices, electro-
optical switches, photonics, nanoscale electronics, displays,
and optical sensors.
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