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We formulate a phase-field description of step dynamics on vicinal surfaces that makes use of a single
dynamical field, at variance with previous analogous works in which two coupled fields are employed, namely,
a phase-field proper plus the physical adatom concentration. Within an asymptotic sharp interface limit, our
formulation is shown to retrieve the standard Burton-Cabrera-Frank model in the general case of asymmetric
attachment coefficients �Ehrlich-Schwoebel effect�. We confirm our analytical results by means of numerical
simulations of our phase-field model. Our present formulation seems particularly well adapted to generalization
when additional physical fields are required.
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I. INTRODUCTION

Crystalline surfaces whose orientation is close to �but
does not precisely coincide with� a high symmetry orienta-
tion are usually called vicinal surfaces �1�. Their shape basi-
cally consists of flat terraces separated by steps of one or a
few atomic sizes, which makes them suited for many differ-
ent applications, such as sites for preferential catalytic activ-
ity or as templates for epitaxial growth by, e.g., molecular
beam epitaxy �MBE�. The most conspicuous example of the
latter takes place in the so-called step-flow mode in which
deposited adatoms diffuse on the terraces and attach to pre-
existing steps. In order to gain control on the �technologi-
cally desirable� conditions under which the crystals thus
grown are smooth and have sharp interfaces, a large effort
has been directed to the study of far-from-equilibrium crystal
growth phenomena onto this type of surfaces �2,3�. More-
over, also equilibrium crystalline surfaces that are below
their roughening temperature TR feature a stepped morphol-
ogy akin to that of vicinal surfaces, so that the problem of,
say, thermal relaxation of a crystalline surface below TR
bears conceptual similarities to growth onto vicinal surfaces,
and has attracted a similar interest both from the experimen-
tal �4� and from the theoretical �5� points of view.

The theoretical study of growth on vicinal surfaces in the
step-flow regime originates back in the classic work by Bur-
ton, Cabrera, and Frank �BCF� �6�. The realization that many
diverse effects can nontrivially modify the simplest solution
of a uniformly moving train of straight steps has generated a
strong interest in these systems as paradigmatic cases in
which nonequilibrium statistical mechanics and nonlinear
pattern formation meet �7�. Thus, steps are morphologically
unstable to meandering �8� and bunching, and fluctuations in
the driving beam flux and island nucleation may induce in-
terface disorder �kinetic roughening�. A large variety of mor-
phological behaviors ensues �see, e.g., �9–12��, that indeed

correlates with the variety of morphologies that have been
found experimentally.

In general one considers a train of steps separated by ter-
races. On these terraces the adatoms arriving from a vapor
can diffuse and eventually impinge towards one step becom-
ing attached to it. Adatom desorption from the terraces can
also take place, although MBE conditions frequently corre-
spond to negligible desorption. Subsequent movement of the
adatoms along the interface �the step itself� separating the
terraces is allowed and is a thermally activated process. The
theoretical description of this system has been successfully
performed during recent years �9–12� although the interplay
among the different mechanisms involved is still unclear.
Thus, full understanding has not been achieved yet in the
case of the step bunching instability �13�, step-step interac-
tions �9�, or the so-called kink Ehrlich Schwoebel �KESE�
instability �14�.

Given that these continuum theories are usually formu-
lated in the form of moving boundary problems �see Sec.
II A�, their main difficulty lies in the nonlinear implicit cou-
pling between the diffusive dynamics at the terrace and at the
curved steps. An important procedure to provide a more
compact theoretical description is the derivation of effective
interface evolution equations for the step profile. Although
highly informative on the system behavior �an overview with
references can be found in �15��, these equations are only
valid in principle within appropriate asymptotic approxima-
tions, and are many times limited, say, to small slope condi-
tions. A more quantitative description of the system—that,
e.g., allows us to link continuum model parameters with mi-
croscopic features, the study of more general geometries or
to explore parameter values outside asymptotic regimes—
requires numerical solution of the moving boundary prob-
lems. As is usually the case with free and moving interface
problems, this faces severe numerical issues related with
front tracking. A way to circumvent these is the formulation
of a related problem in which the physical concentration field
is coupled to an auxiliary phase field that accounts in a natu-
ral way for the position of the moving interface as that �thin�
area across which the phase field varies appreciably. The*marioc@upcomillas.es
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phase-field method �16� has indeed found great success in
the numerical simulation of diverse physical phenomena
whose constitutive laws lead to free and moving boundary
problems, such as solidification from a melt, various phase
transitions such as in liquid crystals, solid-state structural
transformations, electrodeposition, grain growth, fracture,
etc. �17�, to the extent that it is currently considered as a
method of choice for multiscale simulations of materials
�18�.

In the specific case of step dynamics, to date several dif-
ferent phase-field models have been already proposed. In all
of them, there is essentially one physical field �namely, the
adatom concentration for each terrace�, whose dynamics is
coupled to that of the phase-field proper. Then, the various
formulations can be grouped taking into account whether
they consider the same attachment kinetics from both sides
of the step �19–21�, or else �22–25� they allow for different
attachment kinetic coefficients for adatoms approaching the
step from the upper and the lower terraces, implementing the
Ehrlich-Schwoebel �ES� effect �2,3,8�. We stress that, in all
these approaches, at least two independent fields are consid-
ered, so that further extensions of the model involving, for
instance, diffusion of adatoms along the step would possibly
imply the incorporation of yet a new diffusive field at the
step, coupled with the other fields in the model.

Alternatively, there have been successful applications of
the phase-field approach in which a single field is employed,
whose dynamics is actually shown �in the various contexts�
to fully reproduce that of the original moving boundary prob-
lem. Moreover, the dynamical equation for this field many
times resembles quite closely models of critical dynamics for
order parameters �26�, so that its physical interpretation is
usually transparent. Examples can be found in problems such
as imbibition �27�, viscous flow �28� or heterogeneous nucle-
ation �29�—this being a promising point of departure for
further extensions— and other problems as reviewed, e.g., in
�30�. The advantages of this approach are clear both concep-
tually and computationally. From the theoretical point of
view, it provides a more compact framework that can always
be enlarged by additional fields if the description of new
physical effects requires such type of generalization.

In this paper we address the dynamics of steps on vicinal
surfaces in the step-flow regime, through this type of single-
field phase-field approach. We consider the standard problem
of a single step between two terraces in the general case of
asymmetric attachment. This is a reference case considered
in many theoretical studies. We show analytically that our
phase-field model is equivalent, in the sharp-interface limit,
to the classic BCF nonlinear moving-boundary formulation.
Moreover, we confirm this conclusion through numerical
simulations of our phase-field model, in which we specifi-
cally reproduce the basic features of the Bales-Zangwill me-
andering instability �8� that results from the ES effect.

The paper is organized as follows. In the next section we
set up both the moving boundary problem we wish to repro-
duce, and the single phase-field equation that is equivalent to
it. Section III is devoted to proving such an equivalence
through an asymptotic study, while these analytical results
are checked against direct numerical simulation in Sec. IV.
We conclude in Sec. V with a brief discussion and outlook.

II. FORMULATION OF THE PHASE-FIELD MODEL

A. Macroscopic model of terrace edges during step flow

The classic BCF system that provides for us the macro-
scopic or moving boundary problem of reference consists of
a set of coupled equations for the adatom concentration
fields, ck, on the various terraces composing the vicinal sur-
face. Considering a reference frame comoving along the z
direction with the average step velocity V, these read as �8�

�tck = D�2ck + F −
ck

�
− V�zck, �1�

Vn = �+�ck+1 − ceq,k� + �−�ck − ceq,k� , �2�

where

ceq,k = ceq
0 − ��k, �3�

Vn
l

�
= D�nck + Vn

0ck − D�nck+1 − Vn
0ck+1. �4�

In Eq. �1�, F is the deposition flux of atoms, and � is the
characteristic time for desorption. The combination of Eqs.
�2� and �4� provides the boundary conditions, � being the
atomic volume. Vn is the normal velocity at each point of the
terrace edge, that is defined by

Vn = Vn
0 + Vn

l =
V + �thk

�1 + ��xhk�2
, �5�

where hk�x , t� is the position of the terrace edge along the kth
step coordinate, x, at time t, and Vn

l is the normal velocity in
the comoving frame. Parameters �� are the attachment rate
contants for adatoms arriving from the upper ��� and lower
��� sides of the step, ceq

0 =F� is the equilibrium value of the
concentration at infinity, � is the surface tension �that will be
assumed a constant�, and �k is the step curvature,

�k = −
�x

2hk

�1 + ��xhk�2�3/2 . �6�

As shown by Bales and Zangwill �BZ� �8�, Eqs. �1�–�4� pre-
dict a meandering instability by which a train of straight
steps is morphologically unstable to transverse perturbations.
The instability is a consequence of the unbalance of the dif-
fusive flux of adatoms attaching to a step from the two ad-
jacent terraces, when the kinetic attachment coefficients are
different, �+��−. Frequently, this occurs as a result of the
ES effect, by which adatoms experience a barrier to ap-
proaching a step from the upper terrace, due to the loss in
coordination �2,3�. Mathematically, considering a single step,
it can be seen that, to linear order, periodic perturbations
with wave vector q, hq�t�, of a straight step evolve in time as
hq�t��e	qt, where the linear dispersion relation has the form
�in a long wavelength approximation�

	k = a2q2 − a4q4, �7�

where a2,4 are positive constants that depend on the model
parameters. This dispersion relation was obtained by BZ in
the present context, and turns out to describe the linear re-
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gime for the well-known Kuramoto-Sivashinsky �KS� equa-
tion �31�. Actually, in the case of finite desorption that we are
considering, �
�, the KS equation has indeed been shown
to provide the nonlinear description of a single isolated step
�32�. The case of no desorption �→� is more subtle, the
shape of the nonlinear evolution equation depending non-
trivially on the ES effect being strong �10� or weak �33�.

B. Phase-field equations

We next introduce a one-field phase-field model that con-
tains all the ingredients of the macroscopic model in a
simple, compact, and numerically efficient fashion. More-
over, as we will show in Sec. IV we reproduce the linear
dispersion relation of the macroscopic theory and, eventu-
ally, we can simulate the system in the nonlinear regime. The
phase-field model equation is

�t� =
A − �

�
+ � · ����� � 
� − E · ����� , �8�

where A is a constant that takes different values on the two
sides of the step, as does the phase field � itself thus provid-
ing the step position as its zero level set. Moreover, � is also
related to the value of the macroscopic physical adatom con-
centration field, in a form to be specified below. The first
term on the right-hand side �rhs� of Eq. �8�, which accounts
for desorption, precisely insures that the order parameter �
takes different values for the different terraces far from the
step. As for the second term on the rhs of Eq. �8�, a chemical
potential, 
, appears, that is given by


 =
�F
��

= − V���� − �2�2� , �9�

where V��� is the potential which determines the local
minima of the phase field. Generically, those minima corre-
spond to the �vertical� lattice positions. More specifically, we
force the phase field to define the terrace position at equidis-
tant lattice spacings a. Thus, we can take, for instance,

V��� = − cos�2�a�� , �10�

where � takes integer values. The second term on the rhs of
Eq. �9� implements the mesoscopic character of the phase-
field model, whereby a finite interfacial width, �, appears
affecting the step position. This term provides a surface ten-
sion contribution to the chemical potential and, in equilib-
rium, determines a stationary solution for the order param-
eter � �for instance, for a double-well potential the stationary
solution would be a hyperbolic tangent�. Moreover, it will
give rise to the diffusion term in the macroscopic model, Eq.
�1�. The third term on the rhs of Eq. �8� is akin to an external
field E imposed on the order parameter. This term will give
rise to step motion with a uniform velocity. Moreover, choos-
ing appropriate ���� and ���� functions will allow us to
account for flux imbalance from both sides of the step, and
will be responsible for the dynamic instability when the sys-
tem is driven out of equilibrium.

In the following we will show how the macroscopic
model is obtained from the phase-field model by an

asymptotic expansion in the sharp interface limit �→0. At
the different orders of this asymptotic expansion, we will
recover from Eq. �8� both the dynamic equation for the bulk
and the boundary conditions of the macroscopic model. This
procedure will allow us to determine necessary conditions on
���� and ���� �specifically, parity properties in terms of
their arguments� in order to achieve such convergence. Apart
from these requirements, we will carry out the asymptotic
analysis for as general ���� and ���� as possible. Finally, in
our numerical integration of the phase-field model we will
take explicit expressions of these functions.

For the sake of simplicity, we will concentrate in a single
step separating two terraces. In such a case, one can replace
the potential �10� by a double-well potential. Typically,

V��� =
�4

4
−

�2

2
. �11�

In this case, the lattice spacing is 2 �in nondimensional
units�, and the corrections to the constant values are signed,
i.e., �=A�̃ where �̃ is the interfacial width. Moreover, the
phase field has the following asymptotic values:

lim
z→��

� = � 1. �12�

Figure 1 shows schematically the different alternatives for
the phase-field potential and the stationary solutions corre-
sponding to each choice. As we will show in Sec. III, in
order to connect the macroscopic physical field ck to the
phase field, �, we must perform the following change of
variable:

2��ck − ceq,0� = A�− A + �� . �13�

Equation �13� allows us to map the physical concentration
field �which ranges from 0 to ceq,0� to the phase-field whose
variation is given by Eq. �12�. For the double-well potential
given by Eq. �11� we take A=sgn���= �1.
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FIG. 1. Terrace potentials and phase-field solutions. �a� Bistable
potential, Eq. �11�. �b� Multistable periodic potential, Eq. �10� with
a=1. �c� Numerical solution of Eq. �8� in one dimension using V���
as in �a�. �d� Numerical solution of Eq. �8� in one dimension using
V��� as in �b�.
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III. ASYMPTOTIC EXPANSION

We introduce curvilinear coordinates �u ,s�, where u is the
normal distance to the interface and s is the arclength �fol-
lowing the standard procedure, see Ref. �16� for details�. The
inner and outer expansion for a generic variable are written,
respectively, as

� = �0�w,s;t� + ��1�w,s;t� + ¯ , �14�

�̃ = �̃0�u,s;t� + ��̃1�u,s;t� + ¯ , �15�

where we have introduced the stretched normal coordinate
for the inner region, w=u /�, and will use tilde for functions
in the outer region.

The matching conditions are

lim
w→��

�i = lim
u→0�

�̃i, �16�

lim
w→��

�i+1,w = lim
u→0�

�̃i,u, �17�

where �i,w indicates the derivative in the direction of the
coordinate w.

A. Outer expansion

1. Order (�0)

From Eq. �8�, at this order we obtain the dynamic equa-
tion

�t�̃0 =
A − �̃0

�
+ ���̃0 � 
̃0� − E · ����̃0� , �18�

where �̃0����̃0�. Equation �9� gives


̃0 = − �̃0 + �̃0
3. �19�

From Eq. �12�, we obtain 
̃0=0 and A= �̃0. Thus, at this
lowest order the phase field takes constant values on the
terraces sufficiently far from the step.

2. Order (�1)

The dynamic equation at this order is

�t�̃1 = −
�̃1

�
+ �̃0�

2
̃1 − �0�E · ��̃1, �20�

where �0������0�, and V is related to E=Eẑ and � by

V � �0�E = Vn
0ẑ . �21�

In order to obtain the same value of V on the two sides of the
terrace, we obtain as a necessary condition that � be an odd
function of its argument.

At this order, Eq. �9� gives


̃1 = − �̃1 + 3�̃0
2�̃1 = 2�̃1. �22�

Using this result, Eq. �21� and Eq. �13� in Eq. �20�, we re-
cover the macroscopic diffusion equation, Eq. �1�, with

D�2�̃0, Eq. �22� thus allowing to relate �̃0 with a parameter
of the macroscopic model. Likewise, Eq. �21� relates the
external field E with the average step velocity, V, as antici-
pated.

B. Inner expansion

We now proceed to write Eq. �8� in the inner region,

�t� −
v
�

�w =
A − �

�
+

1

�2 ��
w�w −
1

�
��
w − w�2�
w

+ ��
s�s −
1

�
Ew���w − Es���s, �23�

where Ew and Es are, respectively, the normal and tangential
components of vector E, and v=v0+�v1+¯ is the normal
local velocity.

Equation �9� reads in this region as

1

�2
 =
1

�2 �− � + �3 − �ww� +
1

�
��w + w�2�w − �ss.

�24�

1. Order (�−2)

At this order, Eq. �23� becomes

0 = ��0
0,w�w, �25�

where �0����0�. Integrating twice we arrive at


0 = �
0

w

dw�
B

�0
+ C , �26�

where B and C are integration constants. By using the match-
ing conditions, we conclude that B=C=0 and then 
0=0,
where


0 = − �0 + �0
3 − �0,ww. �27�

The solution 
0=0 implies that �0 is indeed a hyperbolic
tangent,

�0 = tanh�w/�2� , �28�

from which �0,w provides a nontrivial eigenfunction �a Gold-
stone mode, having zero eigenvalue� for the differential op-
erator

L � − 1 + 3�0
2 − �w

2 . �29�

2. Order (�−1)

At this order Eq. �23� reads as

− v0�0,w = ��0
1,w�w − Ew�0��0,w. �30�

By integrating with respect to w we obtain

− v0�0 = �0
1,w − Ew�0 + T , �31�

where T is the integration constant. Then, 
1,w can be written
as
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1,w = − v0
�0

�0
+ Ew

�0

�0
+

T

�0
. �32�

Using the asymptotic matching and taking into account that

̃0=0, we obtain

0 = − v0
1

�̃0

+ Ew
��+ 1�

�̃0

+
T

�̃0

, �33�

0 = v0
1

�̃0

+ Ew
��− 1�

�̃0

+
T

�̃0

. �34�

Given that � is an odd function, by adding the two previous
equations we obtain T=0. By subtraction we obtain

v0 = Ew��+ 1� = Vn. �35�

Integrating again with respect to w in Eq. �32� we obtain


1 = − v0�
0

w

dw�
�0

�0
+ Ew�

0

w

dw�
�0

�0
+ S , �36�

where S is a new integration constant.
In the same way, by integrating Eq. �24� we obtain


1 = − �1 + 3�0
2�1 − �1,ww + ��0,w �37�

and

L�1 = 
1 − ��0,w. �38�

The solvability condition for this nonhomogeneous equation
implies

0 = �
−�

�

dw
1�0,w − ��
−�

�

dw��0,w�2 �39�

and

S =
��

2
+

v0

2
� −

Ew

2
� , �40�

where

� = �
−�

�

dw��0,w�2, �41�

� = �
−�

�

dw�
0

w

dw�
�0�0,w

�0
, �42�

� = �
−�

�

dw�
0

w

dw�
�0�0,w

�0
. �43�

Introducing now S in Eq. �36� and applying the matching
condition with the outer variables, we obtain

2�̃1
+ = − v0�

0

�

dw�
�0

�0
+ Ew�

0

�

dw�
�0

�0
+

��

2
+

v0

2
� −

Ew

2
� ,

�44�

2�̃1
− = − v0�

0

−�

dw�
�0

�0
+ Ew�

0

−�

dw�
�0

�0
+

��

2
+

v0

2
� −

Ew

2
� ,

�45�

where we have used that 
̃1=2�̃1. Now, we define two new
constants k� as

k�
−1 = − �

0

��

dw
�0

�0
+

1

��+ 1��0

��

dw
�0

�0
+

�

2
−

�

2��+ 1�
.

�46�

Note that the asymmetry in the attachment is due to the
mobility function, �0=���0� and not to the value of the ex-
ternal drive E.

Adding Eqs. �44� and �45� we obtain

v0 = k+	�̃1
+ −

�

4
�
 + k−	�̃1

− −
�

4
�
 . �47�

This equation becomes the macroscopic equation for the step
velocity, Eq. �2�, taking into account that

�̃1
� = 2��c� − ceq� , �48�

and identifying ��=2�k� and �= �
8� �note that ���d0 is

the so-called capillarity length�.

3. Order (�0)

The last macroscopic equation, the continuity equation,
Eq. �4�, can be retrieved already at this order. Equation �23�
can be written as

− v1�0,w − v0�1,w =
A − �0

�
+ ��0
2,w�w + ��0��1
1,w�w

− ��0
1,w − Ew�0��1,w − Ew�0��1�0,w.

�49�

Again integrating with respect to w,

− v1�0 − v0�1 = �
0

w

dw	A − �0

�

 + �0
2,w + �0��1
1,w

− ��0
1 − Ew�0��1. �50�

By imposing the matching condition, we obtain two equa-
tions, one for each phase �terrace�

− v1 − v0�̃1
+ = �

0

�

dw	A − �0

�

 + �̃0
̃1,u

+

− ��̃0
̃1
+ − Ew���+ 1��̃1

+, �51�

v1 − v0�̃1
− = �

0

−�

dw	A − �0

�

 + �̃0
̃1,u

−

− ��̃0
̃1
− − Ew���− 1��̃1

−. �52�

Taking into account the expressions for A �Eq. �13��, and �0,
�Eq. �28��, and subtracting Eqs. �51� and �52�, we obtain
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2v1 = �0�
̃1,u
− − 
̃1,u

+ � + �0��
̃1
− − 
̃1

+� + Vn
0��̃1

− − �̃1
+� .

�53�

We can recognize here Eq. �4�, once we take into account
that the first two terms on the right-hand side of �53� yield
the normal derivative of c, and that v1=Vn

l after the change
of variables, Eq. �48�, as above.

IV. NUMERICAL INTEGRATION

In this section we briefly present some results from the
numerical integration of Eq. �8� in order to check the validity
of the approximations made in the preceding sections.

We have used a fourth-order Runge-Kutta integration
scheme for the time evolution �with time step �t�, and a
discretization of spatial derivatives using nearest-neighbor
finite differences �with lattice spacing �x�. In all the compu-
tations we have used

− ����� = 1 + 0.1�2�− 6 + 5�2� . �54�

This choice guarantees that the mean velocity of the front is
nonvanishing.

Besides, we have performed a couple of numerical experi-
ments to check the qualitative and quantitative validity of the
sharp-interface limit exposed in Sec. III. The first set of nu-
merical data models the case of an interface separating two
phases with equal probabilities of attachment �namely, �+
=�−� with desorption ��=100�. In this symmetric case, some
analytical results can be obtained �34� so we will use them to
check the validity of our approximation. Then, the second set
of numerical data deals with the case of asymmetric attach-
ment, also with desorption ��=10�. Although in principle the
matching of the parameters can be also done in this case, the
function � must be chosen appropriately.

In Fig. 2 we show the dispersion relation �	q� in the case
of symmetric attachment �in the phase-field model this
means that ����=�0=constant�, as obtained numerically.
Analytically, it can be shown that in this case �34�

	q =
D

xs
2 ���F� − ceq

0 ���1 + �qxs�2 − 1� − d0xsceq
0 q2�1 + �qxs�2� ,

�55�

with xs= �D��1/2.
In order to obtain 	q numerically, we impose a sinusoidal

initial condition for the zero level set of the phase field, with
spatial frequency q. The system is integrated and the curve
h�x , t� related to the zero level set is assumed to grow as
h�x , t��exp�	qt�. In Fig. 2, the dots are obtained by this
method from numerics and the solid line is a fit to Eq. �55�.
Note that the change of variables given in Eq. �13� provides
two fitting parameters �� and ceq� that can be obtained.

In the case of asymmetric attachment with desorption, we
have just performed the comparison qualitatively. Thus, in
Fig. 3 we show the dispersion relation �	q� where the asym-
metry has been introduced through a functional dependence
of � on the phase field. We have chosen �for simplicity�

���� = �a + �s�� + ���1 − �2� , �56�

with �a=�s=1, and �=0.5. This form ensures that the mac-
roscopic diffusivity, D is equal in both phases but also pro-
vides the asymmetry in the coefficients �� through Eq. �46�.
The circles stand for numerical data and the solid line for a
fit to Eq. �7�.

As can be seen the evolution of an initially disordered
step we reproduce the linear dispersion relation �7�, as ex-
pected for the full macroscopic equations �1�–�4� �8�, similar
to other phase-field formulations �22�.

In Fig. 4 we show the global interface width defined as
the root mean square of the step position. The behavior is
that predicted by the Kuramoto-Sivashinsky equation: An
initial transient followed by an exponential regime, and fi-
nally a scaling regime with exponents that are compatible
with those of the Kardar-Parisi-Zhang universality class,
only after a long transient associated with the corresponding
linear theory �35�. Analogously, in Fig. 5 we show the power
spectral density for the same system parameters. Note the −4
slope at high frequencies which is, again, compatible with
the predicted �noisy� Kuramoto-Sivashinsky behavior �36�.

0 0.05 0.1 0.15 0.2
q

-0.06

-0.04

-0.02

0

ω
q

FIG. 2. Linear dispersion relation for the symmetric attachment
case, ����=�a=1. The circles provide the results of the numerical
integration and the solid line is a fit to the linear dispersion relation
�55� �34�. Other parameters are �x=1, �t=0.005, system size Lx

�Ly =512�512, �=0.5, and �=100. All units are arbitrary.

0 0.05 0.1 0.15 0.2
q

-1.5

-1.0

-0.5

0.0

ω q

FIG. 3. Linear dispersion relation for the asymmetric attachment
case �����=�a+�s��+���1−�2��. The circles provide the results
of the numerical integration and the solid line is a fit to the linear
dispersion relation �7� �8�. Parameters are �x=1, �t=0.005, system
size Lx�Ly =512�512, �=0.5, and �=10. All units are arbitrary.
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V. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a one-field phase-field
model that reproduces the main physical description of step
dynamics in the step-flow regime, as provided by the BCF
model. This type of stepped system has traditionally been
studied �within the phase-field formalism� with, at least, two
coupled fields: One field for the physical adatom concentra-
tion on the terraces and another order parameter-type field
tracking the step position. We have shown the equivalence
between the moving boundary problem and our simple for-
mulation by means of asymptotic analysis and numerical in-
tegration.

Our present contribution can be relevant not only from the
point of view of economy of equations but also its capability
to be generalized to more complex or specialized problems.
Moreover, it allows us to explore nonlinear regimes and pa-
rameter conditions that may lay beyond usual asymptotic
approximations, common to effective interfacial theories.

Among natural generalizations of our model we wish to
mention electromigration �37,38� that might be implemented
in our framework �by appropriately tuning the E field in �8�
to accommodate the additional advective term that appears in
�1� under such physical conditions�, KESE instabilities �14�
�which are Ehrlich-Schoewbel instabilities located at the step
kinks and not between terraces�; the effect of pinning due to
impurities �for instance, by introducing a quenched noise
contribution to function ��, or the role of thermal fluctua-
tions �relevant at the nanoscale� by simply adding the proper
noise terms in Eq. �8�.
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