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We investigate the condensation-driven aggregation model that we recently proposed whereby an initial
ensemble of chemically identical Brownian particles are continuously growing by condensation and at the
same time undergo aggregation upon collision. We solved the model exactly by using scaling theory for the
case when a particle, say of size x, grows by an amount �x over the time it takes to collide with another particle
of any size. It is shown that the particle size spectra exhibit transition to scaling c�x , t�� t−���x / tz� accompa-
nied by the emergence of a fractal of dimension df =1 / �1+2��. A remarkable feature of this model is that it is
governed by a nontrivial conservation law, namely, the dfth moment of c�x , t� is time invariant. The reason why
it remains conserved is explained. Exact values for the exponents �, z, and df are obtained and it is shown that
they obey a generalized scaling relation �= �1+df�z.
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I. INTRODUCTION

The formation of clusters by aggregation of particles, its
underlying causes and consequences, is one of the most fun-
damental yet challenging problems of many processes in
physics, chemistry, biology, and engineering. Examples in-
clude aggregation of colloidal or aerosol particles suspended
in liquid or gas �1–3�, polymerization �4�, antigen-antibody
aggregation �5�, and cluster formation in galaxies �6�. Such a
wide variety of applications has resulted in numerous studies
focusing mostly on the kinetic and geometric aspects of the
problem. The kinetic aspect is well studied and well under-
stood through theory, experiment, and numerical simulation.
The first successful theoretical model was proposed more
than 100 years ago by von Smoluchowski and it still remains
the only analytical model that has provided much of our
theoretical understanding �7�. The definition of this model is
trivially simple. It is assumed that an initial ensemble of
chemically identical particles undergoes sequential aggrega-
tion upon collision.

The kinetics of aggregation by the Smoluchowski equa-
tion was extensively studied during the 1980s, and signifi-
cant contribution was made during this period especially on
scaling theory and the gelation transition �8–10�. One of the
most striking results is that the concentration c�x , t� of par-
ticles of size x at time t exhibits dynamic scaling,

c�x,t� � s�t�−��„x/s�t�… , �1�

in the limit t→�, where ���� is the scaling function, s�t� is
the mean particle size, and the conservation of mass prin-
ciple tunes the mass exponent to an integer value �=2 �9,11�.
The structure of the above scaling ansatz is highly instructive
as it has been found in many seemingly unrelated phenom-
ena. It implies that there must exist a common underlying
mechanism for which such disparate systems behave in a
remarkably similar fashion �12�. On the other hand, the in-
sights into the geometric aspect were mostly provided by
experiments and numerical simulations, and these studies re-
veal that when particles aggregate almost always scale-
invariant fractals emerge �11�. Unfortunately, there does not

yet exist an analytically solvable model which could help us
know why fractals are ubiquitous in the aggregation process.

In addition to aggregation, particles may also grow in size
by condensation, deposition, or accretion. For instance, in
the vapor phase or in a damp environment particles or drop-
lets may continuously grow by condensation �13–16�. It is
also well known that aerosol or colloidal particles are often
not stable; rather, their sizes may evolve via aggregation and
condensation leading to gas-to-particle conversion. However,
in the absence of impurities such as dirt or mist, the conden-
sation can take place only on the existing particles without
forming new nuclei, provided the concentration of particles
present is sufficiently high and the supersaturation is suffi-
ciently low �1,15�. This type of growth is known as hetero-
geneous condensation. To this end, we recently proposed a
simple condensation-driven aggregation �CDA� model and
discussed the kinetic aspect of the problem �17�. In this pa-
per, we present an alternative method to solve the CDA
model and kept our focus mainly on its geometric aspects
instead. We show analytically that the resulting system can
be best described as fractal and quantified by its dimension
df which decreases with increasing strength of growth by
condensation. Interestingly, we find that the key results of the
CDA model are connected, in one way or another, to the
fractal dimension df. For instance, the dfth moment of the
distribution function c�x , t� is a conserved quantity; the mean
particle size grows with time as t1/df. In terms of df we can
write a generalized scaling relation �= �1+df�z. To test our
analytical predictions, we have performed extensive numeri-
cal simulations and found that analytical results are in perfect
agreement with numerical data.

The rest of the paper is organized as follows. In Sec. II,
we give a detailed description of the CDA model including
its algorithm. In Sec. III, some of the key features of the
model are discussed. In Sec. IV, we give a simple dimen-
sional analysis of the governing equation of the CDA model
in an attempt to gain deeper insight into the scaling theory.
We applied the scaling theory in Sec. V to obtain the solution
for the distribution function c�x , t�. In Sec. VI, we invoke the
idea of fractal analysis in the CDA model. Finally, in Sec.
VII we discuss and summarize our work.
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II. THE MODEL

Chemically identical particles in aggregation process are
typically characterized by their mass or size and shape. How-
ever, if the particles are one dimensional then size or mass is
the only dynamical variable. Therefore, within a given class
of units of measurement both mass and size can be described
by the same numerical value as they differ only by a propor-
tionality constant. However, this is not true in the case of
higher-dimensional particles. The Smoluchowski model is
inherently one dimensional and hence size and mass can be
used interchangeably. In the CDA model, we characterize
each particle by the size it assumes upon aggregation until it
takes part in further aggregation. The extent of growth by
condensation can be quantified by the growth velocity de-
fined as the ratio of the net growth and the elapsed time
during which this growth occurs. The most natural choice for
the elapsed time is definitely the collision time. The growth
velocity is then fully specified if we know the amount of
growth of a given particle that occurs between collisions. For
this, we assume that the net growth of a particle between
collisions, in the most generic case, is directly proportional
to the size by which it is characterized. That is, a particle that
is just created upon aggregation with size x will have its size
equal to x+�x whenever it collides with another particle,
regardless of the amount of time it takes to collide. This is
not at all a bad assumption since such a choice makes the
growth velocity stochastic in nature, as the growth size and
the collision time both become random in character.

For numerical simulation, one may think of keeping a log
book where the sizes of the particles are registered each time
they take part in aggregation. Initially, sizes of all the par-
ticles in the system are registered in the log book. The rules
these particles then have to follow at each step during simu-
lation are as follows

�i� Two particles are picked randomly from the system to
mimic random collision via Brownian motion.

�ii� The sizes of the two particles are increased by a frac-
tion � of their respective sizes in the log book to mimic the
growth by condensation.

�iii� Their sizes are combined to form one particle to
mimic the aggregation process.

�iv� The log book is updated by registering the size of the
new particle in it and at the same time deleting the sizes of
its constituents from it.

�v� The steps �i�–�iv� are repeated ad infinitum to mimic
time evolution.

The CDA model can also be understood by a reaction
scheme written as

Ax�t� + Ay�t� ——→
v�x,t�

A��+1��x+y��t + �� , �2�

where Ax�t� denotes the aggregate of size x at time t and � is
the elapsed time. This reaction scheme can be described by
the following generalized Smoluchowski �GS� equation:

� �

�t
+

�

�x
v�x,t��c�x,t� = − c�x,t��

0

�

K�x,y�c�y,t�dy

+
1

2
�

0

x

dy K�y,x − y�c�y,t�c�x − y,t� .

�3�

The second term on the left-hand side of the above equation
accounts for the growth by condensation with velocity
v�x , t�. On the other hand, the first �second� term on the
right-hand side of Eq. �3� describes the loss �gain� of size x
due to merging of size x ��x−y�� with a particle of size y.
However, the GS equation can describe only the CDA model
if the growth velocity v�x , t�, the collision time �, and the
kernel K�x ,y� are suitably chosen as required by the rules
�i�–�v�. For instance, according to rule �ii� of our model, the
net growth of a particle of size x between collisions is �x. To
obtain a suitable expression for the elapsed time we do a
simple dimensional analysis in Eq. �3� and immediately find
that the inverse of 	0

�K�x ,y�c�y , t�dy is the collision time
��x� during which the growth �x takes place �18�. The mean
growth velocity between collisions therefore is

v�x,t� =
�x

��x�
= �x�

0

�

dy K�x,y�c�y,t� . �4�

The rule �i�, on the other hand, says that a given particle can
collide with any particle in the system with an equal a priori
probability regardless of their size. This can be ensured only
if we choose an aggregation kernel independent of its argu-
ment, and hence we set

K�x,y� = 2 �5�

for convenience.

III. SOME OF THE BASIC FEATURES

It is noteworthy to mention that the distribution function
c�x , t� itself is not a directly observable quantity but its vari-
ous moments are. Therefore, one often finds it more conve-
nient to deal with its moment than the function itself. The kth
moment of c�x , t� is defined as

Mk�t� = �
0

�

xkc�x,t�dx with k � 0. �6�

Incorporating it in Eq. �3� after substituting Eqs. �4� and �5�
in it we obtain

dMk�t�
dt

= �
0

� �
0

�

dx dy c�x,t�c�y,t�

	��x + y�k + ��k − 1��xk + yk�� . �7�

In the case of �=0 which describes the classical Smolu-
chowski �CS� equation we find dM1�t� /dt=0, and hence
M1�t�=	0

�xc�x , t�dx is a conserved quantity. This is well
known as the conservation of mass principle. Obviously, this
principle is no longer obeyed in the CDA model because of
the growth by heterogeneous condensation. To check we
solve Eq. �7� for M1�t�
L�t� and find that
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L�t� � t2� �8�

in the long time limit. Hence, the growth of the total mass or
size exhibits non-universal behaviour in the sense that its
exponent depends on the parameter �. It confirms that the
conservation of mass principle is violated ∀ �
0. Then the
question remains: Can there be another conservation law
which the system should obey as it evolves? One cannot find
a straightforward answer to this question from Eq. �7� except
the �=0 case. We now solve Eq. �7� for k=0 to obtain the
solution for the total number of particles M0�t�
N�t� present
at time t and find that in the long time limit it decays alge-
braically with a universal exponent

N�t� � t−1. �9�

In other words, the number density N evolves following the
same differential equation as the one we would obtain for the
CS equation. It therefore confirms that condensation takes
place only on the existing particles without forming new
nuclei.

Using the solutions for the first two moments in the defi-
nition for the mean particle size s�t�=L�t� /N�t� we obtain
the following growth law:

s�t� � t1+2� �10�

in the long time limit. To verify this, we performed numeri-
cal simulation based on the rules �i�–�v�. However, in order
to manipulate the numerical data we define time t=1 /N since
the number of particles present in the system determines how
fast or slowly the aggregation process should proceed. We
first use the monodisperse initial condition where all the par-
ticles are assumed to be of unit size. In Fig. 1, we present
plots of ln�s� versus ln�t� from the resulting data and find
three straight lines for three different values of �. The slopes
of these lines satisfy the relation z=1+2�, ∀ �
0, which

clearly shows algebraic growth of s�t� as predicted by Eq.
�10�. The next important thing is to check if the initial dis-
tribution of particle size has any effect in this growth law. To
find this out we simulated the model for several different
polydisperse initial conditions and collected data for the
mean particle size s�t� against time t. In one of the instances,
we picked initially 500 particles of size chosen randomly
from the interval �1,10 000� and let the program run in the
computer following the rules �i�–�v� of the algorithm. In Fig.
2, we again present plots of ln�s� versus ln�t� from the re-
sulting numerical data and put it together with the corre-
sponding plot for the monodisperse initial condition to see
the contrast. Surprisingly, we find two parallel lines, which
clearly implies that the exponent of the growth law is uni-
versal in the sense that it is independent of the initial condi-
tions.

IV. DIMENSIONAL ANALYSIS

There are two governing parameters x and t in the GS
equation. However, according to Eq. �10� the size of the
particle can be expressed in terms of time. Therefore, only
one of the variables, say, time t, can be taken as an indepen-
dent parameter. The other governing parameter such as x and
the governed parameter c�x , t� both can be expressed as a
function of t alone. We already know from Eq. �10� that tz

with kinetic exponent

z = 1 + 2� �11�

has the dimension of length �s�t��=L and hence we can de-
fine a dimensionless quantity
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FIG. 1. ln�s� versus ln�t� for three different � values but with the
same monodisperse initial conditions in each case. The lines have
slopes equal to �1+2��, revealing the same growth law as predicted
by Eq. �10�.
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FIG. 2. ln�s� versus ln�t� for monodisperse �all the particles are
chosen to be of unit size� and polydisperse �e.g., the numerical
value for the size of the 500 particles are chosen randomly from the
interval �1,10 000�� initial conditions. Two parallel lines prove that
the growth law for s�t� given by Eq. �10� is independent of initial
conditions.
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� =
x

s�t�
. �12�

On the other hand, applying the power-monomial law for the
dimension of physical quantity we can write a dimensional
relation c�x , t�� t−� where the exponent � assumes a value
that makes t−� bear the dimension of c�x , t� �19�. We can
therefore define yet another dimensionless quantity � as fol-
lows:

� =
c�x,t�

t−� . �13�

Now, within a given class one can pass from one to another
system of units of measurement by changing t by an arbitrary
factor, leaving the other factor unchanged. Upon such a tran-
sition the quantity on the right-hand side of Eq. �13� remain
unchanged since the left-hand side is a dimensionless quan-
tity. It means that the quantity c�x , t� / t−� and hence � can
only be a function of another dimensionless quantity. In the
context of the present model it can only be the dimensionless
governing parameter � given by Eq. �12�. We therefore find
that Eq. �13� leads to the scaling ansatz

c�x,t� � t−���x/tz� , �14�

or can be expressed in the form of Eq. �1� if we set �=�z and
use Eq. �10� thereafter. The existence of scaling means the
following. The quantity c�x , t�, which depends on two vari-
ables x and t, is considered to admit scaling if the two vari-
ables combine into one variable such that it can be expressed
as Eq. �14�. The fact that two variables combine into one
variable leads to an enormous simplification in finding the
solution to the problem, as we shall see below.

V. SCALING SOLUTION

To check if the solution of the GS equation exhibits scal-
ing or not, we substitute Eq. �14� together with �=�z in the
GS equation after substituting Eqs. �4� and �5� in it, and
obtain

t�z−z−1 =
1

F����2�1 + ���0���� + 2��0�
d�

d�

− �
0

�

������� − ��d�� , �15�

where

F��� = �z���� + z������ , �16�

and �0=	0
�����d� is the zeroth moment of the scaling func-

tion ����. Note that the right-hand side of Eq. �15� is dimen-
sionless while the left-hand side is not. Thus the dimensional
consistency requires

z =
1

� − 1
. �17�

Substituting the z value from Eq. �11� in the above equation
we obtain the mass exponent

� =
2 + 2�

1 + 2�
. �18�

The values for the exponents � and z are exactly the same as
obtained by the exactly solvable method, namely, the
Laplace transformation and the method of characteristics, in
Ref. �17�. To obtain the complete scaling or self-similar so-
lution of the GS equation we still have to find ����. For that,
we substitute the value of z and � in Eq. �15� to get

�1 + 2��1 − �0���
d�

d�
+ �

0

�

������� − ��d�

+ �2�1 + ���1 − �0������ = 0. �19�

The solution of the problem thus reduces to finding the so-
lution of an ordinary integro-differential equation for the
scaling function ����.

We now multiply both sides of Eq. �19� by �n and inte-
grate from �=0 to � to obtain an equation for the nth mo-
ment �n of ���� �or Mellin transform ��n+1�=�n� which
can be written in the closed form

2�n�1 − �0��n + �n − 1��n + 2�n�0 = �
r=0

n
nCr�r�n−r

�20�

for integer values of n only. By setting n=0 in the above
equation, we find

�0��0 − 1� = 0, �21�

and the only nontrivial solution of this equation is �0=1.
Using it back in Eq. �19� gives

�
d�

d�
= − �

0

�

������� − ��d� . �22�

To find a solution of this equation we set �0=1 in Eq. �20�
and find a hierarchy of equations for different integer n val-
ues; a few of these are

�2 = 2�1
2, �3 = 3�2�1,

�4 =
1

3
�8�3�1 + 6�2

2�, etc. �23�

The solution �0=1 and its definition

�0 = �
0

�

�0����d� �24�

imply

���� = e−�, �25�

which is in fact the inverse Mellin transform of ��1�=�0. It
can also be verified by substituting it in Eq. �22�. Indeed, one
can check that this solution does satisfy the hierarchy of all
the relations in Eq. �23� and simultaneously it solves Eq.
�22�.

Substituting Eqs. �10�, �18�, and �25� in Eq. �1�, we can
finally obtain the scaling solution of the GS equation
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c�x,t� � t−�2+2��e−x/t1+2�
. �26�

This is exactly what we found in Ref. �17� from the explicit
time-dependent solution by using the limit t→�. However,
the exact solution in �17� was obtained only for the mono-
disperse initial condition. The advantage of using the scaling
theory is that we do not need to specify the initial condition.
It implies that the various essential features or laws of the
CDA model should remain independent of the initial condi-
tion provided the number of particles present at time t=0 is
sufficiently large and one allows the system to run for a
sufficiently long time. We can now obtain the solution of Eq.
�7�, the kth moment of c�x , t�, by using Eq. �26� in its defi-
nition given by Eq. �6� to give

Mk�t� � tz�k−1/�1+2���. �27�

A surprising feature of this solution is that it implies the
existence of a nontrivial conservation law, namely, the qth
moment is independent of time if q=1 / �1+2��. In numerical
simulation, it means that the sum of the �1 / �1+2���th power
of all the particles is a constant as a function of time. To
check this, we plot ln�Mq� with q=1 / �1+2�� against ln�t�
from the numerical data for different � values and for differ-
ent initial conditions. We find a set of parallel horizontal
lines for all �
0 values �see Fig. 3� regardless of the choice
of the initial conditions revealing that our analytical predic-
tion is in perfect agreement with the numerical simulation.
One may ask: What is so special about this q value that
makes this moment a conserved quantity? To find an answer
to this question we invoke the idea of fractal analysis, which
is discussed below.

VI. FRACTAL ANALYSIS OF THE CDA MODEL

In this section, we intend to address the geometric aspect
of the CDA model by invoking the idea of fractal analysis.
Before doing so we find it worthwhile to appreciate the fol-
lowing. Theoretically, particles in the CDA model can be
considered to be inside a row of boxes forming a one-
dimensional �1D� lattice with each box as one lattice point.
Initially, each of these boxes contains one particle character-
ized by one number whose size distribution depends on the
initial particle size distribution. In this sense, particles are in
fact embedded in a space of dimension equal to 1. The ge-
ometry of the resulting system therefore will be called fractal
if the dimension of the distribution of particles is less than 1
and greater than zero. To know exactly what this value is we
define L�t� as the measure that is the sum of all the aggre-
gates in different boxes at time t and obviously it is an ever-
growing quantity against t according to Eq. �8�.

To quantify the measure L, one can use a suitable yard-
stick and find an integer number N needed to cover the mea-
sure L. The most suitable candidate for the yardstick in the
context of the CDA model is the mean particle size s�t�
which will always give the number N an integer value. That
is, the size of the measure L�t� can be quantified by the
number N�s�. Using k=0 in Eq. �27�, we can easily see that
the number N�s�, when expressed in terms of s�t�, exhibits a
power law

N�s� � s−df �28�

with exponent

df =
1

1 + 2�
, �29�

which is highly significant for the following reason. Note
that when the number N is obtained by measuring a given
measure with a suitable yardstick and it is found that it ex-
hibits a power law against the size of the yardstick, then the
exponent of the power law is widely known as the
Hausdorff-Besicovitch �HB� dimension �20�. On the other
hand, the HB dimension is called fractal if it is noninteger
and at the same time if it is less than the dimension of the
embedding space. It implies that the exponent df of Eq. �28�
is the fractal dimension of the resulting system since, accord-
ing to Eq. �29�, df is not only noninteger ∀ �
0 but also
less than the dimension of the embedding space d=1. It is
noteworthy that the size of the fractal that emerges in the
CDA model is continuously growing with time but at the
same time it preserves its dimension, which is ensured by the
conservation law. Within the rate equation approach, such a
fractal analysis was first done by Ben-Naim and Krapivsky
in the context of the stochastic Cantor set �21� and later one
of us applied it successfully in several different systems �22�.
To verify our analytical result, we have drawn ln�N� versus
ln�s� in Fig. 4 from the numerical data collected for a fixed
initial condition but varying only the � value. On the other
hand, in Fig. 5 we have drawn the same plots for a fixed �
value but varying only initial conditions �monodisperse and
polydisperse�. Both figures show an excellent power-law fit
as predicted by Eq. �28� with exponent exactly equal to df
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FIG. 3. �1 / �1+2���th moment of the particle size distribution
function versus time for different initial conditions �monodisperse
and polydisperse� and for different � values obtained using numeri-
cal data. The set of horizontal lines clearly prove that the general-
ized conservation law is always obeyed regardless of the initial
conditions or the � value.
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regardless of the choice we make for the initial size distribu-
tion of particles in the system.

We shall now show that the various interesting results of
the CDA model can be expressed in terms of the fractal
dimension df. For instance, we can use the expression for the
fractal dimension df in Eq. �11� to obtain z=1 /df. Using it in
Eq. �10�, we obtain the following growth law for the mean
particle size:

s�t� � t1/df . �30�

We find it worthwhile to mention here, as a passing note, that
a similar growth law has also been found experimentally by

Weitz et al. while studying the diffusion-limited cluster-
cluster aggregation �23�. Also, the mass exponent � can be
expressed in terms of df by using Eq. �29� in Eq. �18� to give

� = 1 + df . �31�

We thus find that � always satisfies the inequality �
2,
∀ �
0, and the inequality becomes equality, �=2, only if
�=0, which corresponds to the CS model. One can interpret
the above expression for the mass exponent � as the sum of
the fractal dimension df and that of its embedding space 1.
Using Eq. �31� in �=�z, we can further write a generalized
scaling relation

� = �1 + df�z . �32�

It is interesting that a similar expression for the exponents �
and � has also been found in other phenomena, which indi-
cates that these results are universal in character �22�.

To further support our results, we once again use the
simple dimensional analysis. According to Eq. �1� the physi-
cal dimension of c�x , t� is �c�=L−�1+df� since �s�t��=L and
�=1+df. On the other hand, the concentration c�x , t� is de-
fined as the number of particles per unit volume of embed-
ding space �V�Ld where d=1� per unit mass �M� and hence
�c�=L−1M−1. Now, applying the principle of equivalence, we
obtain

M�L� � Ldf . �33�

This relation is often regarded as the hallmark for the emer-
gence of fractality. An object whose mass-length relation sat-
isfies Eq. �33� with noninteger exponent is said to be fractal
in the sense that if the linear dimension of the object is in-
creased by a factor of L the mass of the object is not in-
creased by the same factor. That is, the distribution of mass
in the object becomes less dense at larger length scale. It
proves that the split of the mass exponent into the dimension
of the fractal �df� and that of its embedding space �d=1� is
consistent with the definition of the distribution function
c�x , t� as well. It is interesting to note that such a simple
dimensional analysis can also provide us with an answer to
the question: Why is the moment Mdf

=	0
�xdfc�x , t�dx a con-

served quantity? For an answer, we find it conventient to
look into the physical dimension of its differential quantity
dMdf

=xdfc�x , t�dx. Using the physical dimension �x�=L and
�c�x , t��=L−�1+df� in the expression for dMdf

, we immediately
find that it bears no dimension and so is the quantity Mdf

.
Recall that the numerical value of a dimensionless quantity
always remain unchanged upon transition from one unit of
measurement to another within a given class. In the context
of the CDA model it implies that the numerical value of Mdf
remains the same despite the fact that the system size con-
tinues to grow with time. It is for this reason that we find that
the dfth moment of c�x , t� is a conserved quantity. We thus
see that the simple dimensional analysis proved to be very
useful in gaining a comprehensive explanation of various
results of the CDA model which we have been looking for.
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FIG. 4. ln�N� vs ln�s� for three different � values, keeping the
same initial condition. The lines have slopes equal to 1 / �1+2��,
which is exactly what was predicted by the theory.

4

4.5

5

5.5

6

6.5

-1 0 1 2 3 4 5 6 7 8 9

ln
[N

]

ln[s]

Monodisperse
Polydisperse

FIG. 5. Two parallel lines resulting from the plots of ln�N� ver-
sus ln�s� for monodisperse and polydisperse initial condition reveal
that N�s−df is independent of initial conditions.
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VII. DISCUSSION AND SUMMARY

In this work, we studied the geometric aspects of the
condensation-driven aggregation model that we recently pro-
posed. In the present work we first gave a simple dimen-
sional analysis to the generalized Smoluchowski equation as
we found it provided not only a deeper insight but also, at the
same time, an elegant way to look into the problem. We then
applied the scaling theory and showed that the GS equation
admits simple scaling only if z��−1�=1. That is, the solution
for particle size spectra exhibits transition to dynamic scaling
c�x , t�� t−�z��x / tz� with scaling function �����e−�. Substi-
tuting the solution for the distribution function c�x , t� into the
definition of the nth moment shows that the moment of order
equal to 1 / �1+2�� is a conserved quantity throughout. In an
attempt to know exactly why this value is so special we
invoked the idea of fractal analysis and found that it is in fact
the value of the fractal dimension of the resulting system.
The expression for the fractal dimension df =1 / �1+2��
states that as the extent of growth by condensation increases
the dimension of the measure or the object decreases, which
is quite counterintuitive.

To summarize, we found that the fractal dimension df
plays a pivotal role in describing and understanding the geo-
metric aspects of the CDA model. For instance, the dynamics

of the system is governed by a conservation law which is the
dfth moment of the distribution function c�x , t�. The expo-
nent of the algebraic growth law for the mean particle size is
equal to 1 /df. In terms of df, we can express the mass expo-
nent and the scaling relation in their generalized forms as �
=1+df and �= �1+df�z, respectively. A simple dimensional
analysis of the distribution function c�x , t� and the use of �
=1+df led to the well-known mass-length relation M�L�
�Ldf. The dimensional analysis also revealed that the mass
exponent � is in fact equal to the sum of the fractal dimen-
sion df and that of the space where it is embedded. In addi-
tion, we have shown that the dfth moment Mdf

is actually a
dimensionless quantity, and we argued that this is exactly the
reason why Mdf

remains time invariant. We thus see that
appreciation of the exponent df as the fractal dimension has
provided a self-consistent explanation for all the results that
are found to be independent of the initial particle size distri-
bution. Moreover, we have shown that the results are inde-
pendent of initial conditions. The ideas developed in this
paper could be taken further by investigating the CDA model
for aggregation kernel K�x ,y�= �xy��. This would be an ideal
case to study how the onset of gelation is modified, if at all,
by the presence of growth by heterogeneous condensation.
We hope to address this issue in our future endeavors.
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