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Active Brownian motion is the complex motion of active Brownian particles. They are “active” in the sense
that they can transform their internal energy into energy of motion and thus create complex motion patterns.
Theories of active Brownian motion so far imposed couplings between the internal energy and the kinetic
energy of the system. We investigate how this idea can be naturally taken further to include also couplings to
the potential energy, which finally leads to a general theory of canonical dissipative systems. Explicit analytical
and numerical studies are done for the motion of one particle in harmonic external potentials. Apart from
stationary solutions, we study nonequilibrium dynamics and show the existence of various bifurcation
phenomena.
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I. PRELIMINARIES

The theory of Brownian motion in its formulation due to
Langevin �1� assumes that particles are subject to stochastic
influences and external forces, the latter making them move
according to the potential U�q�, which models their environ-
mental landscape. Stochastic equations of motion are

dqi

dt
= pi,

dpi

dt
= − �0pi −

�U

�qi
+ �i, �1�

including a friction term with friction constant �0�0, the
force of the external potential −�iU and the random force �i,
which has infinite variance per definition. Particles are con-
sidered to be without an inner structure, just driven by the
external potential and the noise, without any capability of
changing their dynamics by themselves. If studying the com-
plex motion, e.g., of bacteria or even higher developed or-
ganisms, this simple assumption of particles reacting to a
prescribed potential landscape cannot explain the widely ob-
served emergent phenomena arising in such systems. A num-
ber of models were proposed, including some kind of “self-
driven motion” of particles, which should account for the
lack of complex behavior dynamics. Apart from just postu-
lating such additional effects, the theory of active Brownian
particles �2–5� explains the origin of this “self-motion” by
imposing an additional internal degree of freedom, called
“internal energy” e. This energy can be increased by taking
up external energy �“food”� from the environment and be
transformed into kinetic energy of the particle, i.e., the par-
ticle is “active” in the sense that it is able to convert its
internal energy into energy of motion. This model has served
to describe animal mobility in general �6� and was able to
make quantitative statements about emergent self-organized
properties in the collective behavior of many particle sys-
tems, e.g., swarms �7–9�.

After reviewing some fundamental aspects of the original
theory, we propose a canonical version of active Brownian
motion by allowing to convert internal energy into the full

mechanical energy of the particle. In case of stationary inter-
nal energies our generalized theory defines active Brownian
motion as a canonical dissipative system also with interac-
tions, which was not possible in former models. Interacting
active Brownian particles were studied intensively �2–7�, re-
cent contributions included dissipative Toda and Morse sys-
tems �10–12�. In our formalism, however, we are able to
study interacting active Brownian motion as a canonical dis-
sipative system.

The original formulations of active Brownian motion
rarely discuss nonequilibrium dynamics. In most applica-
tions, only stationary solutions are present, which implies
constant internal energies for all times. We will show how
active Brownian motion in its fully coupled form contains
rich nonequilibrium structures, too.

II. ORIGINAL THEORY: COUPLING OF e
TO THE KINETIC ENERGY

The main idea of active Brownian motion is to ascribe an
additional, so-called “internal” energy e �5� to Brownian par-
ticles. Stochastic dynamics for the motion of an active par-
ticle in d dimensions with degrees of freedom qi and associ-
ated momenta pi, where i=1, . . . ,d and q= �qi�, p= �pi� read
�5�

dqi

dt
=

�H

�pi
, �2�

dpi

dt
= −

�H

�qi
− g�e�

�H

�pi
+ �i, �3�

de

dt
= c1 − c2e − c3e

p2

2
�4�

with H�q , p�= p2

2 +U�q� and g�e�=�0−d2e. Noise correlations
are

��i�t�� = 0, ��i�t�� j�t̄�� = 2�ij��t − t̄� . �5�
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All constants ci, as well as �0, d2 are assumed to be positive.
Calculating the total time derivative of the Hamiltonian in
the deterministic case yields

dH

dt
= − g�e�� �H

�p
�2

= − �0p2 + d2ep2, �6�

which allows us to interpret the implications of internal en-
ergy dynamics: The first term models the mechanical energy
loss by friction due to the surrounding media, whereas the
second term shows the possibility of an energy increase via
the coupling of kinetic energy to the internal energy. If the
internal energy becomes stationary after some time � de

dt =0�, it
can be expressed as a function of the kinetic energy

e =
c1

c2 + c3
p2

2

, �7�

which implies

dpi

dt
= −

�H

�qi
− ��p�

�H

�pi
+ �i, �8�

where ��p�=�0−
d2c1

c2+c3
p2

2

. The equation above defines a model

of Brownian motion in media of nonlinear friction. Active
Brownian particles with stationary internal energies therefore
move as though in a medium with nonlinear friction function
��p�. Relaxation of the internal energy to a stationary value
therefore results in changing the original friction of the me-
dium to an effective friction. The following section will
show that equilibrium internal energies will have completely
different effects in the case when e is coupled to the potential
energy U�q�, instead of coupling it to p2

2 , as is usually done.
Setting de

dt =0 will then result in changing the original poten-
tial to an effective one.

III. COUPLING OF e TO THE POTENTIAL ENERGY

Active Brownian motion in its original formulation im-
poses a coupling of the internal to the kinetic energy, given
by Eq. �4�, in which e is multiplied by p2

2 . The most natural
and simplest way to extend this balance equation to the case
of potential couplings would be to multiply e with U�q�.
Furthermore, in Eq. �3�, the product should appear between
the internal energy and the q gradient of H �and not the p
gradient as in the original case�. Especially when considering
many particle systems like swarms, exchanges between in-
ternal and potential energies seem physically intriguing:
Swarm particles generate their interaction potentials mutu-
ally due to exchange of internal energy; the internal energy
of one particle has effects on its interaction with all the other
particles. In the present paper we study the dynamics of a
single particle only, but we already introduce its generalized
couplings for the internal energy.

We have already given stochastic differential equations
for this setup in configuration space �13�. Stochastic dynam-
ics in phase space equivalently read

dqi

dt
=

�H

�pi
, �9�

dpi

dt
= − f�e�

�H

�qi
− �0

�H

�pi
+ �i, �10�

de

dt
= c1 − c2e − c3eU �11�

with H�q , p�= p2

2 +U�q� and f�e�=1−d1e. The system is con-
structed in complete analogy to the original theory of active
Brownian motion, but with interchanging the role of p and q,
respectively, p2

2 and U�q�. The evolution equation for the
Hamiltonian is calculated in the same way as in Sec. II,
which leads to

Ḣ = − �0p2 + d1e�p · �U� . �12�

Discussions about the interpretation of such conservation
laws can be found in the standard textbook �5�.

One remarkable feature is the emergence of effective po-
tentials in the time region of stationary internal energy, i.e.,
de
dt =0; hence

e�q� =
c1

c2 + c3U�q�
, �13�

and thus

dqi

dt
=

�H̃

�pi
, �14�

dpi

dt
= −

�H̃

�qi
− �0

�H̃

�pi
+ �i, �15�

which are formally the well known equations for the motion
of a Brownian particle in media of linear friction, but with an
effective Hamiltonian

H̃ =
p2

2
+ Ũ�q�, Ũ�q� = U�q� −

d1c1

c3
ln�c2 + c3U�q�� .

�16�

Its time evolution in the deterministic case is given by

dH̃

dt
= − �0p2. �17�

Couplings of e to the potential energy therefore manifest
themselves by changing the original potential to an effective
one. Stationary internal energies in classical active Brownian
motion describe systems of a particle moving with an effec-
tive nonlinear friction ��p�, whereas in the case of internal
energy coupled to U�q�, the arising effect lies in changing

the original potential to an effective one Ũ�q�. The crucial
role of this effective potential can be seen by numerical in-
vestigations of Eqs. �9�–�11� for specific forms of U�q�: Un-
der the influence of harmonic forces U=aq2, the motion of
one particle in two dimensions is given by
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dq1

dt
= p1,

dq2

dt
= p2, �18�

dp1

dt
= − �0p1 − 2aq1 + 2d1eaq1 + s1/2�1, �19�

dp2

dt
= − �0p2 − 2aq2 + 2d1eaq2 + s1/2�2, �20�

de

dt
= c1 − c2e − c3ea�q1

2 + q2
2� , �21�

where a noise strength factor s was introduced via the sub-
stitution �=s1/2�. �For a detailed discussion of equilibrium
solutions and its bifurcations, see Sec. V.� Figure 1 shows the
simulated behavior of a particle subject to the equations
given above.

Out of its initial conditions, the particle drops onto a
circle and then diffuses in no preferred direction, until the
whole ring area is filled with trajectories. This random mo-
tion on a ring can be explained by referring to the structure
of the effective potential, which for the harmonic example
reads

Ũ�r� = ar2 −
d1c1

c3
ln�c2 + c3ar2� �22�

in terms of the radial coordinate r= �q1
2+q2

2�1/2. The minima

of Ũ�r� are found to be at all radial distances

r0 = �d1c1 − c2

ac3
�1/2

, �23�

which is exactly the radius of the circle seen in Fig. 1. In the
case of no coupling to an internal energy �d1=0�, the particle
would directly fall into the minimum of the external potential
�which is at r=0�, and no diffusion in any direction would be
present. Positive values of r0 can be realized for critical val-
ues of the coupling parameter d1, namely, if d1�

c2

c1
. Active

Brownian particles with a coupling of e to the potential en-
ergy feel a different landscape than the prescribed one, i.e.,
an effective environment, which is then searched for in mini-
mum areas. The internal energy effect in our present example
results in trapping the particle not at the origin, but on a
circle of a given radius r=r0. This stationary state of noise-
induced wandering in the valley of minima is immediately
present after the internal energy has finally relaxed to its
constant value e0, given by Eq. �13�. In the minimum region
r=r0, so the stationary value of the internal energy can be
calculated directly:

e0 =
c1

c2 + c3ar0
2 =

1

d1
. �24�

Figure 2 shows the relaxation of e to the stationary value e0.
After initial oscillations it equilibrates to a constant value
�which is then slightly disturbed by the noise influences�.

Another remarkable feature of coupling the internal en-
ergy to the potential is that equilibrium distributions can be
calculated exactly. The standard form of stochastic differen-
tial equations �14� and �15� has the following well-known
stationary solution of the corresponding Fokker Planck equa-
tion:

��q,p� 	 e−H̃�q,p�, �25�

which reduces to ��q�	e−Ũ�q� for the distribution in configu-
ration space, after performing the Gaussian momentum inte-
gral. This is an exact equilibrium solution of our nonlinear
stochastic process. Former models of active Brownian mo-
tion had to rely on specific approximation methods, when

FIG. 1. Two-dimensional motion of an active particle under the
influence of harmonic forces in the q1, q2 plane, subject to Eqs.
�9�–�11� with all parameters chosen to be equal to 1 except d1=5
and s1/2=0.3. The radius of the circle can be calculated from Eq.
�23�: r0=2. Initial conditions are q1�0�=0=q2�0�, p1�0�=0= p2�0�,
e�0�=0.

FIG. 2. Internal energy evolution in time corresponding to the
parameter setup given in Fig. 1. The stationary value of e can be
calculated from Eq. �24�: e0=1 /5.
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studying equilibrium solutions of the corresponding Fokker
Planck equation �14�.

IV. CANONICAL ACTIVE BROWNIAN MOTION:
COUPLING OF e TO THE TOTAL MECHANICAL ENERGY

Combining the so far separately imposed couplings to the
kinetic, respectively, potential energy, stochastic dynamics
are in full generality

dqi

dt
=

�H

�pi
, �26�

dpi

dt
= − f�e�

�H

�qi
− g�e�

�H

�pi
+ �i, �27�

de

dt
= c1 − c2e − c3eH �28�

with H�q , p�= p2

2 +U�q� and f�e�=1−d1e, g�e�=�0−d2e. Re-
cently another generalized model for internal energy dynam-
ics was introduced by Zhang et al. �15�. Whereas in their
paper the coupling of internal energy to position and velocity
is generated via an arbitrary function of q and p, our cou-
pling mechanism is motivated from the idea of exchange
between internal and the full mechanical energy. The time
differential of the Hamiltonian in the deterministic case reads

dH

dt
= − g�e�� �H

�p
�2

+ d1e
�H

�q

�H

�p
= − �0p2 + d2ep2 + d1e

dU

dt
.

�29�

If the internal energy equilibrates after some time, its station-
ary value would be

e�H� =
c1

c2 + c3H
, �30�

so that dynamics reduce to

dqi

dt
=

�H

�pi
, �31�

dpi

dt
= − F�H�

�H

�qi
− G�H�

�H

�pi
+ �i �32�

with the two dissipation functions

F�H� = 1 −
d1c1

c2 + c3H
, G�H� = �0 −

d2c1

c2 + c3H
. �33�

Stochastic equations for active Brownian motion now truly
define a canonical system, in the sense that all parts of the
dynamics are completely given by the Hamiltonian function,
which was not the case for separate couplings to p2

2 or U�q�.
Only when we consider free particles �H= p2

2 �, so that in
Eq. �8� ��p2�=��H�, active Brownian motion in its original
sense is a canonical system. When coupling the internal

energy to the Hamiltonian, also the general case of active
Brownian particles with interactions �i.e., with a potential�
represents a canonical dissipative system. The method of
coupling e to the full mechanical energy leads to a novel type
of canonical dissipative system, which has a more complex
dissipative behavior and is more general than those ones
which currently exist in the literature �7,10,16�.

V. BIFURCATIONS OF EQUILIBRIA

In this section, we investigate equilibrium solutions of
canonical active Brownian motion and its possible bifurca-
tion scenarios. Bifurcation theory studies the qualitative
change of solutions for a dynamical system when parameters
are varied. Static bifurcations are present, e.g., when for
some critical parameter values, two equilibrium points be-
come stable while another one loses its stability. Apart from
dealing only with stationary solutions, dynamic bifurcations
describe how equilibrium points can bifurcate into nonequi-
librium orbits, e.g., limit cycles. We will encounter both of
these bifurcation scenarios in canonical active Brownian mo-
tion. Special attention is given to nonequilibrium solutions,
i.e., situations in which de

dt �0. Bifurcations of active Brown-
ian motion for some special case of generalized internal en-
ergy dynamics were also studied in Ref. �15�. However, no
bifurcation analysis for velocity and space-dependent inter-
nal energy equations were given, nor was the case of an
external harmonic potential considered. We will investigate
the nonequilibrium behavior of active Brownian motion,
when both kinetic and potential energy coupling is present.

For the following explicit calculations, we assume the
harmonic external potential U�q�= 1

2q2. Stochastic differen-
tial equations �26�–�28� then read

dqi

dt
= pi,

dpi

dt
= − �1 − d1e�qi − ��0 − d2e�pi + �i, �34�

de

dt
= c1 − c2e − c3e

p2

2
− c4e

q2

2
, �35�

where we have separated the couplings of e to the kinetic and
the potential energy for a later analysis of special cases.

A. One dimension

Equilibria in one dimension for the deterministic case are

�e1�: q0 = 0 = p0, e0 =
c1

c2
,

�e2�: q0 = � 
2�d1c1 − c2�
c4

�1/2

, p0 = 0, e0 =
1

d1
.

Stability conditions of these points are obtained by lineariz-
ing the system. In Eqs. �34� and �35�, we make the shift q
→q+q0, p→p+ p0, e→e+e0, neglecting any terms of order
higher than 1. Then dynamics are given only by the Jacobian
matrix, whose eigenvalues can be studied for each of the
three equilibria separately. For equilibrium �e1�, the eigen-
values of the Jacobian are
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�1 = − c2,

�2,3 = −

�0 −
d2c1

c2

2
� �
�0 −

d2c1

c2

2
�

2

+
d1c1

c2
− 1�

1/2

.

�36�

The real parts of all �i’s are negative if �0c2�d2c1 and c2
�d1c1. Hence, equilibrium �e1� remains stable as long as
these two conditions are fulfilled. Figure 3 shows a trajectory
in phase space �q , p ,e� approaching equilibrium �e1�.

The corresponding eigenvalues for equilibria �e2� are not
accessible so easily, so we follow the Routh-Hurwitz theo-
rem �17�, which allows one to calculate stability regions by
analyzing only the characteristic equation of the Jacobian,
without any need for solving it. Application of this scheme
for equilibria �e2� results in the conditions �0d1�d2, c2
	d1c1 and ��0d1−d2��c1

2d1
2+c1��0d1−d2���2d1�c1d1−c2�

for both of them.
Two types of bifurcations can be seen, a static and dy-

namic one. First we observe a Pitchfork-bifurcation of equi-
librium �e1� into the two other ones at c2=d1c1: As long as
c2�d1c1 is fulfilled, equilibrium �e1� is stable, while equi-
libria �e2� do not exist. For parameter regions where c2
	d1c1, equilibria �e2� are stable, while equilibrium �e1� be-
comes unstable. Apart from this static bifurcation we observe
a dynamic bifurcation, namely, a Hopfbifurcation at �0c2
=d2c1. Suppose we fix the condition c2�d1c1, by looking at
the eigenvalues �36�, we see the appearance of a purely
imaginary pair of eigenvalues �2,3= � i
 at the critical point
�0c2=d2c1 �while Re �1�0�. This is the general condition
for the existence of a Hopf bifurcation, which describes equi-
libria bifurcating into periodic solutions �18�. Equilibrium
�e1� bifurcates into limit cycles at the Hopf bifurcation point
�0c2=d2c1. One example of these limit cycles is shown in
Fig. 4.

B. Arbitrary dimensions

A similar study can be made for arbitrary dimensions n.
First we reduce the �2n+1�-dimensional system �34� and

�35� to four dimensions by transforming to the variables
K= p2

2 , U= q2

2 , and S=q ·p. Evolution equations in its deter-
ministic form therefore transform to

dK

dt
= − 2��0 − d2e�K − �1 − d1e�S,

dU

dt
= S , �37�

dS

dt
= 2K − ��0 − d2e�S − 2�1 − d1e�U , �38�

de

dt
= c1 − c2e − c3eK − c4eU . �39�

The following are the three possible equilibrium points:

�E1�: S0 = K0 = U0 = 0, e0 =
c1

c2
,

�E2�: S0 = K0 = 0, U0 =
c1d1 − c2

c4
, e0 =

1

d1
,

�E3�: S0 = 0, K0 = �1 −
d1�0

d2
�U0,

U0 =
d2c1 − c2�0

�0c3�1 −
d1�0

d2
� + �0c4

, e0 =
�0

d2
.

Before addressing bifurcation theory, we shortly comment on
how these equilibrium points of canonical active Brownian
motion contain equilibria of the separately coupled versions.
The equilibrium solution of original active Brownian motion
�coupling of e only to the kinetic energy� for a harmonic
potential �4� is identical to the equilibrium point �E3�, if d1
=0 and c4=0. The case of internal energy coupling only to
the potential, studied in Sec. III, is identical to equilibrium

FIG. 3. Trajectory to equilibrium �e1�, parameters satisfying the
corresponding stability conditions �0=1, c1=1, c2=2, c3=2, c4=2,
d1=1, d2=1. �The internal energy is plotted with a factor of 2.�

FIG. 4. Limit cycle appearing after the Hopf-bifurcation point.
The parameter values are �0=1, c1=1, c2=2, c3=2=c4, d1=1, d2

=5. Initial conditions were chosen to be q�0�=0, p�0�=−1, and
e�0�=0. �The internal energy is plotted with a factor of 10.�
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�E3�, also for nonvanishing d2 and c3. Active Brownian mo-
tion in its fully coupled form therefore shares the same equi-
librium solution with the system when coupled only to the
potential. Therefore the same trajectories as already shown in
Fig. 1 can be seen.

We now repeat our linearization procedure concerning
stability properties and bifurcations. Eigenvalues of the Jaco-
bian associated with equilibrium �E1� can be calculated
straightforwardly:

�1 = − c2, �2 =
c1d2 − c2�0

c2
, �40�

�3,4 =
c1d2 − c2�0

c2
� 
��0 −

d2c1

c2
�2

+ 4�d1c1

c2
− 1��1/2

.

�41�

The real parts are negative if the conditions �0c2�d2c1 and
c2�d1c1 are fulfilled �these are the same conditions as for
equilibrium �e1� in one dimension�. The stability analysis for
equilibrium �E2� can be carried out via the Routh-Hurwitz
theorem and it leads to the same conditions as for equilib-
rium �e2� in one dimension. Equilibrium �E3� is hard to ana-
lyze even with the Routh-Hurwitz procedure, so that we have
no information about stability regions for this third stationary
solution at all. Nonetheless we are able to find parameter
values by hand which lead to trajectories approaching it
slowly, as is shown in Fig. 5. Concerning the bifurcation
behavior of our system, we observe two collisions of equi-

libria at critical parameter values of d2 �which we choose as
our bifurcation parameter in the following�.

Such collisions are usually associated with Fold bifurca-
tions. Its general property is the existence of a simple zero
eigenvalue of the Jacobian. This happens for equilibrium
�E1� when d2=

c2�0

c1
, so that �2 vanishes. At the Fold-

bifurcation point d2=
c2�0

c1
, equilibrium �E1� becomes identi-

cal with equilibrium �E3�. Before the bifurcation, when d2

	
c2�0

c1
, equilibrium �E1� is stable, while �E3� does not exist,

since the potential U= 1
2q2 has to be positive. After the Fold

point, when d2�
c2�0

c1
, equilibrium �E1� is unstable, and �E3�

is observed to be stable �see Fig. 5 for one example�.
Another Fold bifurcation is present at d2=�0d1, which is a

bifurcation of equilibrium �E2�. Although three of its eigen-
values are not accessible in a treatable way, one of them is in
a simple form, namely, �=

2�d2−d1�0�
d1

. It vanishes for d2

=�0d1 and we see the collision of equilibrium �E2� with �E3�
at this point. Before this critical value, when d2	�0d1, equi-
librium �E2� is stable, while �E3� does not exist, since the
kinetic energy K= 1

2 p2 has to be positive. After the bifurca-
tion point, when d2��0d1, equilibrium �E2� is unstable,
while �E3� can be observed to be stable �see again Fig. 5�.

Apart from these two collisions of equilibria, a Fold-Hopf
bifurcation is present. Remember that in one dimension we
observed a Hopf bifurcation at some critical point in param-
eter space. In arbitrary dimensions, if the condition c2
�d1c1 is fulfilled, the eigenvalues �3,4 of equilibrium �E1�
become a purely conjugate complex pair �3,4= � i
 at d2

=
�0c2

c1!
and �2 vanishes exactly. This zero-pair constellation at

some critical point in parameter space is the general condi-
tion for a Fold-Hopf bifurcation. To this type of bifurcation
are associated various nonequilibrium dynamics, ranging
from motions on tori to heteroclinic orbits �18�. We do not
want to address the analysis of this Fold-Hopf bifurcation
here, instead focusing on the interesting case, when stable
limit cycles are present in our four-dimensional system. Fig-
ure 6 shows a limit cycle in phase space �K ,U ,S ,e�. This
periodic motion corresponds to a quasiperiodic motion in
configuration space, as is shown for n=2. Adding noise to
our system does not change the qualitative behavior, only the
direction of movement can change at some instances.

Concluding this analysis of nonequilibrium behavior, we
want to emphasize the various possibilities that arise from
studying parameter regions where e is not constant, but
heavily oscillating. Far away from stationary solutions, our
system shows to have quasiperiodic dynamics.

VI. SYNOPSIS AND OUTLOOK

We have formulated a generalized version of active
Brownian motion in the sense that we allow not only cou-
plings of the internal energy to the kinetic energy, but also to
the potential energy and more generally to the Hamiltonian.
The latter case gives rise to a canonical dissipative system.
Analysis of stationary points and its possible bifurcations
into nonequilibrium solutions reveals a rich dynamical struc-
ture in parameter regions far away from equilibrium. Explicit

FIG. 5. Trajectory in four-dimensional phase space to equilib-
rium �e3� for the following choice of parameters: �0=11, c1=4,
c2=0.01, c3=129, c4=31, d1=0.01, d2=48 and initial conditions
S�0�=0.1, U�0�=0.1, K�0�=0.1, e�0�=0.2. �The kinetic energy K is
plotted with a factor of 3.�
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numerical studies of all bifurcation scenarios will be left to
future computer art; nevertheless we were able to find inter-
esting quasiperiodic dynamics by hand. The various nonequi-
librium phenomena may be relevant in future applications to
real systems, which do not rely on the assumption of station-
ary internal energies. Moreover, many particle systems with
mutual interactions can be studied within the scheme of ca-
nonical active Brownian motion. The self-organizing proper-
ties, e.g., of swarms will be of special interest for upcoming

papers, when applying our model for a system composed of
many particles.
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