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We present a systematic theory of propagation and evolution of the reaction front A+B↔C in the reaction-
diffusion system where an island of particles A is surrounded by the uniform sea of particles B. In the first part
of the work we give a systematic analysis of the crossover from the irreversible to reversible regime of front
propagation in terms of the quasistatic approximation �QSA� and derive the key condition for the island death
in the quasiequilibrium front regime. We show that the same as in the case of pure annihilation A+B→0 the
QSA enables the description of the quasiequilibrium front propagation only to a critical point tc on approaching
to which the QSA is violated. In the second part of the work under the assumption of a sufficiently large
forward reaction constant k we derive the perturbative expansion in powers of 1 /k which gives the asymptoti-
cally exact description of the quasiequilibrium front evolution up to t→�. We demonstrate that below some
critical value of the reduced backward reaction constant g�gc there appear two turning points on the front
trajectory, the first of which arises at the sharp localized front stage and is due to the finite number of island
particles whereas the second is a consequence of radical transformation of the front structure at the passage
through the critical point �delocalization of the front�. We find a remarkable property of self-similarity of the
passage through the critical point, we derive scaling laws for such passage and show that in the limit g→0
these laws lead to a striking phenomenon of an abrupt delocalization of the front.
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I. INTRODUCTION

The reaction-diffusion system A+B→C, where unlike
species A and B diffuse and irreversibly react in a
d-dimensional medium, has attracted great interest in the last
decades. This fundamentally simple system, depending on
the initial conditions, displays a rich variety of phenomena
and, depending on the interpretation of A and B �chemical
reagents, quasiparticles, topological defects, etc.�, it provides
a model for a broad spectrum of problems �1–4�. A crucial
feature of many such problems is the dynamical reaction
front—a localized reaction zone which propagates between
domains of unlike species.

The simplest model of a reaction front, introduced almost
two decades ago by Galfi and Racz �GR� �5�, is a quasi-one-
dimensional model for two initially separated reactants
which are uniformly distributed on the left-hand side
�x�0� and on the right-hand side �x�0� of the initial
boundary. Taking the reaction rate in the mean-field form
R�x , t�=ka�x , t�b�x , t� �k being the reaction constant� GR dis-
covered that in the long-time limit kt→� the reaction profile
R�x , t� acquires the universal scaling form

R = RfQ� x − xf

w
� , �1�

where xf � t1/2 denotes the position of the reaction front cen-
ter, Rf � t−� is the height, and w� t� is the width of the reac-
tion zone. Subsequently, it has been shown �6–13� that the
mean-field approximation can be adopted at d�dc=2,
whereas in one-dimensional �1D� systems fluctuations play
the dominant role. Nevertheless, the scaling law �1� takes
place at all dimensions with �=1 /6 at d�dc=2 and
�=1 /4 at d=1, so that at any d the system demonstrates a
remarkable property of the effective “dynamical repulsion”

of A and B: On the diffusion length scale LD� t1/2 the width
of the reaction front asymptotically contracts unlimitedly

w/LD → 0 as t → � .

Based on this property a general concept of the front dynam-
ics for nonzero diffusivities, the quasistatic approxmation
�QSA�, has been developed �6,8,12,14�. The QSA consists in
the assumption that for sufficiently long times the kinetics of
the front is governed by two characteristic time scales. One
time scale tJ=−�d ln J /dt�−1 controls the rate of change in the
diffusive current J=JA= �JB� of particles arriving at the reac-
tion zone. The second time scale tf �w2 /D is the equilibra-
tion time of the reaction front. Assuming tf / tJ�1 from the
QSA in the mean-field case with DA,B=D it follows that
�6,8,14�

Rf � J/w, w � �D2/Jk�1/3, �2�

whereas in the 1D case w acquires the k-independent form
w��D /J�1/2 �6,8�.

The most important feature of the QSA is that w and Rf
depend on t only through the time-dependent boundary cur-
rent J�t�, which can be calculated analytically representing
the reaction zone on the scale LD in the form R�x , t�=J	�x
−xf�. On the basis of the QSA a general description of spa-
tiotemporal behavior of the system A+B→C has been ob-
tained for arbitrary nonzero diffusivities �15� which was then
generalized to the cases of anomalous diffusion �16�, diffu-
sion in disordered systems �17,18�, diffusion in systems with
inhomogeneous initial conditions �19�, and to several more
complex reactions. Following the simplest GR model �5� the
main attention has been traditionally focused on the systems
with A and B domains having an unlimited extension, i.e.,
with unlimited number of A’s and B’s particles, where, after
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a more or less rich transient stage �20–23�, asymptotically
the stage of monotonous quasistatic front propagation is al-
ways reached, tf / tJ→0 as t→�.

Recently, in the work �24� a new line in the study of the
A+B→C dynamics has been developed under the assump-
tion that the particle number of one of the species is finite,
i.e., an A-particle island is surrounded by the uniform sea of
particles B. It has been established, that at sufficiently large
initial number of A particles, N0, and a sufficiently high re-
action rate constant k the death of the majority of island
particles N�t� proceeds in the universal scaling regime

N = N0G�t/tc� , �3�

where tc�N0
2 is the lifetime of the island in the limit k, N0

→�. This result was obtained for the quasi-one-dimensional
geometry �flat front� under the assumption that the reaction
front propagates quasistatically and is sustained to be quite
sharp, w /xf �1 until the collapse time t	 tc, so that the law
of the motion of the front center xf�t� governs the island
width evolution. It has been shown that while dying, the
island first expands to a certain maximal amplitude xf

M �N0
and then begins to contract by the law

xf = xf
M
 f�t/tc� , �4�

so that on reaching the maximal expansion amplitude xf
M �the

turning point of the front�,

tM/tc = 1/e, NM/N0 = 0.19886 ¯ , �5�

and, therefore, irrespective of the initial particle number and
dimensionality of the system, 	4 /5 of the particles die at the
stage of the island expansion and the remaining 	1 /5 at the
stage of its subsequent contraction. According to �2� the
rapid island contraction is accompanied by the rapid growth
of the front width w and, therefore, in some vicinity of the
critical point �T�= ��t− tc� / tc��TQ the reaction front becomes
“blurred” �w /xf �1� and the QSA is no longer applicable. In
the work �24� it has been shown that at small �T�,

w/xf � 
tf/tJ � �TQ/T��, �6�

where for the mean-field front �d�2� �MF=2 /3 and

TQ
MF � 1/N0


k ,

whereas for the fluctuation front �d=1� �F=3 /4 and

TQ
F � 1/N0

2/3,

so that TQ→0 at large k, N0→�.
The goal of the present paper is to generalize the results

of the work �24� for a broader class of reversible reactions
A+B↔C with mobile particles A, B, and C. The first to
analyze the propagation of the “reversible” A+B↔C front
were Chopard et al. �25�. Following the simplest GR model
they numerically demonstrated a crossover from the irrevers-
ible to the reversible regime of front propagation and based
on the scaling arguments showed that independently of the
system’s dimensionality d the width of the “reversible” front
grows by the law w�
t. The next important step was made
by Sinder and Pelleg who presented a detailed analysis of the
“reversible” front propagation in the limit of small backward

reaction constant g→0 �26,27�. They showed that in the
g→0 limit the mean-field “reversible” front propagates qua-
sistatically �tf / tJ�g→0�, and obtained the exact asymptotic
law of the front amplitude decay Rf � t−1. The presented
analysis allowed the conclusion that the crossover irrevers-
ible regime–reversible regime radically changes only the lo-
cal dynamic in the vicinity of the front without changing the
particles distribution beyond it and, as a consequence, leav-
ing unchanged the law of the front motion. The most consis-
tent asymptotic theory of the reversible regime has been pro-
posed recently by Koza �28�. He obtained a systematic
expansion of the solution in powers of 1 / t and showed that at
equal diffusivities of all species the main terms of the expan-
sion give the asymptotically exact description for arbitrary
values of g. Moreover, he showed that in the limit g→0 the
obtained solution converges to the singular quasistatic limit.
So, Koza has clearly demonstrated that in contrast to the
quasistatic description of the irreversible regime, in the re-
versible regime the GR problem admits the asymptotically
exact description at any front shape. In the present work we
will show that this remarkable property of the reversible re-
gime holds valid for the much more general �nonmonoto-
nous� law of the front propagation. We will present a system-
atic theory of death of an A-particle island in the B-particle
sea in the reversible reaction regime and, based on it, we will
give a detailed description of all consecutive stages of the
front evolution up to t→�.

II. MODEL

Let particles A with concentration a0 be initially uni-
formly distributed in the island x� �−L ,L� surrounded by the
unlimited sea of particles B with concentration b0 on the
left-hand side x� �−� ,−L� and on the right-hand side
x� �L ,�� of the island. Particles A and B diffuse with diffu-
sion constants DA,B and reversibly react A+B↔C with the
production of particles C, which diffuse with diffusion con-
stant DC and are originally absent in the system, c0=0. We
will assume that the system’s dimension is d�dc, therefore,
the local production rate of C particles can be represented in
the mean-field form

R = k�ab − gc� , �7�

where a�x , t�, b�x , t�, and c�x , t� are the local concentrations
of A, B, and C, respectively, k is the forward reaction con-
stant, and g=G /k is the reduced backward reaction constant
�equilibrium constant�.

By symmetry our effectively one-dimensional problem is
reduced to the solution of the system

�a/�t = DA�2a − R ,

�b/�t = DB�2b − R ,

�c/�t = DC�2c + R �8�

in the interval x� �0,�� at the initial conditions

a�x,0� = a0��L − x�, b�x,0� = b0��x − L� ,
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c�x,0� = 0, �9�

with the boundary conditions

� � �a,b,c��x=0 = 0, b��,t� = b0, �10�

where ��x� is the Heaviside step function.
To simplify the problem essentially we will assume, as

usually, DA=DB=DC=D. Then, by measuring the length,
time, and concentration in units of L, L2 /D, and b0, respec-
tively, i.e., assuming L=D=b0=1, and defining the ratio of
initial concentrations a0 /b0=r, we come from �8�–�10� to the
simple diffusion equations for a+c, b+c, and a−b with the
solutions

a + c = rF, b + c = 1 − F , �11�

and

s = a − b = �r + 1�F − 1, �12�

where

F�x,t� =
1

2�erf�1 + x

2
t
� + erf�1 − x

2
t
�� . �13�

The conservation laws �11� and �12� are valid at any values
of dimensionless control parameters r, k, and g. Of primary
interest for us here is the behavior of the system �7�–�10� in
the region of the parameters r ,k
1 and g�1. We will show
that in agreement with �24� at large r ,k
1 there forms and
quasistatically propagates a sharp reaction front which at
small g�1 is sustained to be quasistatic during the crossover
from the irreversible to reversible propagation regime. In the
first part of the work we give a general analysis of the cross-
over irreversible regime–reversible regime in the framework
of the quasistatic approximation and find the key condition
for the quasistatic front propagation in the reversible regime.
In the second part of the work we develop a systematic per-
turbation theory which allows one to obtain the asymptoti-
cally exact analytic solution for a�x , t�, b�x , t�, c�x , t�, and
R�x , t�.

III. QUASISTATIC FRONT PROPAGATION: CROSSOVER
FROM THE IRREVERSIBLE TO REVERSIBLE

REGIME

A. Irreversible regime

According to �24� in the irreversible limit g=0 with large
k at times t�k−1�1 there forms and quasistatically propa-
gates a sharp reaction front w /xf �1, which separates the
domains s�0 �a=s, b=0� and s�0 �a=0, b= �s�� so that the
law of the front center motion xf�t� is defined by the condi-
tion s�xf , t�=0. Substitution of this condition into Eq. �12�
gives

F�xf,t� = 1/�r + 1� . �14�

From Eq. �14� it follows �24� that at large r
1 the reaction
front xf�t� �and with it the whole of the island domain s�0�
first moves towards the sea �expansion stage�, reaching a
maximal amplitude

xf
M = �r + 1�
2/�e �15�

at the time moment �turning point of the front�

tM = �r + 1�2/�e , �16�

and then it comes back to the island center �contraction
stage�, reaching it at the time moment

tc = �r + 1�2/� , �17�

wherein the domain of A-particle excess s�0 disappears.
According to �17� at large r
1 the lifetime of the island
tc�r2
1, so the majority of the A particles die at times t

1, when the diffusive length exceeds appreciably the initial
island size. The same as in the work �24�, the evolution of
the island in such a large-t regime is of principal interest to
us here, and its analysis is the main goal of the present paper.

In the limit r , t
1, Eq. �13� acquires the form

F�x,t� =
�1 − ��

�t

e−x2/4t, �18�

where �= �1−x2 /2t� /12t+¯, and, hence, according to �14�,
the law of the front motion is

xf = 2
t�1 + ��ln1/2�� r + 1

�t

��1 − ��� , �19�

where �=1 /12t+¯. Introducing according to �24� the re-
duced coordinate 
=x /xf

M and time �= t / tc, and neglecting
the terms �, �, from Eqs. �12�, �18�, and �19� we immediately
obtain the scaling law for the distribution of particles

s�
,�� = e−
2/2e�/
� − 1, �20�

and the scaling law of the front motion �4�,


 f��� = 
e��ln �� . �21�

The front width being neglected, Eqs. �20� and �21� define
the scaling law of the island particle number N���
=xf

M
0

fs�
 ,��d
 evolution

G��� = �
N���
N0

= erf�
�ln ��/2� − 
2��ln ��/� �22�

�here N0=r is the reduced initial particle number and
�=r / �r+1�	1� and give the law of decay of the boundary
current J=−dN /dt= �−�s /�x�x=xf

,

J���/JM =
�ln ��
e�

, JM = 1/xf
M , �23�

which according to �2� defines the evolution of the reaction
front width and amplitude.

Equations �20�–�23� were obtained in �24� for the annihi-
lation reaction A+B→0, so, the behavior of particles C was
not considered there. Here we will complement this analysis
for the more general irreversible process A+B→C. Let us
show that in the limit of a sharp quasistatic front the distri-
bution of particles C on the left-hand side c− �island� and
right-hand side c+ �sea� of the front automatically follows
from the two conservation laws �11�. Indeed, assuming
b�x�xf�	0 and a�x�xf�	0 we find from �11�
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c− = 1 − F, c+ = rF . �24�

By matching these solutions in the vicinity of the front center
�i.e., by assuming �af ,bf� /cf →0� we obtain

cf = rF f = � 	 1. �25�

The calculation of diffusive currents of C particles in the
vicinity of the front J−= �−�c− /�x�x=xf

and J+= �−�c+ /�x�x=xf
according to �24� gives

J− = − J/�r + 1�, J+ = rJ/�r + 1� �26�

whence it follows that

J+/�J−� = r, �J−� + J+ = J . �27�

From Eqs. �26� and �27� we conclude that at r , t
1 in the
process of expansion and subsequent contraction of the is-
land practically all the forming C particles diffuse from the
front towards the sea

JA = �JB� = J 	 J+

as according to Eqs. �18� and �24� in the island center
c−�0, t��1−1 /
�t	1 and, therefore, at the quasistatic mo-
tion of the sharp front �w /xf �1� the concentration of C par-
ticles within the island is sustained nearly constant, c−	1. It
is interesting to note that the ratio of the currents J+ / �J−� does
not depend on the time and direction of the front motion.

B. Crossover from the irreversible to reversible regime

According to �27,28� at finite g in the GR sea-sea �SS�
problem there exists some crossover time t*�g� between the
intermediate irreversible regime of the front propagation t
� t* where the influence of the backward reaction is not yet
manifested, and the asymptotic reversible regime t
 t*
where a quasiequilibrium ab	gc is established. A remark-
able property of this crossover is that in the limit of small
g→0 the front is sustained sharp enough w /LD�
g→0 and
propagates quasistatically up to t / t*→�. Thus, the crossover
irreversible regime–reversible regime radically changes only
the local dynamics in the vicinity of the front leaving un-
changed the distribution of particles outside of it �x−xf�
w
and, as a consequence, leaving unchanged the law of the
front center motion xf�t�. It will be shown below that for the
island-sea problem in the limit of large k and small g this
remarkable property of the crossover irreversible regime–
reversible regime holds up to the narrow vicinity of the criti-
cal point t	 tc. Importantly that in the island-sea problem a
relative front width �=w /xf grows rapidly with the time,
therefore, as qualitatively different from the sea-sea problem,
in this case the sharp front propagation in the reversible re-
gime is possible only at the condition t*� tc which imposes a
strict limitation on the parameters g and k.

We will assume the backward reaction constant g to be
sufficiently small so that while crossing over from the irre-
versible to reversible regime the front is sustained sharp
enough ��=w /xf �1� and, as a consequence, propagates
quasistatically �the conditions which are imposed by this re-
quirement will be self-consistently revealed below�. Then

from the conservation laws �11� and �12� it automatically
follows that irrespective of the regime the distribution of
particles beyond the front ��x−xf�
w� is determined by Eqs.
�20� and �24�. This implies that irrespective of the regime the
center of the front moves by the law �21�, the “incoming”
diffusive current of A and B particles, J, decays by the law
�23�, and the “outcoming” diffusive currents of C particles
are connected with J by the relations �26�. Our goal here is to
generalize the QSA for the reversible reaction A+B↔C,
and, based on it, to obtain the dependences of the width w�J�
and the amplitude Rf�J� of the front on the incoming current
J as on the parameter and to find the characteristic crossover
current J* between the irreversible and reversible regimes.

According to �7� at the front center we have

afbf = Rf/k + gcf . �28�

Using the approach �6,14�, i.e., defining the width of the
front w as the region for which the concentrations of both
species A and B are non-negligible �for example, using the
symmetry R���=R�−�� one can take

w = const

�
0

�

�R���d�

�
0

�

R���d�

,

where �=x−xf� we can write

af = bf � Jw .

Substituting this result into Eq. �28�, using the condition of
conservation of the number of particles

J � Rfw ,

and taking into account the requirement cf =� �25�, we find
from Eq. �28�,

�Jw�2 � J/wk + �g �29�

or, equivalently,

�J2/Rf�2 � Rf/k + �g . �30�

From Eqs. �29� and �30� it immediately follows that the pa-
rameter of the crossover from the irreversible to reversible
regime is

� = J2/��g�3/2k . �31�

In the limit of large �
1 in the right-hand part of �29� and
�30� the first term is dominant and we find

w = wi�1 + const/�2/3 + ¯ � ,

Rf = Rf
i�1 − const/�2/3 + ¯ � , �32�

where in accordance with �2� in the irreversible limit the
front width and amplitude are independent of g,

wi = const/�kJ�1/3,
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Rf
i = const�kJ4�1/3. �33�

In the opposite limit of small ��1 in the right-hand part of
�29� and �30� the second term is dominant, and we find

w = wa�1 + const � + ¯ � ,

Rf = Rf
a�1 − const � + ¯ � , �34�

where in the reversible limit the front width and amplitude
are independent of k,

wa = const�
�g/J� ,

Rf
a = const�J2/
�g� . �35�

Representing the parameter � in the form

� = �J/J*�2,

for the crossover current J* we find from �31�,

J* = 
��g�3/2k . �36�

C. Scaling of the reaction front in the reversible regime

We show now that, based on the QSA, in the reversible
limit ��1 one can obtain a closed scaling description of the
front propagation. Let us introduce the scaling variable z
=2�x−xf� /w. According to the QSA within the domain �x
−xf� /xf �1 �respectively, �z��xf /w→� at w /xf →0� there
takes place the condition �2s /�x2=0 whence it follows that

b − a = Jwz/2. �37�

According to �26� a maximal departure of c from cf at large
�z�
1 is

cf − c � Jw�z�/2 � af�z� .

In the reversible regime af �
g. Therefore, in the limit g
→0 in the wide range �z��1 /
g→� we can take c=cf =�
	1. Thus, in the range �z��1 /
g we can write

ab = �g + R/k . �38�

In the reversible limit ��1 in the main approximation the
term R /k in Eq. �38� can be neglected. Therefore, asymptoti-
cally we have

aaba = �g . �39�

From Eqs. �37� and �39� there immediately follow the
asymptotic scaling laws of distribution of A and B species

aa = af
aA�z�, ba = bf

aB�z� , �40�

where the amplitudes

af
a = bf

a = 
�g ,

the width of the reaction front

wa = 4
�g/J , �41�

and the scaling functions

A�z� = B�− z� = 
z2 + 1 − z . �42�

Substituting Eqs. �40� into the central QSA condition �15,27�

R = �2a/�x2 = �2b/�x2 �43�

we find the asymptotic scaling law for the reaction profile

Ra = Rf
aR�z� , �44�

where the amplitude

Rf
a = J2/4
�g �45�

and the scaling function

R�z� = 1/�z2 + 1�3/2. �46�

By comparing Eqs. �33� and �35�, and the scaling functions
Q�z� �14,15� and R�z� we conclude that the crossover irre-
versible regime–reversible regime leads to a radical change
of both the front broadening dynamics and shape of the front.

�i� The law of increase of the front width upon the decay
of the incoming current J�t� changes from wi�J−1/3 in the
irreversible regime to wa�J−1 in the reversible regime.

�ii� The law of decay of the front “tails” at large �z�
1
changes from a rapid exponential

Q�z� � �z�3/4e−const�z�3/2
, �z� 
 1

in the irreversible regime to a comparatively slow power
one,

R�z� � 1/�z�3, �z� 
 1,

in the reversible regime.
Substituting Eq. �44� into Eq. �38� from Eqs. �37� and

�38� one can calculate a and b in the next approximation, and
then from Eq. �43� derive in the next approximation the front
profile R. Clearly, the sequential iterative application of this
procedure enables one to obtain exact expansions of a, b, and
R in powers of � and in this way to obtain the exhaustive
picture of the crossover to the asymptotics of the reversible
regime �40� and �44�. After the first iteration we find

a = af
aA�z��1 + �A1�z� + ¯ � ,

b = bf
aB�z��1 + �B1�z� + ¯ � ,

R = Rf
aR�z��1 + �R1�z� + ¯ � , �47�

where the scaling functions

A1�z� = B1�− z� =
1

8�1 + z2�2�
1 + z2 − z�
,

R1�z� =
5�z2 − 1/5�
2�1 + z2�5/2 . �48�

From Eqs. �47� and �48� in accordance with �34� we find
exactly
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af = af
a�1 + �/8 + ¯ �, Rf = Rf

a�1 − �/2 + ¯ � .

It can easily be seen that A1�z� reaches the maximum in the
vicinity of the front center, zM =1 /
15, asymmetrically de-
caying at large �z�
1 by the laws

A1�z � 0� � 1/�z�5, A1�z � 0� � 1/z3.

More nontrivial is the behavior of R1�z�. In the interval
−1 /
5�z�1 /
5 the function R1�z� is negative, reaching in
modulus the absolute maximum in the front center, zM =0. As
�z� grows, R1�z� reverses its sign in the points z0= �1 /
5,
then it passes through the maximum in the points zm= �1,
and at large �z�
1 it symmetrically decays by the law

R1�z� � 1/�z�3.

It is easy to check that, as it must be, the global reaction rate
RG=
−�

� Rd�=J so that the “crossover” �-containing terms
do not contribute into the integral. In Fig. 1 are shown the
scaling functions R�z� and R1�z� and, also, the normalized
distributions of currents of A-particles JA�z�=JA

a�z� /J and
C-particles JC�z�=JC

a �z� /J=−JA�z�+� �29�.
Though the presented analysis is given as applied to the

island-sea problem, it is clear that Eqs. �47� define the key
features of the crossover to the reversible regime of the sharp
front propagation �g�1� at cf =const for arbitrary laws of
behavior of xf�t� and J�t� which satisfy the quasistaticity con-
ditions. For example, in the trivial particular case of the sea-
sea problem �J� t−1/2� from Eqs. �47� we immediately come
to the expansions of a, b, and R in powers of t* / t �28� with
z=const � /
t and t*�g−3/2. It is important to stress that in
the general case Eqs. �47� have the sense of expansions in
powers of 1 /k so that the asymptotic distributions aa�z�,
ba�z�, and Ra�z� depend only on the equilibrium constant g,
i.e., they are quasiequilibrium diffusion-controlled distribu-
tions independent of the forward reaction constant k.

D. Time dependences: Conditions of propagation of the
quasistatic quasiequilibrium front

As qualitatively different from the sea-sea problem
�25–28�, where due to the relation wa /LD�
g�1 the
formed quasiequilibrium quasistatic front is sustained quasi-
static for an unlimitedly long time, in the island-sea problem
due to the rapid growth of the relative front width �=w /xf
according to Eq. �6� the front can hold quasistatic ��1 only
to a certain vicinity �T�= ��t− tc� / tc��TQ of the critical point
tc. So, together with the requirement g�1 the requirement
t*� tc is a necessary condition for the island death in the
regime of quasistatic quasiequilibrium front. According to
Eq. �5� this requirement is equivalent to the requirement t*
� tM which, in turn, is reduced to the condition J*
JM

�1 /r. Substituting here Eq. �36� we come to the key condi-
tion

g� = 1/�r2k�2/3 � g � 1. �49�

Substituting then Eq. �23� into Eqs. �31�, �41�, and �45� we
derive the time dependences

Rf
a =

AR�3/2

r2
g

�ln ��
�

, �50�

wa =
Awr

�

� g�

�ln ���
1/2

, �51�

� = A�

��g�

g
�3/2 �ln ��

�
, �52�

�here AR=� /8, Aw=4
2 /�, and A�=� /2� and using Eqs.
�15� and �21� we finally find

�a = wa/xf =
4
�g

�ln ��
. �53�

In the vicinity of the critical point �T�= ��−1�= ��t− tc� / tc�
�1 from Eq. �53� we obtain

�a � TQ/�T�, TQ � 
g , �54�

where TQ is a characteristic time at which the QSA is vio-
lated. By extrapolating to TQ the expressions N /N0��T�3/2

and 
 f �
�T�, following from Eqs. �21� and �22� at small
�T��1, we find

NQ/N0 � g3/4, 
 f
Q � g1/4 �55�

and conclude that in the limit of small g� /g�1, 
g�1, the
majority of the island particles die in the regime of quasi-
static quasiequilibrium front. Let us estimate the ultimate
value of g�. For a perfect diffusion-controlled three-
dimensional �3D� reaction k�DrR, where rR is the reaction
radius. Thus, as our k is measured in units of D /L2b0 for the
dimensionless k we have k�rRL2b0 �24,30�. Substituting
here rR�10−8 cm, L�0.1 cm, and b0�1021 cm−3 we find
k�1011. Substituting this value into Eq. �49� and taking r
=102 we find g��10−10. We thus conclude that the QSA
description of the quasiequilibrium front propagation has a
broad applicability range. As an illustration, Figs. 2 and 3

FIG. 1. �Color online� Scaling functions R�z� �thick line� and
R1�z� �thin line� calculated according to Eqs. �46� and �48�. Also
are shown normalized current distributions of A particles JA�z�
�filled circles� and C particles JC�z� �open circles� calculated ac-
cording to Eq. �42� for r=102.
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show the evolution of the distribution of particles and the
front profile calculated in accordance with the exact Eqs.
�58�, �61�, �65�, and �66� for g=10−4, g�=10−6, and r=102. It
is seen from Fig. 2 that in accordance with Eq. �24� at ex-
pansion and subsequent contraction of the island, the distri-
bution of C particles within the island is sustained nearly
constant. Figure 3 demonstrates the evolution of the front
shape in scaling coordinates R /Rf vs �
−
 f�
�ln �� /g�. It is
seen that up to �a�0.2 the departure from the QSA profile
�46� manifests itself only at the edges of the profile R /Rf
�10−2.

IV. SYSTEMATIC THEORY OF THE ISLAND DEATH IN
THE REVERSIBLE REGIME OF FRONT

PROPAGATION

The presented QSA analysis of the crossover to the qua-
siequilibrium front regime imposes a strict requirement of
quasistaticity �a�1 and describes the propagation of the
front only to some vicinity of the critical point �T�
TQ

�
g. In this section we develop a free of these limitations
systematic theory of perturbations in powers of 1 /k which
gives the asymtotically exact description of evolution of the

quasiequilibrium distributions of a�
 ,�� ,b�
 ,�� ,c�
 ,�� and
of the front profile R�
 ,�� up to �→�. In the framework of
this theory the strict substantiation of the QSA will be given
and it will be shown that in the limit of small g→0 the
theory automatically leads to the QSA results �47� and �50�–
�52�.

A. General solution

Combining Eqs. �7�, �11�, and �12� we find exactly

c = �1/2��g − s + 2rF� − 
� ,

a = 
� − �1/2��g − s� ,

b = 
� − �1/2��g + s� , �56�

where

� = �1/4��s + g�2 + g�1 − F� + R/k . �57�

By assuming that k is sufficiently large and neglecting in
�57� the term R /k for the asymptotic quasiequilibrium distri-
bution,

aaba = gca,

we derive the closed equations

ca = �1/2��g − s + 2rF� − 
�a,

aa = 
�a − �1/2��g − s� ,

ba = 
�a − �1/2��g + s� , �58�

where

�a = �1/4��s + g�2 + g�1 − F� . �59�

Substituting then aa, ba or ca into Eqs. �8�, from any of these
equations, for example, from the equation

FIG. 2. �Color online� Distributions of particles a�
� �open
circles�, b�
� �open squares�, and c�
� �filled circles�, and the reac-
tion front profile 50R�
� �lines� at the stages of the island expansion
�a� and contraction �b� calculated according to Eqs. �58�, �61�, �65�,
and �66� at g�=10−6, g=10−4, and r=102 for the time moments �
=0.2 �a� and �=0.6 �b�. For completeness are shown the both island
fronts �
 f��� �the left-hand part of the distribution �
�0� is ob-
tained through the mirror reflection of the right-hand one �
�0��.
The island region under the curve a�
� is colored.

FIG. 3. �Color online� Evolution of the reaction front profile in
the scaling coordinates R /Rf vs �
−
 f�
�ln �� /g� calculated accord-
ing to Eqs. �65� and �66� at g�=10−6, g=10−4, and r=102 for the
time moments �=0.2 �filled circles�, �=0.4 �open squares�, �=0.6
�open hexagons�, and �=0.8 �open circles�. The region under the
QSA profile �46� �solid line� is colored.
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Ra = �2aa − �taa,

we find the asymptotic quasiequilibrium reaction profile in
the compact form,

Ra =
gr�r + g + 1�

4�a
3/2 ��F�2. �60�

Substituting Ra into the expression �57�, �=�a+R /k, and
taking Ra /k�a�1, in the linear 1 /k approximation for
	a1 ,	b1, and 	c1, deviations from the quasiequilibrium dis-
tributions, we have from Eqs. �56�,

	a1 = 	b1 = − 	c1 =
Ra

2k
�a

. �61�

Substituting, in accordance with Eqs. �8�, 	a1 into the equa-
tion

	R1 = �2�	a1� − �t�	a1�

and using Eq. �60�, for the linear 1 /k deviation 	R1 from the
quasiequilibrium profile Ra we find after some transforma-
tions

	R1 =
gr�r + g + 1�

4k�a
2 ���2F�2 − 4���F�2�2F + �3�2 − m/�a�

���F�4� , �62�

where �=
d ln �a

dF and m=
d2�a

dF2 = �r+1�2

2 . Substituting then R
=Ra+	R1+¯ into �57� and taking R /k�a�1 for the qua-
dratic in 1 /k additions 	a2, 	b2, and 	c2 we find

	a2 = 	b2 = − 	c2 = −
Ra

2

8k2�a
3/2 +

	R1

2k
�a

. �63�

The iterative repetition of this procedure enables one, in
principle, to obtain the systematic expansions

	R = �
n=1

�

	Rn = �
n=1

�

�n�x,t�/kn,

	a = 	b = − 	c = �
n=1

�

	an = �
n=1

�

�n�x,t�/kn,

which for large k at the condition

� = Maxx�Ra/k�a� + Maxx�Ra/kgca� � 1 �64�

rapidly collapse and can be represented by their leading
terms.

According to Eq. �18� at r , t
1 we have

F = exp�− x2/4t�/
�t .

Substituting this expression into Eqs. �60� and �62�, and go-
ing to the reduced variables 
=x /xM and �= t / tc we finally
find

Ra�
,�� =
��̂�3

8er2

g
2 exp�− 
2/e��
�a

3/2�3 �65�

and

	R1�
,�� =
�2�̂�3

16r2 � gF2

k�a
2�2��1 + 2�2�F − 1�
2/e� + �1 − 4�F

+ �3�2 − m/�a�F2�
4/e2�2� , �66�

where we have introduced the symbol �̂=1+g / �r+1�.
Equations �58�–�66� completely determine the regularities

of the crossover to the reversible regime and evolution of the
quasiequilibrium reaction profile up to �→�. In what fol-
lows we will concentrate on the key features of the quasi-
equilibrium front evolution Ra�
 ,�� and then reveal the role
of the crossover terms �66�, �61�, and �63�.

B. Trajectories of the front center: Two turning points
of the front

From Eqs. �65�, �59�, and �20� there appear the following
key properties of the quasiequilibrium front:

�a� According to Eq. �65� at any g, r, and � in the vicinity
of the island center Ra�
→0��
2→0. This means that the
center of the quasiequilibrium front 
 f���, governed by the
condition Ra�
 f�=Rf

a=Max
 Ra, never reaches the island cen-
ter.

�b� According to Eqs. �59�, �20�, and �12� at large r
1,
�a�g ,
 ,�� is independent of r and, therefore, irrespective of
the initial number of particles in the island, the trajectory of
the front center is the universal function 
 f

�g���� for any fixed
g.

�c� According to Eqs. �59� and �20� at arbitrary g in the
long-time limit 
�
1 the function �a= �1+g�2 /4+O��g
−1� /�1/2�+O�1 /�� becomes practically constant. We thus
conclude that in the long-time limit all the trajectories 
 f

�g����
converge to the common universal trajectory,


 f
�u� = 
e� . �67�

�d� According to Eq. �59� at small g�1 and ��1 at the
particular point s�=−g the function �a reaches a minimum.
In the limit g→0 in the vicinity of the point s�→0 at finite

� we find from Eq. �65�,

Ra�
�� � Max
 Ra �

�

2

r2
g�2
→ � .

So, in accordance with the QSA we conclude that in the limit
of small g→0 at 
�

2 

g the law of the front center motion is
governed by the condition s�=s�
 f ,��=0 whence there fol-
lows Eq. �21�:


 f = 
� = 
e��ln �� .

�e� According to Eq. �21�, having passed through the turn-
ing point 
 f

M =1 the front center 
 f moves towards the island
center. But in accordance with Eq. �67� asymptotically the
front center always moves towards 
→�. So, we come to
the striking conclusion that at small g the front must reverse
the direction of its motion twice. Moreover, as at large g the
law �67� is realized at 
�
1 /g, there should exist some
critical value gc below which two turning points appear on
the monotonous front trajectory. The numerical calculations
of Eq. �65� confirm this conclusion and give gc	0.029.
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As an illustration, in Fig. 4 are shown the front center
trajectories 
 f��� calculated according to Eq. �65� for g val-
ues in the range from g=gc to g=10−6 at r=102. It is seen
that with the decreasing g the coordinates of the second turn-
ing point �m→1 and 
 f

m→0. Remarkably that in the limit of
small g→0 the front trajectories become universal before
and after the turning point �see below�. Figure 5 demon-
strates the evolution of the reaction profile Ra�
 ,�� calculated
from Eq. �65� for g=10−4 and r=102. Our goal will be a
detailed analysis of the main stages of this evolution.

C. Scaling regime of the sharp front

Using Eq. �20� we can represent Eq. �65� in the form

Ra�
,�� =
const 
2�s + 1�2

�2�a
3/2 . �68�

Assuming �
−
 f� /
 f �1, �s��1 and g→0 we find

Ra�
,�� =
const 
 f

2

�2�s2/4 + �g�3/2 ,

whence it immediately follows that sf =0 and

Ra =
Rf

a

�1 + z2�3/2 , �69�

where the front amplitude Rf
a is governed by Eq. �50� and

z=−s /2
�g. Using the condition �
−
 f� /
 f �1, we find from
Eq. �20�,

s = e−�
−
f�
f/e� − 1,

whence, with the complementary requirement �
−
 f� /
 f
�e� /
 f

2=1 / �ln �� it follows that

s = − �
 − 
 f�
 f/e� + ¯ . �70�

Defining now the reduced reaction front width w̄a by the
condition z=−s /2
�g=2�
−
 f� / w̄a and using Eqs. �21� and
�70�, in exact agreement with the QSA result �51� we obtain

w̄a = wa/xf
M = 4
e�� g�

�ln ���
1/2

.

The presented analysis clearly demonstrates that the
sharp QSA-front forms in the vicinity of the �a minimum
on the scale �
−
 f� /
 f �1 where the function
��F�2�
2�s+1�2	const. As it has been mentioned, in the
long-time limit 
�
1, where �a becomes 	const, precisely
the function ��F�2 defines the shape of the reaction profile at
the final relaxation stage.

D. Long-time asymptotics

In the long-time limit 
�
1 at arbitrary g we come from
Eq. �65� to the scaling relaxation law

Ra = Rf
aS� 



 f
�, 
 f = 
e� , �71�

where scaling function S�y�=y2e�1−y2� and amplitude

FIG. 4. �Color online� Trajectories of the front center 
 f��� cal-
culated from Eq. �65� for the values g=gc=0.029, 10−2, 10−3, 10−4,
10−5, and 10−6 �from the periphery towards the center� at r=102.
For completeness is shown the motion of the both island fronts
�
 f���. The region restricted by the QSA trajectory �21� is colored
light �yellow�. The region restricted by the trajectory g=gc is col-
ored dark �cyan�.

FIG. 5. �Color online� Evolution of the reaction profile Ra�
 ,��
calculated from Eq. �65� at g=10−4 and r=102 for the time mo-
ments �=0.03, 0.045, 0.065, 0.09, 0.12, 0.16, 0.21, 1 /e, 0.629,
0.783, 0.877, 0.941, 0.973, 1.0045, 1.036, 1.098, 1.253, and 1.565
�from top to bottom�.

DEATH OF AN A-PARTICLE ISLAND IN THE B-… PHYSICAL REVIEW E 79, 021117 �2009�

021117-9



Rf
a = ��r,g�/�2 �72�

with

��r,g� =
��̂�3

er2

g

�1 + g�3 .

We conclude that at the final universal stage the reaction
profile expands self-similarly by the trivial law wu�
 f

�u�

�
� with the rapidly decaying �1 /�2 amplitude. Figure 6
demonstrates the dependences Ra /Rf

a vs 
 /
e� calculated ac-
cording to Eq. �65� at g=10−4 and r=102 for �=5,20,100. It
is seen that already at ��5 the calculated dependences rap-
idly collapse to the scaling function S.

E. Scaling laws of passage through the critical point

Let us now turn to the central and most interesting prob-
lem of the front evolution in the vicinity of the critical point
tc in the limit of small g. As at g�1 and r
1 the coeffi-
cients �̂ and � are close to unity, in what follows we will
assume for simplicity �̂=�=1.

1. Trajectory of the reaction front center

Deriving the front center position 
 f from the condition
dRa /d
=0, from Eq. �65� we find

�sf + g��sf + 1�
�sf

2/4 + g�
=

��


 f
2 �
 f

2/e� − 1� , �73�

where �=8e /3. Equation �73�, combined with the following
from �20�, equation

sf =
e−
f

2/2e�


�
− 1 �74�

completely determines the dynamics of the front center mo-
tion 
 f���. At the stage of the quasistatic regime, taking
�ln ��

g, we find from �73� and �74�,


 f = 
e��ln ���1 + � f� , �75�

where

� f = −
sf

�ln ��
=

g

�ln ���1 +
8

3

�1 − �ln ���
�ln ��

+ O�g�� .

Equation �75� determines the exact correction to the law of
the quasistatic front motion �21� dictated by the finiteness of
g. It is seen that in the vicinity of the critical point �T�= ��
−1��1 in agreement with the quasistaticity condition �a
�1 the requirement � f �1 is reduced to the requirement
�T�

g. Assuming that at either side of the critical point �T�,
�sf�, 
 f �1, we come from Eqs. �73� and �74� to the compact
equation for the trajectory of passage through the critical
point

sf = − �2/���
 f
2 � 

 f

4 − g�2� , �76�

whence for the coordinate 
 f
m=min 
 f of the front turning

point we immediately find


 f
m = 
�g1/4, sf

m = − 2
g . �77�

According to Eq. �74� at small �T��1 and 
 f
2�1 we have

sf = − T/2 − 
 f
2/2e + ¯ . �78�

Substituting �77� into Eq. �78� we obtain

Tm = �4/3�
g . �79�

Substituting then Eq. �78� into Eq. �76� we finally derive


 f = 
�e/4���32T2 + 27g�1/2 − T� . �80�

Equation �80� suggests that in the vicinity of the critical
point the trajectory of the front center demonstrates the re-
markable property of self-similarity,


 f = g1/4 �T/g1/2� .

Introducing the reduced coordinate z=
 /g1/4 and time T
=T /g1/2 we have

z f =  �T� , �81�

where z f
m=
� and Tm=4 /3. According to Eq. �80� at large

�T�
1 the scaling function  �T� has the asymptotics

 = 
e�T��1 + 8/3T2 + ¯ �, − T 
 1 �82�

and

 = 
eT/2�1 + 16/3T2 + ¯ �, T 
 1. �83�

We thus conclude that beyond the vicinity �	T��g1/2→0 the
trajectories of the front center go to the universal
�g-independent� asymptotics


 f
�−��T � 0� = 
e�T� + ¯

and


 f
�+��T � 0� = 
eT/2 + ¯ .

Figure 7 shows the calculated, according to Eq. �80�, trajec-
tory of the front center in scaling variables z f vs T. Also are

FIG. 6. �Color online� Dependences Ra /Rf
a vs 
 /
e� calculated

from Eq. �65� at g=10−4 and r=102 for �=5, 20, and 100. The
region under the S profile �71� �solid line� is colored.
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shown the universal asymptotics 
 f
�−� �QSA� and 
 f

�+�. Figure
8 demonstrates the data of Fig. 4 replotted in the rescaled
variables 
 f /g1/4 vs ��−1� /g1/2 for the values of g in the
range from 10−2 to 10−6. It is seen that as g is decreased the
rescaled trajectories rapidly collapse to the scaling function
 �T�.

2. Amplitude and shape of the front

We will assume in accordance with Eq. �81� that g is
sufficiently small so that �T� and z may change within broad
limits without violating the requirement of smallness of �T�
�1, �s��1, and 
�1. Then from Eqs. �65� and �20� we
come to the scaling law of the front profile evolution

Ra = � �

8er2�!�z,T� , �84�

where the scaling function

!�z,T� = z2/�s2/4 + 1�3/2

and

s = s/g1/2 = − T/2 − z2/2e + ¯ . �85�

Substituting into Eq. �84�, z=z f�T�, for the front amplitude
we find

Rf
a = � �

8er2�! f�T� , �86�

where at large �T�
1 the scaling function ! f�T� has the
asymptotics

! f = e�T��1 + 8/3T2 + ¯ �, − T 
 1

and

! f = �256e

27
� �1 − 8/3T2 + ¯ �

T2 , T 
 1.

From Eq. �86� there follow two remarkable consequences:
�1� In the second turning point the front amplitude does

not depend on g. Substituting into Eq. �86�, Tm=4 /3, we
obtain

�Rf
a�m = ��/6
2�/r2. �87�

Moreover, the ratio of the front amplitudes in the first and
second turning points does not depend on the initial number
of the island particles

�Rf
a�m/�Rf

a�M = �4/3e
2�
g .

�2� In the limit g→0 the passage through the critical point
is accompanied by a sharp drop of the front amplitude ��T�
→1 /T2� on the vanishingly small time scale �	T��g1/2→0
�amplitude jump�.

In Fig. 9 is shown the calculated from Eq. �86� time de-
pendence of Rf

a in the vicinity of the critical point, r2Rf
a vs T.

Also there are shown the power asymptotics Rf
�−�=const�T�

�QSA� and Rf
�+�=const /T2.

Let us now focus on the evolution of the scaling function
of the front profile, !�z ,T�, which is convenient to represent
in the form

!�z,T� =
z2

���z2 + eT�2 + 1�3/2 �88�

with �=1 /16e2. Using Eqs. �82� and �83�, and neglecting the
term O�1 /z f

2� in parentheses, we come from Eq. �88� at large
�T�
1 to the asymptotics

! =
z2

���z2 − z f
2�2 + 1�3/2 , − T 
 1 �89�

and

FIG. 7. �Color online� Trajectory of the front center passage
through the critical point in the scaling variables z f =
 f /g1/4 vs T
=T /g1/2 calculated according to Eq. �80�. The universal asymptotics

 f

�−� �QSA� and 
 f
�+� are shown in the dashed lines. The red circle

marks the position of the second turning point of the front.

FIG. 8. �Color online� Collapse of the data of Fig. 4 to the
scaling function  �T� �line�. The trajectories 
 f��� are replotted in
the rescaled variables 
 f /g1/4 vs ��−1� /g1/2 for the values g=10−2

�open circles�, 10−3 �open squares�, 10−4 �filled squares�, 10−5 �filled
hexagons�, and 10−6 �filled circles�.
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! =
z2

���z2 + 2z f
2�2 + 1�3/2 , T 
 1. �90�

Equations �88�–�90� give a clear picture of the front profile
transformation at the passage through the critical point. The
picture is reduced to the following:

�1� Away from the front center z f the function !�z� at any
�T� decays asymmetrically by the laws �z2 �z�z f� and
�1 /z4 �z
z f�.

�2� In the limit −T
1�z f 
1� in the range 1 /z f � �z−z f�
�z f the periphery asymmetric z2−1 /z4 “tails” are domi-
nated by the sharp symmetric QSA profile Ra /Rf

a�1 / ��z
−z f�z f�3 with the width w�1 /z f.

�3� In the limit T
1 the front profile Ra /Rf
a becomes a

universal function of z /z f that decays by the laws �z /z f�2

and �z f /z�4 on the left- and right-hand sides of the front
center with the front width w�z f.

We thus arrive at the remarkable conclusion: In the limit
g→0 the passage through the critical point is accompanied
by a sharp front broadening 1 /z f →z f and by a radical trans-
formation of its shape on the vanishingly small time scale
�	T��g1/2→0 �abrupt “delocalization” of the front�. As an
illustration, in Fig. 10 are shown the dependences Ra /Rf

a vs
z /z f calculated in accord with Eq. �84� for three time mo-
ments T=−10, T=0, and T=10.

3. Distribution of particles

From Eqs. �58� and �59� it follows that in the limit of
small g during the passage through the critical point the con-
centration of particles C in a broad range of z and T is
ca�z ,T�=1, and distribution of particles A and B is described
by the scaling law

aa = g/ba = g1/2L�z,T� , �91�

where the scaling function

L�z,T� = L�s� = 
s2/4 + 1 + s/2 �92�

and the function s�z ,T� is defined by Eq. �85�. Substituting
here z=z f�T� and introducing the reduced concentrations a
=aa /g1/2 and b=ba /g1/2 for the concentrations of particles in
the front center we find

a f = 1/b f = L f�T� , �93�

where the scaling function L f�T� at large �T�
1 has the as-
ymptotics

L f = 1 − 4/3�T� + ¯ , − T 
 1

and

L f = �4

3
� �1 − 16/3T2 + ¯ �

T
, T 
 1.

Substituting now s f
m=−2 into Eq. �92� we find that in the

second turning point

a f
m = 
2 − 1, b f

m = 
2 + 1. �94�

Figure 11 demonstrates the dependences a f�T� and b f�T� cal-
culated according to Eqs. �92�, �85�, and �81�. It is seen that
the passage through the critical point is accompanied by a
sharp growth of the B particles concentration so that in the
limit g→0 their concentration growth by a finite number on
the time scale �	T��g1/2→0.

According to Eqs. �85� and �92� during the passage
through the critical point:

�1� The tail of L distribution at z /z f 
1 independently of
T decays as L�z��1 /z2.

�2� At large −T
1 and �	z� /z f = �z−z f� /z f �1 the distri-
bution of particles is reduced to the QSA scaling L�s�
=A�−s /2�=B�s /2�. Beyond the narrow zone �	z� /z f

1 / �T� we find

FIG. 9. �Color online� Time dependence of the front amplitude
during the passage through the critical point plotted according to
Eq. �86� in the scaling variables r2Rf

a vs T=T /g1/2. The power
asymptotics Rf

�−� �QSA� and Rf
�+� are shown in the dashed lines. The

red circle marks the position of the second turning point of the
front.

FIG. 10. �Color online� Evolution of the front profile during the
passage through the critical point. Inset: Dependences Ra /Rf

a vs
z /z f in double logarithmic coordinates, calculated according to Eq.
�88� for T=−10 �open circles�, T=0 �line�, and T=10 �open
squares�. Main panel: Front profile Ra /Rf

a vs z /z f at the critical
point T=0.
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L/L f = 1
2 �T��1 − �z/z f�2�, − T 
 1, z � z f

and

L/L f =
2

�T���z/z f�2 − 1�
, − T 
 1, z � z f .

�3� In the limit T
1 the distribution of particles becomes
the universal function of z /z f,

L/L f =
3

�2 + �z/z f�2�
, T 
 1.

Comparing the concentration gradients at the front center
�� ln L�zf

��T� at −T
1 and �� ln L�zf
�1 at T
1 we con-

clude that during the passage through the critical point an
abrupt delocalization of the front is accompanied by an
abrupt “smoothing” of the distribution of particles.

4. Global reaction rate and number of island particles

To complete the theory of passage through the critical
point it remains for us to reveal the laws of decay of the
number of island particles, N, and of the global reaction rate
RG. Substituting Eq. �91� into the expression for the number
of island particles

N = �
0

�

aadx = xf
M�

0

�

aad
 ,

we find

N/N0 =
 2

�e
g3/4LN�T� , �95�

where the scaling function

LN�T� = �
0

�

L�z,T�dz

at large �T�
1 has the asymptotics

LN = 1
3

e�T�3/2 + O��T�1/2 ln�T��, − T 
 1

and

LN =
�
e

T1/2 − O�T−5/2�, T 
 1.

Substituting Eq. �84� into the expression for global reaction
rate

RG = − Ṅ = �
0

�

Radx = xf
M�

0

�

Rad
 ,

we find

RG = �
2�/e3

8r
�g1/4!G�T� , �96�

where in accordance with Eq. �95� the scaling function

!G�T� = �
0

�

!�z,T�dz

at large �T�
1 has the asymptotics

!G = 4
e3�T�1/2 + O� ln�T�
�T�1/2�, − T 
 1

and

!G =
4�
e3

T3/2 − O�T−7/2�, T 
 1.

As it is to be expected the passage through the critical point
is accompanied by a sharp drop of the island particles num-
ber ��T�3/2→1 /T1/2� and of the global reaction rate ��T�1/2

→1 /T3/2� on the time scale �	T��g1/2→0.

V. CROSSOVER TERMS

According to the general QSA analysis the key condition
of the island death in the quasiequilibrium front regime is
reduced to the requirement �49� which in consistence with
�52� and �64� may be rewritten in the form

k�/k = �g�/g�3/2 � 1, �97�

where k�=1 /r2g3/2 and g�=1 / �r2k�2/3. This condition is
mainly based on the key requirement �	R1

f � /Rf
a�1. But in

accord with Eqs. �65� and �66� in view of �Ra�
=0=0 in the
vicinity of the island center 
=0 the dominant contribution
to R is made precisely by the crossover term 	R1 which
forms a satellite maximum of R. In this section we give a
complete analysis of the contribution of the crossover terms
in the limit of small g and demonstrate that the requirement
�97� is the necessary and sufficient condition for the island
death in the quasiequilibrium regime. For simplicity we will
take �̂=�=1.

FIG. 11. �Color online� Time dependences of passage through
the critical point of the reduced concentrations in the front center
a f =af

a /g1/2 and b f =bf
a /g1/2 vs T=T /g1/2, calculated according to

Eq. �93�. The red circles mark the second turning point of the front.

DEATH OF AN A-PARTICLE ISLAND IN THE B-… PHYSICAL REVIEW E 79, 021117 �2009�

021117-13



A. Sharp front regime

We start with the analysis of the correction 	R1�
 ,�� in
the sharp front regime �ln ��

g. Assuming that �s��1 and
neglecting, as compared with �s�, the terms O�g� we find
from Eq. �59�,

�F = s/2�a, �98�

whence taking 
g� �s�� �ln �� with allowance for Eq. �70�
we derive

���F
 f
2/e� �

�ln ��
�s�

�

 f

�
 − 
 f�
. �99�

From Eqs. �66� and �99� it immediately follows that in the
vicinity of the front center �
−
 f� /
 f �1 the dominant con-
tribution to 	R1 is made by the term in the curly brackets in
�66� proportional to 
4 / �e��2. According to Eq. �98� the lead-
ing coefficient for this term may be represented in the form

�3�2 − m/�a�F2 = �5

8
� �s2 − 4g/5�

�a
2 . �100�

Substituting Eq. �100� into Eq. �66� we finally obtain

	R1 = �5�2gg�
3/2

128r2 �� �ln ��
�

�2 �s2 − 4g/5�
�a

4 . �101�

One can easily be convinced that Eq. �101� exactly repro-
duces the QSA structure of 	R1 with a deep minimum in the
front center and two symmetric lateral maxima at s= �2
g.
Indeed, in the front center from Eq. �101� we find

	R1
f = −

�2

32r2g1/2�g�

g
�3/2� �ln ��

�
�2

, �102�

whence in accordance with the QSA result �52� there follows

	R1
f

Rf
a = − �/2 = −

�

4
�g�

g
�3/2 �ln ��

�
.

At large �s�= �s� /
g
1 in accordance with the QSA equa-
tions �47� 	R1 rapidly decays by the law

	R1

�	R1
f �

=
320

s6 .

As an illustration, in Fig. 12 we show the dependences Ra�
�
and 	R1�
� calculated according to Eqs. �65� and �66� for the
time moment of the first turning of the front �=1 /e �
 f =1� at
g�=10−6, g=10−4, and r=102.

B. Passage through the critical point

From Eqs. �65� and �66� it follows that in the island center

=0 where Ra�0��0 the crossover term 	R1�0� forms a local
maximum of R which at small ���+=1 /9 decays by the law

	R1�0� =
�2

r2 �g�

g
�3/2g5/2

�
, � � �+,

and then, reaching a minimum in the point �+, begins to
rapidly grow by the law �Fig. 13�

	R1�0� =
16�2

r2 �g�

g
�3/2
g

T4 , − T 
 1,

so that according to Eq. �102� the approach to the critical
point is accompanied by a sharp growth of the ratio

	R1�0�
�	R1

f �
�

1

T6 , − T 
 1. �103�

Using Eq. �76� one can easily be convinced that during the
passage through the critical point at the front center ���F
 f

2

�mF2
 f
4 /sf

2�O�1� and, therefore, �	R1
f �		R1�0� �the same

FIG. 12. �Color online� Main panel: Dependences r2Ra�
� �filled
circles� and r2�	R1�
�� �open circles� plotted in semilogarithmic co-
ordinates according to Eqs. �65� and �66� for the moment of the first
turning of the front �=1 /e �
 f =1� at g�=10−6, g=10−4, and r
=102. Insets: Dependences r2Ra�
� and r2	R1�
� in the vicinity of
the reaction front.

FIG. 13. �Color online� Dependences r2	R1�0� vs � calculated
according to Eqs. �66� �open circles� and �104� �solid line� at g�

=10−6, g=10−4, and r=102.
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result is yielded by the direct extrapolation of Eq. �103� to
the critical point domain �T��1�. Moreover, the numerical
calculations show that during the passage through the critical
point Max
�	R1��	R1�0� �Fig. 14�. From Eq. �66� we find
that in a wide �T� range �see Fig. 13�

	R1�0� =
�2

16r2�g�

g
�3/2 
g

�1 + T2/16�2 , �104�

whence it follows that in the critical point T=0	R1�0� passes
through a sharp maximum

Max 	R1�0� =
�2
g

16r2 �g�

g
�3/2

.

By comparing Eqs. �86� and �104� we finally obtain

Max
	R1�0�

Rf
a � 
g�g�

g
�3/2

�105�

and conclude that at g��g�1 the influence of the crossover
term 	R1 on the evolution of the quasiequilibrium reaction
profile Ra may be neglected. The analysis of the corrections
	a1 �Eq. �61�� and 	a2�0� �Eq. �63�� suggests the analogous
conclusion.

VI. CONCLUSION

In this paper, a systematic theory of propagation of the
reaction front A+B↔C in the process of death of an
A-particle island in the B-particle sea has been developed
and a rich dynamical picture of front evolution has been
revealed. The main results may be formulated as follows.

�1� In terms of the QSA a systematic analysis of the cross-
over from the irreversible to reversible regime of front

propagation has been given and the general scaling structure
of the sharp quasiequilibrium front has been revealed.

�2� The key condition has been found for the island death
in the regime of the quasiequilibrium front.

�3� The systematic perturbation expansion in powers of
1 /k has been given on the base of which the asymptotically
exact description has been derived for the evolution of the
quasiequilibrium front profile and distribution of particles up
to �→�.

�4� It has been found that below some critical value of the
reduced backward reaction constant g�gc there appear two
turning points on the front trajectory. The evolution of the
amplitude, width, and configuration of the quasiequilibrium
front has been studied in detail in the limit of small g.

�5� It has been shown that �a� the first turning of the front
is due to the finite number of island particles and is located
on the QSA branch of the trajectory �sharp localized front� so
that at the passage through the turning point the structure of
the front does not change, �b� the second turning of the front
is the result of its radical transformation �delocalization of
the front� during the passage through the critical point.

�6� A remarkable property of self-similarity of the passage
through the critical point has been discovered. The scaling
laws of passage through the critical point have been derived
for the trajectory, amplitude, and configuration of the front
and, also, for the distribution of particles, global reaction
rate, and the number of island particles. It has been shown
that in the singular limit g→0 these laws lead to a striking
consequence, namely, to an abrupt delocalization of the front
on the time scale �	T��g1/2→0.

We believe that the presented systematic theory may serve
as a basis for the description of propagation and evolution of
a quasiequilibrium front in a broad range of finite particle
number systems including the systems localized A-particle
source–B-particle sea �30� and A-particle island–B-particle
island �31,32�. Moreover, we hope that the presented theory
provides a solid basis for generalization to important cases of
one-dimensional fluctuation front and unequal particle diffu-
sivities. Of particular interest is a formal analogy between
the passage through the critical point in the island-sea prob-
lem and the passage through the critical point in the problem
of annihilation on the catalytic surface of a restricted me-
dium, where for unequal species diffusivities in a recent se-
ries of papers �33�, the phenomenon of annihilation catastro-
phe �singular jump of the flux relaxation rate� has been
discovered. We are planing to reveal the reasons for such
analogy in a future paper.
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FIG. 14. �Color online� Main panel: Dependences r2Ra�
� �filled
circles� and r2�	R1�
�� �open circles� plotted in semilogarithmic co-
ordinates according to Eqs. �65� and �66� for the critical point �
=1 at g�=10−6, g=10−4, and r=102. Insets: Dependences r2Ra�
�
and 105r2	R1�
�.
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