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This article establishes a natural physical path leading from “regular” Ornstein-Uhlenbeck dynamics to
“anomalous” long-memory processes and, thereafter, to fractional Brownian motion. Considering a system
composed of n different parts—each part conducting its own Ornstein-Uhlenbeck dynamics, and all parts being
perturbed by a common external Lévy noise—we show that the collective system-dynamics, in the limit n
→�, converges to a temporal moving-average of the driving noise. The limiting moving-average process, in
turn, can posses a long memory—in which case, when observed over large time scales, further yields fractional
Brownian motion. The temporal correlation structure of the limiting moving-average process turns out to be
determined by the structural statistical variability of the system’s composing parts. Thus, the emergence of a
long memory is a consequence of the intrinsic “quenched disorder” present at the system’s formation epoch
rather than the consequence of the external annealed disorder carried in continuously by the driving noise.
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I. INTRODUCTION

In this article we establish a natural physical path leading
from Ornstein-Uhlenbeck �OU� dynamics to long-memory
processes and, thereafter, to fractional Brownian motion
�FBM�. The OU stochastic differential equation, i.e., the
Langevin equation with linear restoring force, is a “corner-
stone” equation in physics �1,2�. In its most abstract form,
the OU equation describes the stochastic evolution of a sys-
tem undergoing an exponential relaxation while, simulta-
neously, being perturbed by an external random noise. The
combination of an exponential relaxation on the one hand
and random perturbations on the other, is ubiquitous in both
natural and designed systems—consequently rendering the
OU equation a focal role in physics, chemistry, biology, and
engineering.

In case the external random noise is white—the temporal
derivative of Brownian motion—then the OU equation de-
scribes the continuous motion of diffusion in a harmonic
potential well �2�. In case the external random noise is
Poissonian—the temporal derivative of a compound Poisson
process—then the OU equation describes the discontinuous
motion of shot noise �3,4�. Both white and Poissonian noises
are special cases of Lévy noises—the temporal derivatives of
Lévy processes �namely, processes with stationary and inde-
pendent increments �5,6��. OU and Langevin equations
driven by general Lévy noises attracted major interest in re-
cent years, and were studied via different perspectives and
approaches �7–15�.

An OU equation driven by a general finite variance Lévy
noise yields an output process which is Markov and station-
ary, and whose autocovariance function is exponential. In
particular, the OU output process possesses a short memory.
On the other hand, the sciences are abundant with processes

possessing long memories. Namely, finite-variance stationary
processes with slowly decaying autocovariance functions
�16–18�.

This apparent dichotomy between the ubiquitous appear-
ance of the OU equation on the one hand and the abundance
of processes possessing long memories on the other leads us
to the question: Can a long memory emerge from a system
whose elemental dynamics are OU? The answer, as shown in
Refs. �19–21� and as to be demonstrated in this research, is
affirmative. A special case of the model presented in this
article was studied in Ref. �19� �see Sec. III A for the de-
tails�, and superpositions of independent OU processes were
explored in Refs. �19–21� �see also references therein�.

We introduce and study the class of composite Ornstein-
Uhlenbeck �COU� systems. A general COU system is com-
posed of many parts—the system’s “atoms.” The parts are
different, the dynamics of each part are governed by its own
OU equation, and all parts are perturbed by a common ex-
ternal driving noise—an arbitrary finite-variance Lévy noise.
The output of the COU system is the averaged aggregate of
the output of its “OU atomic parts.”

COU systems may be considered as a conceptual hydro-
logical model of river flows. Consider a river basin com-
posed of many different water catchments and “fed” by com-
mon rainfall events. Each water catchment produces its own
output flow, and the many outputs are aggregated-up into the
collective river flow. A COU model of such hydrological
systems is as follows: The water catchments are the system
parts, the rainfall events are a common external Poissonian
noise affecting all parts, and the parts’ outputs are �noniden-
tical� shot noise processes driven by the common “rainfall
noise.”

Our analysis shows that in the case of a large COU
system—i.e., when the number of “atoms” tends to
infinity—the system’s output process converges to a tempo-
ral moving-average �MA� of the external driving noise. The
functional structure of the temporal averaging—referred to
as the system’s memory function—turns out to be deter-
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mined by the underlying statistical variability of the system’s
atomic parts.

The “quenched” disorder present at the COU system-
formation epoch governs the statistical variability of the sys-
tem’s atomic parts and, in turn, determines the system’s
memory function. The “annealed” disorder carried in con-
tinuously by the external noise is averaged out temporally by
the COU system’s memory function—yielding the system’s
MA output process.

Contrary to OU processes, MA processes are not Markov.
Pending on the decay of its memory function, a MA process
may posses either a short memory or a long memory. Con-
sequently, the output of a large COU system, pending on the
statistical variability of its atomic parts, may posses either a
short memory or a long memory. Further analysis conducted
in this research pinpoints precisely when a long memory is
attained.

So far, we described how a transition from the micro-
scopic OU atom-level to the macroscopic COU system-level
may give rise to the emergence of a long memory. But what
happens if a COU system is observed macroscopically also
along the time axis, i.e., if it is observed over large time
scales? This question leads to the analysis of the temporal
scaling limits of COU output processes. We prove that, in the
presence of a long memory, the universal scaling limit of
COU output processes is fractional Brownian noise �FBN�—
the temporal derivative of FBM.

FBM—a generalization of Brownian motion which was
first introduced by Mandelbrot and Van Ness �22�—is the
quintessential example of a random motion with long
memory. FBM is a Gaussian and self-similar process, its
sample-path trajectories are continuous, and its increments
are stationary and possess a long memory �23�. FBM is char-
acterized by a single real-valued parameter—the Hurst
exponent—which governs its process statistics �23�.

In physics, FBM was shown to emerge from Hamiltonian
dynamics leading to generalized Langevin equations: �i�
Heat baths with random-matrix interactions �24�; �ii� Kac-
Zwanzig heat baths with random initial conditions �25�. In
mathematics, abstract limit theorems leading to FBM were
devised �see Refs. �23,26�, and references therein�, and inde-
pendent superpositions of simple random processes were
proved to converge to FBM: �i� Renewal processes �27,28�;
�ii� on-off processes �29�; �iii� persistent random walks �30�;
�iv� OU processes �19–21�.

Two different micro-to-macro transitions of COU systems
are addressed. The first transition is a structural one, tran-
scending from the microscopic atom level to the macro-
scopic system level. This transition takes us from Markov
OU processes to non-Markov MA processes. The degrees of
freedom of the resulting MA processes are �i� the functional
structure of the temporal averaging, i.e., the system’s
memory function; �ii� the statistical structure of external
driving noise, i.e., the noise’s Lévy statistics.

The second transition is a temporal one, applied via tem-
poral scaling limits. This transition takes us from non-
Markov MA processes to FBM. The degree of freedom of
the resulting FBM is its Hurst exponent. Thus, the second
transition collapses the MA degrees of freedom to a single
one-dimensional parameter—the Hurst exponent.

These two micro-to-macro transitions—both natural and
physically intuitive—established a direct path leading from
OU dynamics to MA processes, and thereafter to FBM.
FBM, in turn, is the universal scaling limit of long-memory
COU systems.

The reminder of the article is organized as follows. Lévy
noises and OU dynamics are reviewed in Sec. II. COU sys-
tems are introduced and studied in Sec. III. The scaling limits
of COU systems are investigated in Sec. IV. A concluding
example is presented in Sec. V. For a short exposition of the
main results of this research the readers are referred to Ref.
�31�.

II. PRELIMINARIES

A. Lévy noises

In this subsection we concisely review the notion of Lévy
noises. For further details the readers are referred to Refs.
�5,6�.

1. Lévy noises: Fourier characterization

A random noise process Ṅ= �Ṅ�t��t is a Lévy noise with
Lévy exponent L�·� if its Fourier transform admits the func-
tional form

E�exp�i�
−�

�

��t�Ṅ�t�dt�	 = exp�− �
−�

�

L���t��dt� ,

�1�

where the “Fourier variable” ��·� is an arbitrary test function
for which the integral appearing on the right-hand-side of
Eq. �1� converges. The Lévy exponent L�·� characterizes the

Lévy noise Ṅ and its general form is given by the celebrated
Lévy-Khinchin formula.

Lévy noises are not processes per se. Rather, they are
noises—meaning that they can be measured only via their
“actions” on test functions. This is well exemplified by Eq.
�1� which provides us with the Fourier transform of the ran-

dom variable 
−�
� ��t�Ṅ�t�dt—the “action” of the Lévy noise

Ṅ on the test function ��·�.
Considering the Lévy noise Ṅ as a random velocity yields

the induced Lévy motion N= �N�t��t�0 given by N�t�
=
0

t Ṅ�t��dt�. Contrary to Lévy noises, Lévy motions are
well-defined processes. Moreover, Lévy motions constitute
the class of random processes with stationary and indepen-
dent increments.

Examples of Lévy noises �Lévy motions� include the fol-
lowing. �i� White noise �Brownian motion�: characterized by
the Lévy exponent LWN���= 1

2 ���2. �ii� Stable noises �Stable
motions�: characterized by the Lévy exponent LSN���= ����,
the exponent � taking values in the range 0���2. �iii�
Variance-gamma noise �Variance-gamma process�: character-
ized by the Lévy exponent LVGN���=ln�1+ 1

2 ���2�. �iv� Com-
pound Poisson noises �compound Poisson processes�: char-

acterized by the Lévy exponent LCPN���=1− F̂���, the
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function F̂�·� being the Fourier transform of an �arbitrary�
probability distribution F defined on the real line.1

2. Lévy noises: Mean, variance, and covariance

The mean, variance, and covariance functionals corre-

sponding to the Lévy noise Ṅ follow straightforwardly from
the Fourier transform of equation �1�. Mean:

E��
−�

�

��t�Ṅ�t�dt	 = iL��0��
−�

�

��t�dt �2�

provided that the Lévy exponent L�·� is differentiable at the
origin, and that the test function ��·� is integrable on the real
line. Variance:

Var��
−�

�

��t�Ṅ�t�dt	 = L��0��
−�

�

���t��2dt �3�

provided that the Lévy exponent L�·� is twice differentiable
at the origin, and that the test function ��·� is square inte-
grable on the real line. Covariance:

Cov��
−�

�

�1�t�Ṅ�t�dt,�
−�

�

�2�t�Ṅ�t�dt	
= L��0��

−�

�

�1�t��2�t�dt �4�

provided that the Lévy exponent L�·� is twice differentiable
at the origin, and that the test functions �1�·� and �2�·� are
square integrable on the real line.

Note that the variance equation �3� is, in fact, a special
case of the covariance equation �4� �with �1�·�=�2�·�=��·��.
Henceforth, we shall refer to a Lévy noise Ṅ as centered if it
has zero mean L��0�=0 and unit variance L��0�=1.

B. Ornstein-Uhlenbeck dynamics

In this subsection we review the notion of OU dynamics.
For further details the readers are referred to the sources
cited herein.

1. General Ornstein-Uhlenbeck processes: Dynamics and
integral representation

A stochastic process �= ���t��t is OU if its dynamics are
governed by the OU stochastic differential equation

�̇ = − x� + yṄ , �5�

where x and y are positive parameters, and where Ṅ

= �Ṅ�t��t is a driving noise.
The OU equation �5� is a Langevin equation with linear

restoring force. It describes a system undergoing an expo-
nential relaxation while, simultaneously, being perturbed by
an external noise. The exponential relaxation and the per-
turbing noise are antithetical—the former pushing the system

towards equilibrium, while the latter driving the system away
from equilibrium. The system parameters x and y represent,
respectively, the amplitude of the exponential relaxation �x�
and the amplitude of the perturbing noise �y�.

In case the driving noise is white then the OU equation
�5� describes the continuous motion of diffusion in a har-
monic potential well �1,2�. In case the driving noise is com-
pound Poisson then the OU equation �5� describes the dis-
continuous motion of shot noise �3,4�. OU processes driven
by general Lévy noises attracted considerable interest in re-
cent years, and were studied via different perspectives and
approaches �7–15�.

The general solution of the OU equation �5�, over the
entire real line −�� t��, is given by

��t� = �
−�

t

�y exp�− x�t − t��
�Ṅ�t��dt�. �6�

The solution appearing in Eq. �6� represents a linear integral

transformation mapping “input” noises �Ṅ� to “output” OU
processes ���.

2. Ornstein-Uhlenbeck processes driven by centered Lévy noises:
Correlation structure

Consider now the case where the OU driving noise is
Lévy. In this case the OU process � is stationary and Markov.
Moreover, the OU process � is of finite variance if and only

if the Lévy noise Ṅ is such. If the Lévy noise Ṅ is centered
then the OU process � has zero mean, and its autocovariance
function ROU�·� is given by

ROU�t� =
y2

2x
exp�− x�t�
 �7�

�t real�. In particular, the variance of the OU process � is
given by ROU�0�=y2 /2x.

The power-spectrum function SOU�·� corresponding to the
autocovariance function ROU�·� is given, in turn, by2

SOU��� =
y2

2�

1

x2 + �2 �8�

�� real�.
The derivation of the autocovariance function ROU�·� fol-

lows from Eqs. �4� and �6� via a straightforward calculation.
The derivation of the power-spectrum function SOU�·� fol-
lows from Eq. �7� via a straightforward Fourier calculation.
Note how the exponential relaxation of the OU dynamics
manifests itself in the exponential decay of the autocovari-
ance function ROU�·� �temporal domain� and in the quadratic
power-law decay of the power-spectrum function SOU�·� �fre-
quency domain�.

1Namely, F̂���=
−�
� exp�i�x
F�dx� �� real�.

2The power-spectrum function S�·� of a finite-variance stationary
stochastic process with autocovariance function R�·� is defined as
the autocovariance’s inverse Fourier transform S���
= 1

2�
−�
� exp�−i�t
R�t�dt �� real�.
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III. COMPOSITE ORNSTEIN-UHLENBECK SYSTEMS

The OU stochastic differential equation �5� describes the
dynamics of a system undergoing exponential relaxation
while, simultaneously, being perturbed by an external noise.
In this section we introduce and study the class of composite
Ornstein-Uhlenbeck �COU� systems—systems whose
“atomic parts” are governed by elemental OU dynamics, yet
whose collective system behavior is of higher complexity.
We begin with a presentation of the COU system model, and
then turn to analyze the structure—both on the microscopic
atom level and on the macroscopic system level—of COU
systems.

A. The COU system model

1. Model description

Consider a system composed of n different atomic parts,
all parts undergoing exponential relaxations and being per-

turbed by a common external noise Ṅ. The dynamics of part
k are governed by the OU equation

�̇k = − Xk�k + YkṄ , �9�

Xk and Yk being the OU amplitudes of part k �k=1, . . . ,n�.
The processes �1 , . . . ,�n are coupled via the common exter-

nal noise Ṅ.
The COU system’s output process 	n= �	n�t��t is the av-

eraged aggregate of the output processes �1 , . . . ,�n of its
atomic parts. Namely:

	n�t� ª
1

n
�
k=1

n

�k�t� . �10�

Our main focus shall be the case of large COU systems in
which n
1. In this case it is natural to assume that the
variability of the amplitude pairs �X1 ,Y1� , . . . , �Xn ,Yn� obeys
some statistical regularity. The specific model assumptions
regarding the amplitude-pair statistics and the external noise
statistics are as follows.

Amplitude pairs. The amplitude pairs
�X1 ,Y1� , . . . , �Xn ,Yn� are independent and identically distrib-
uted copies of a “generic” random amplitude pair �X ,Y� sat-
isfying the integrability condition

E� Y2

2X
	 � � . �11�

Noise. The external driving noise Ṅ is centered Lévy, and
is independent of the amplitude pairs �X1 ,Y1� , . . . , �Xn ,Yn�.

We emphasize that, in accordance with the fluctuation-
dissipation theorem �32�, the ‘generic’ amplitudes X and Y
may certainly be dependent random variables �as demon-
strated in the concluding example presented in Sec. V�.
Moreover, we shall also show that the requirement that the
random amplitude pairs �X1 ,Y1� , . . . , �Xn ,Yn� be independent
is not necessary and can be relaxed to allow for interdepen-
dencies �between the amplitude pairs�.

A special case of the COU model—in which the generic
amplitude X is gamma distributed, the noise-amplitudes are

degenerate and deterministic �specifically, Y �1�, and the

driving noise Ṅ is white—was studied in Ref. �19�. Superpo-
sitions of independent OU processes—where each OU pro-
cess is driven by its own noise process, and the driving
noises are independent—were explored in Refs. �19–21� �see
also references therein�.

2. The memory and base functions

Before continuing on to analyze COU systems, let us first
introduce notation that will accompany us henceforth. We
denote by ��x ,y� �x ,y�0� the probability density function
governing the probability distribution of the generic random
amplitude pair �X ,Y�, and define the following associated
functions. Memory function:

���� ª �
0

� �
0

�

y exp�− �x
��x,y�dxdy �� � 0� , �12�

base functions:

�m�x� ª �
0

�

ym��x,y�dy �x � 0;m = 1,2� . �13�

Note that the memory function ��·� satisfies ����
=E�Y exp�−�X
� ���0�, and that it is the Laplace transform
of the base function �1�·�.3

B. COU analysis

A large COU system is composed of many atomic parts,
and produces an output signal which conveys the system’s
collective stochastic behavior. Observing the COU system on
its microscopic atom-level yields the stochastic process
�k—k being the specific atomic part observed. Observing the
COU system on a macroscopic system level, on the other
hand, yields the stochastic process 	n—the averaged aggre-
gate of the system’s atomic parts. In this subsection we ana-
lyze COU systems both microscopically and macroscopi-
cally.

1. Microscopic analysis

Consider a microscopic observation focusing on the COU
system’s kth atomic part—yielding the stochastic process �k.
Applying the general OU solution of Eq. �6� to the OU dy-
namics of Eq. �9� we obtain that the “microscopic process”
�k is given by

�k�t� = �
−�

t

�Yk exp�− Xk�t − t��
�Ṅ�t��dt� �14�

�t real�.
We emphasize that the microscopic process �k is condi-

tional OU. Namely, given the specific realization of the am-
plitude pair �Xk ,Yk�, the microscopic process �k is OU with
amplitudes x=Xk and y=Yk. However, the microscopic pro-
cess �k per se is not OU.

The COU model assumptions imply that the microscopic

3Namely, ����=
0
� exp�−�x
�1�x�dx ���0�.
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process �k has zero mean, and that its autocovariance func-
tion Rmicro�·� is given by

Rmicro�t� = �
0

�

exp�− �t�x
��2�x�
2x

�dx �15�

�t real�. In particular, the variance of the microscopic process
�k is given by Rmicro�0�=E�Y2 /2X�.

The power-spectrum function Smicro�·� corresponding to
the autocovariance function Rmicro�·� is given, in turn, by

Smicro��� = �
0

� 1

�2 + x2��2�x�
2�

�dx �16�

�� real�. The derivation of Eqs. �15� and �16� is given in
AppendixA.

Note the profound difference between the OU autocova-
riance ROU�·� �Eq. �7�� and the “microscopic autocovari-
ance” Rmicro�·�, and between the OU power spectrum SOU�·�
�Eq. �8�� and the “microscopic” power spectrum Smicro�·�.
The randomization of the OU amplitude pairs yields micro-
scopic correlation structures which are no longer confined to
an exponential decay in the temporal domain, and to a qua-
dratic power-law decay in the frequency domain.

This fact was exploited, in the context of shot noise, to
produce “1 / f� noise:” Various researchers randomized the x
amplitude of OU processes driven by compound Poisson
noise so that to obtain a power spectrum which, across a
wide range of frequencies, behaves similar to a power-law
with exponent 0���2 �see, for example, Refs. �33–35��.
Equations �15� and �16� imply that the generation of “1 / f�

noise” is far more robust. Indeed, any OU process driven by
a centered Lévy noise can be turned into 1 / f� noise by an
appropriate randomization of its amplitude pair �x ,y�—the
resulting power spectrum being contingent on the random-
ization’s base function �2�·�.

2. Macroscopic analysis: Moving-average limit

Let us transcend from the microscopic observation to a
macroscopic one, and consider the COU system’s output pro-
cess 	n—conveying the system’s collective stochastic be-
havior. Substituting the solutions of the microscopic pro-
cesses �1 , . . . ,�n �given by Eq. �14�� into Eq. �10� we obtain
that the “macroscopic process” 	n is given by

	n�t� = �
−�

t �1

n
�
k=1

n

Yk exp�− Xk�t − t��
�Ṅ�t��dt� �t real� .

�17�

As the COU system-size grows to infinity �n→��, the
law of large numbers implies that the integrand of Eq. �17�
converges to the deterministic limit ��t− t��—the conver-
gence holding with probability 1 for any �fixed� t�
 t, and
��·� being the memory function defined in Eq. �12�. Hence,
in the asymptotic limit n→� we expect to obtain the limit-
ing macroscopic process 	= �	�t��t given by

	�t� = �
−�

t

��t − t��Ṅ�t��dt�. �18�

The macroscopic process 	 is a temporal moving-average

�MA� of the driving noise Ṅ= �Ṅ�t��t, where the temporal
averaging is performed by the memory function ��·�. In sig-
nal processing the system described by Eq. �18� is referred to
as a casual convolution filter with impulse-response function
��·� �36�.

Equation �18� is a generalization of Eq. �6�—replacing the
exponential memory function of Eq. �6� by the general
memory function of Eq. �18�. Analogous to the case of Eq.
�6�, Eq. �18� represents a linear integral transformation map-

ping input noises �Ṅ� to output MA processes �	�. A rigor-
ous analysis of the asymptotic limit n→� is provided by the
following proposition.

Proposition 1. The sequence of macroscopic processes
�	n
n=1

� converges, in L2 norm, over any time interval, to the
limiting macroscopic process 	. Namely,

lim
n→�

E��
a

b

�	n�t� − 	�t��2dt	 = 0, �19�

the limit holding for all −��a�b��. The proof of Propo-
sition 1 is given in Appendix B.

3. Macroscopic analysis: Correlation structure

The macroscopic process 	 of proposition 1 is stationary.

The fact that the driving noise Ṅ is centered Lévy implies
that the macroscopic process 	 has zero mean, and that its
autocovariance function Rmacro�·� is given by

Rmacro�t� = �
0

�

��x���x + �t��dx

= �
0

� �
0

�

exp�− �t�x

�1�x��1�y�

x + y
dxdy , �20�

�t real�. In particular, the variance of the macroscopic process
	 is given by

Rmacro�0� = �
0

�

��x�2dx = �
0

� �
0

� �1�x��1�y�
x + y

dxdy .

�21�

The power-spectrum function Smacro�·� corresponding to
the autocovariance function Rmacro�·� is given, in turn, by

Smacro��� =
1

2�
��

0

�

exp�i�x
��x�dx�2

=
1

2�
��

0

� �1�x�
x + i�

dx�2

�� real� . �22�

The derivation of the middle term of Eq. �20� follows from
Eqs. �4� and �6� via a straightforward calculation. The deri-
vation of the middle term of Eq. �22� follows from the
middle term of Eq. �20� via a straightforward Fourier calcu-
lation. The right-hand terms of Eqs. �20� and �22� are ob-
tained, following simple calculations, by the Laplace substi-
tution ����=
0

� exp�−�x
�1�x�dx into their middle terms.
As in the case of the microscopic analysis, the macro-

scopic correlation structures obtained are not confined to an
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exponential decay in the temporal domain, and to a quadratic
power-law decay in the frequency domain. Rather, the “mac-
roscopic autocovariance” Rmacro�·� and the “macroscopic
power spectrum” Smacro�·� may assume various decay
forms—contingent on the base function �1�·�.

C. Discussion

1. Quenched disorder vs annealed disorder

A COU system has two sources of underlying random-
ness: �i� A “quenched” disorder governing the realizations of
the OU amplitude pairs of the system’s atomic parts and �ii�
an “annealed” disorder governing the sample-path realization
of the system’s external driving noise. The “quenched” dis-
order is internal and static. It influences the system at its
formation epoch by “molding,” once and for all, the values
of the OU amplitude pairs of the system’s atomic parts.
These amplitude-pairs, in turn, are the COU system’s intrin-
sic characteristics. Counterwise, the “annealed” disorder is
external and dynamic. It influences the COU system from
after its formation, perturbing the system by external
“shocks” admitted to it continuously in time.

On the atom-level the microscopic autocovariance func-
tion Rmicro�·� and the microscopic power-spectrum function
Smicro�·� turn out to be contingent on the base function �2�·�,
whereas on the system level the macroscopic autocovariance
function Rmacro�·� and the macroscopic power-spectrum
function Smacro�·� turn out to be contingent on the base func-
tion �1�·�. The base functions �1�·� and �2�·�, in turn, are
functionals of the “quenched” disorder statistics �character-
ized by the probability density function ��· , · ��.

On the other hand, the microscopic and the macroscopic
autocovariance and power-spectrum function turn out to be
independent of the statistics of the “annealed” disorder �char-
acterized by the Lévy exponent L�·��. Hence, the correlation
structure of COU systems—both on the microscopic atom
level and on the macroscopic system-level—is determined
solely by the “quenched” disorder present at the system’s
formation epoch, and is unaffected by the ‘annealed’ disorder
carried in continuously by the external driving noise.

2. Microscopic level vs macroscopic level

COU systems display markedly different stochastic be-
haviors on the microscopic atom-level and on the macro-
scopic system level. This difference is vividly clear by com-
paring the integral representations of the microscopic and
macroscopic processes �k and 	 �given, respectively, by Eqs.
�14� and �18��. Moreover, the COU microscopic correlation
structure is governed by the base function �2�·�, whereas the
COU macroscopic correlation structure is governed by the
base function �1�·�.

When transcending from the microscopic atom level to
the macroscopic system level the “quenched” disorder “so-
lidifies” into the deterministic memory function ��·�. This
“solidification” induces a reduction of variance: The variance
of the macroscopic process 	 �i.e., the macroscopic variance
Rmacro�0�� is bounded from above by the variance of the
microscopic process �k �i.e., the microscopic variance
Rmicro�0��. Namely,

Rmacro�0� 
 E� Y2

2X
	 = Rmicro�0� . �23�

The derivation of the left-hand-side bound of Eq. �23� is
given in part 4 of the proof of proposition 1 �see the Appen-
dix B�.

3. Macroscopic stationary distribution and Markov breaking

OU processes driven by Lévy noises are stationary and
Markov. On the other hand, MA processes driven by Lévy
noises are stationary but, in general, are non-Markov. Spe-
cifically, a Lévy-driven MA process is Markov if and only if
its memory function is exponential.

The Fourier transform of the stationary distribution of the
macroscopic process 	 is given by

E�exp�i�	�t�
� = exp�− �
0

�

L�������d�� �� real� .

�24�

Equation �24� follows straightforwardly from Eqs. �1� and
�18�.

The transition from the OU process � of Eq. �6� to the
macroscopic COU process 	 of Eq. �18� preserves station-
arity, but losses the Markov property. Hence, replacing a
single OU process by the averaged aggregate of many differ-
ent and coupled OU processes renders the resulting output a
memory which extends beyond the output’s current position.

This “Markov-breaking” phenomena is a consequence of
the statistical heterogeneity and of the averaging taking place
in the COU system model. As shall be demonstrate in the
sequel, Markov breaking is precisely what enables the emer-
gence of a long memory—which, in turn, will further yield
the FBM scaling limit.

4. Model robustness

In the COU system model the OU amplitude pairs of the
system’s atomic parts are assumed independent and identi-
cally distributed random variables. Proposition 1, however,
holds also in the presence of dependence.

Indeed, if the amplitude pairs �X1 ,Y1� , . . . , �Xn ,Yn� are
identically distributed—yet dependent—random variables,
then the condition

lim
n→�

1

n2 �
k,l=1

n

E� YkYl

Xk + Xl
	 = 0 �25�

is sufficient in order ensure that the result of Proposition 1
remains valid. The proof of this assertion is given at the end
of the proof of proposition 1 �see the Appendix�.

IV. LONG MEMORY AND THE FRACTIONAL BROWNIAN
MOTION SCALING LIMIT

In this section we study the emergence of a long memory
in the collective stochastic behavior of large COU systems.
We begin with a quantitative definition of the notion of “long
memory” and with the analysis of long memory in large
COU systems. Thereafter, we consider the temporal scaling
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of macroscopic COU processes, and prove FBM to be the
universal scaling limit of long-memory macroscopic COU
processes.

A. Long memory

1. Long memory: Definition

A finite-variance stationary stochastic process, with auto-
covariance function R�·� and power spectrum function S�·�,
is said to posses a long memory �16–18� if either of the
following equivalent asymptotic conditions holds.4

Autocovariance. R�t��r�t�t−�, as t→�, where the expo-
nent � is in the range 0���1, and the function r�·� is
slowly varying at infinity.

Power spectrum. S����s��������−�, as ���→0, where the
exponent � is in the range 0���1, and the function s�·� is
slowly varying at the origin.

The autocovariance characterization of long memory is in
the temporal domain, whereas the power-spectrum character-
ization of long memory is in the frequency domain. The
equivalence of the two characterizations is as follows �see,
for example, theorem 4.10.3 in Ref. �37��.

The autocovariance condition implies the power-spectrum
condition with exponent �=1−� and slowly varying func-
tion s������r�1 / ���� /c� �as ���→0�, where c�

=2����cos��� /2�. Conversely, the power-spectrum condi-
tion implies the auto-covariance condition with exponent �
=1−� and slowly varying function r�t��c�s�1 / t� �as t→��,
where c�=2��1−��sin��� /2�. The phenomena of long
memory was coined by Mandelbrot and Wallis the “Joseph
effect” �38�—the etymology of the term stems from the bib-
lical story of Joseph’s prophesy: “… there came seven years
of great plenty throughout the land of Egypt. And there shall
arise after them seven years of famine…” Genesis, 41: 29,
30.

2. Long memory: COU systems

Long memory in the case of the macroscopic COU pro-
cess 	—whose autocovariance function Rmacro�·� and
power-spectrum function Smacro�·� are given, respectively, by
Eqs. �20� and �22�—is the issue of the following proposition.

Proposition 2. Assume that the base function �1�·� satis-
fies �1�x�� l�x�xp−1, as x→0, where the exponent p is in the
range 1 /2� p�1, and the function l�·� is slowly varying at
the origin. Then we have the following.

�1� Memory function:

���� �
�→�

��p�
l�1/��

�p . �26�

�2� Macroscopic autocovariance function:

Rmacro�t� �
t→�

����2p − 1�
sin��p� � l�1/t�2

t2p−1 . �27�

�3� Macroscopic power-spectrum function:

Smacro��� �
�→0

� �/2
sin��p�2� l�����2

���2−2p . �28�

Namely, the macroscopic COU process 	 posses a long
memory with “temporal exponent” �=2p−1 and “frequency
exponent” �=2−2p.

The proof of proposition 2 is given in Appendix C. Note
that the exponents �=2p−1 and �=2−2p, appearing in
proposition 2, indeed take values in the range 0��, ��1,
and indeed sum up to unity �i.e., �+�=1�.

B. Temporal scaling

We turn now to consider the temporal scaling of the mac-
roscopic COU process 	. Given a positive constant c we
speed-up time by the factor c and rescale the macroscopic
COU process 	 by the positive factor ��c�—the function
��·� being an arbitrary positive-valued scaling function. The
output of this temporal scaling procedure is the scaled pro-
cess Zc= �Zc�t��t given by

Zc�t� =
1

��c�
	�ct� �t real� . �29�

1. Temporal scaling: Correlation-structure limit

Let Rc�·� and Sc�·� denote, respectively, the autocovari-
ance and power-spectrum functions of the scaled process Zc.
The limiting correlation structure of the scaled process
Zc—in the scaling limit c→�, and in the presence of long
memory—is the issue of the following proposition.

Proposition 3. Assume that the long-memory condition of
proposition 2 is satisfied, and set ��c���c��c� �as c→��.

�1� Autocovariance limit

R��t� ª lim
c→�

Rc�t� = ���1 − p���2p − 1�
��p�

� 1

�t�2p−1 . �30�

�2� Power-spectrum limit

S���� ª lim
c→�

Sc��� = ���1 − p�2

2�
� 1

���2−2p . �31�

�3� Plugging the base function �1�x�=xp−1 /��p� and its
Laplace transform—the memory function ����=�−p—into
Eqs. �20� and �22� yields, respectively, the limits R��·� and
S��·�.

The proof of proposition 3 is given in Appendix D. Note
that the power-spectrum limit S��·� obtained admits the form
of a pure “1 / f2−2p noise.”

Equations �30� and �31� are, respectively, the “distilled”
versions of Eqs. �27� and �28�—admitting a “pure” power-
law form, rather than an asymptotic one. We emphasize,
however, that the autocovariance limit R��·� and the power-
spectrum limit S��·� are not, respectively, admissible autoco-
variance and power-spectrum functions �this is due to the
divergence of the limit R��·� at the origin�.

4A real function l�·� is said to be slowly varying at the limit point
x* if the limit limx→x

*
l�cx� / l�x�=1 holds for all positive constants

c �37�. The class of slowly varying functions generalizes the class
of asymptotically constant functions �at the limit point x*� and in-
cludes constants, logarithms, iterated logarithms, and powers of
logarithms.
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2. Temporal scaling: Fractional Brownian noise limit

With proposition 3 at hand it is “tempting” to infer that
the scaled process Zc converges—in the scaling limit c→�,
and in the presence of long memory—to a limiting MA pro-
cess with memory function ����=�−p. The precise descrip-
tion of the stochastic process-limit obtained is provided by
the following proposition.

Proposition 4. Assume that the long-memory condition of
proposition 2 is satisfied, and set ��c���c��c� �as c→��.
Then, the scaled process Zc converges, in the scaling limit
c→�, in law, to a limiting noise process Z= �Z�t��t. For-
mally, the limiting noise process Z is a MA of white noise5

ṄWN with memory function ����=�−p:

Z�t� = �
−�

t

�t − t��−pṄWN�t��dt�. �32�

The proof of proposition 4 is given in Appendix E. We
emphasize that the limit Z is ill defined as a process per se,
and is well defined as a noise—which is measured via its
“action” on test functions. See the proof of proposition 4 for
an explanation of this delicate, yet important, point.

The limit Z obtained is fractional Brownian noise
�FBN�—the “velocity” of FBM. We shall elaborate on this in
the proceeding subsection.

3. Temporal scaling: Universality

The most distinctive feature of the FBN scaling limit Z of
proposition 4 is its universality—i.e., the invariance of the
FBN scaling limit Z to the details of the COU system it
stems from. The statistics of a COU system are governed by
two infinite-dimensional parameters: �i� The probability den-
sity function ��· , · � which characterizes the statistical vari-
ability of the OU amplitude pairs of the system’s atomic
parts and �ii� the Lévy exponent L�·� which characterizes the
statistics of the system’s external driving noise. These two
infinite-dimensional parameters—when the COU system is
observed over large time scales, and in the presence of long
memory—collapse to a single real-valued parameter: The
system’s “long memory exponent” p. When observed on
large time scales, long memory COU systems will always
yield the FBN scaling limit Z which is a MA of white noise

ṄWN with a power-law memory function—the limit’s only
degree of freedom being the exponent p of its power-law
memory function.

C. Fractional Brownian Motion

1. Fractional Brownian Motion: Construction

In Sec. II A we described how considering Lévy noises as
random velocities results in Lévy motions—which, contrary
to Lévy noises, turn out to be well-defined random processes.
In this section we repeat this very procedure to the FBN
scaling limit Z of proposition 4.

Considering a given MA process 	 as a random velocity
yields the induced motion M	= �M	�t��t�0 given by M	�t�
=
0

t 	�t��dt�. Using the MA representation of Eq. �18�, fur-
ther yields the representation of the induced motion M	 as

an integral with respect to the underlying driving noise Ṅ:

M	�t� = �
−�

0

���t − t�� − ��0 − t���Ṅ�t��dt�

+ �
0

t

��t − t��Ṅ�t��dt�, �33�

where ��·� is the integrated memory function ��·�, i.e.,
��t�ª
0

t ��t��dt�.
In particular, the motion MZ induced by the FBN scaling

limit Z of proposition 4—a MA of white noise ṄWN with
memory function ����=�−p—admits the integral representa-
tion

MZ�t� = �
−�

0

��t − t��1−p − �0 − t��1−p�ṄWN�t��dt�

+ �
0

t

�t − t��1−pṄWN�t��dt� �34�

�with no loss of generality, we eliminated the multiplicative
factor 1 / �1− p��.

The integral representation of the stochastic process MZ
implies that it is a FBM with Hurst exponent

H = 3/2 − p �35�

�23�. The Hurst exponent H takes values in the range 1 /2
�H�1. Contrary to the FBN scaling limit Z, the induced
FBM MZ is a well-defined random process.

2. Fractional Brownian motion: Properties

FBM—a generalization of Brownian motion which was
first introduced by Mandelbrot and Van Ness �22�—is the
quintessential example of a random motion with continuous
sample-path trajectories and long memory. We mention three
key features of the FBM MZ �for further details the readers
are referred to Ref. �23��.6

Gaussianity. The FBM MZ is a Gaussian process. Namely,
the probability distribution of any finite-dimensional vector
�MZ�t1� , . . . ,MZ�tn�� is multivariate Gaussian. A Gaussian
process is characterized by its mean and its autocovariance.
The FBM MZ has zero mean and autocovariance

Cov�MZ�t1�,MZ�t2�� =
CH

2
��t1�2H + �t2�2H − �t1 − t2�2H


��t1,t2 � 0� . �36�

Long memory. The increments of the FBM MZ are station-
ary and posses a long memory:

5Recall from Sec. III A that a white noise ṄWN is a Lévy noise
characterized by the Lévy exponent LWN���= 1

2 ���2.

6The coefficient CH appearing in Eqs. �36� and �37� is a constant
depending on the value of the Hurst exponent H. Explicitly, CH

= ��� 1
2 +H���2−2H�� / �2H�� 3

2 −H��.
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Cov�MZ�t1 + �� − MZ�t1�,MZ�t2 + �� − MZ�t2��

�
�t1−t2�→�

CHH�2H − 1�
�2

�t1 − t2�2−2H �t1,t2 � 0 and � � 0� .

�37�

Note that the exponent 2−2H takes values in the range 0
�2−2H�1.

Self-similarity. The FBM MZ is a self-similar process with
self-similarity exponent H. Namely, for any positive constant
c the rescaled process �c−HMZ�ct��t�0 is equal, in law, to the
“original” process �MZ�t��t�0. Self-similarity implies that,
statistically, the sample-path trajectories of the FBM MZ are
fractal objects.

V. AN EXAMPLE

As an illustrative example consider a COU system whose
OU amplitude pairs are drawn from a probability distribution
with probability density function

��x,y� =
1

Cg

g�x�
x

exp�−
y
�x
� �38�

�x ,y�0�, where g�·� is an arbitrary non-negative valued
function satisfying the integrability condition Cg

ª
0
��g�x� /�x�dx��. The probability density function of

Eq. �38� satisfies the finite-mean condition of Eq. �11� �with
E�Y2 /2X�=1�, and yields the base functions

�1�x� =
1

Cg
g�x� and �2�x� =

2

Cg
g�x��x . �39�

Hence, this example facilitates a “reverse engineering” of
the COU system under consideration—telling us what prob-
ability density function ��· , · � is required in order to yield,
up to a multiplicative factor, a desired “target” base function
��1�·� for the macroscopic system-level and �2�·� for the
microscopic atom level�.

As an example of a COU system with long memory con-
sider the choice g�x�=exp�−x
xp−1, where the exponent p
takes values in the range 1 /2� p�1. On the microscopic
atom-level this choice yields the microscopic autocovariance
function

Rmicro�t� =
1

�1 + �t��p �40�

�t real�. On the macroscopic system-level this choice yields
the memory function

���� =
cp

�1 + ��p �� � 0� , �41�

and Fourier transform

E�exp�i�	�t�
� = exp�−
�1/p

p
�

0

� L�cpu�
u1+1/p du� �� real�

�42�

of the stationary distribution of the macroscopic process 	
�the coefficient cp appearing in Eqs. �41� and �42� is given by
cp=��p� /��p− 1

2 ��.

VI. CONCLUSIONS

In this article we introduced and explored the class of
composite Ornstein-Uhlenbeck �COU� systems—systems
whose elemental dynamics are Ornstein-Uhlenbeck �OU�,
yet whose collective system-behavior is of higher complex-
ity. A generic COU system is composed of n different
“atomic parts,” where each atomic part conducts its own OU
dynamics, and where all atomic parts are perturbed by a
common external Lévy noise. The output process of the
COU system is the averaged aggregate of the OU processes
of its atomic parts.

In the case of a large COU system—i.e., in the limit n
→�—the COU output process was shown to converge to a
limiting macroscopic process which is a temporal moving-
average �MA� of the driving Lévy noise. The transcendence
from the microscopic atom-level to the macroscopic system-
level resulted in a Markov-breaking phenomena: Replacing
the Markovian OU dynamics by the non-Markov MA dy-
namics. Moreover, in this transcendence the “quenched ran-
domness” governing the statistical variability of the COU
system’s atomic parts “solidified” into the memory function
of the MA dynamics.

MA processes, pending on their memory functions, may
posses a long memory. Namely, long temporal correlations
characterized by slowly decaying autocovariances. Thus, the
transition from simple OU systems to more complex COU
systems may certainly result in the emergence of a long
memory. The emergence of a long memory, in turn, is deter-
mined solely by the “quenched randomness” of the COU
system under consideration, and is unaffected by the “an-
nealed randomness” carried in continuously by the driving
Lévy noise.

When observed on large time scales, the macroscopic MA
outputs of large COU systems with long memory were
shown to converge to a universal scaling limit: Fractional
Brownian noise �FBN�—a temporal moving average of
white noise, with a power-law memory function. FBN is the
“velocity” of Fractional Brownian motion �FBM�—a Gauss-
ian process with continuous and self-similar �“fractal”�
sample-path trajectories, whose increments are stationary
and posses a long memory. The FBN scaling limit is charac-
terized by a single degree of freedom—its Hurst exponent—
which turned out to be determined solely by the “quenched
randomness” of the underlying COU system considered. This
article thus established a natural physical path leading from
OU dynamics—fundamental in physics, chemistry, biology,
and engineering—to long-memory MA processes, and, there-
after, to FBM.
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APPENDIX A: MICROSCOPIC AUTOCOVARIANCE
AND POWER SPECTRUM

1. Microscopic autocovariance: Eq. (15)

Rmicro�t� = Cov��k�0�,�k�t�� �A1�

�conditioning on the realizations of the random amplitude-
pair �Xk ,Yk��

=E�Cov��k�0�,�k�t��Xk,Yk��

+ Cov�E��k�0��Xk,Yk�,E��k�t��Xk,Yk�� �A2�

�using the fact that—given the realization of the amplitude
pair �Xk ,Yk�—the process �k is OU with zero mean and au-
tocovariance function given by Eq. �7� with amplitudes x
=Xk and y=Yk�

=E� Yk
2

2Xk
exp�− Xk�t�
	 + Cov�0,0� �A3�

�using the probability density function ��· , · � of the random
amplitude-pair �Xk ,Yk�, and thereafter the base function
�2�·��

=�
0

� �
0

� � y2

2x
exp�− x�t�
���x,y�dxdy

= �
0

�

exp�− �t�x
��2�x�
2x

�dx . �A4�

2. Microscopic power spectrum: Eq. (16)

Smicro��� =
1

2�
�

−�

�

exp�− i�t
Rmicro�t�dt �A5�

�using Eq. �15��

=
1

2�
�

−�

�

exp�− i�t
��
0

�

exp�− �t�x
��2�x�
2x

�dx�dt

�A6�

�changing the order of integration�

=�
−�

� � 1

2�
�

−�

�

exp�− i�t
� 1

2x
exp�− �t�x
�dt	�2�x�dx

�A7�

�using Eqs. �7� and �7� with y=1�

�
0

� � 1

2�

1

�2 + x2��2�x�dx = �
0

� 1

�2 + x2��2�x�
2�

�dx .

�A8�

APPENDIX B: PROOF OF PROPOSITION 1

We split the proof into four steps, and thereafter address
the case of dependent amplitude pairs.

Step 1. Set

�n��� =
1

n
�
k=1

n

Yk exp�− Xk�
 �� � 0;n = 1,2, . . . � . �B1�

The amplitude pairs �X1 ,Y1� , . . . , �Xn ,Yn� are independent
and identically distributed copies of the “generic” random
amplitude pair �X ,Y�. This implies that the random variables
Y1 exp�−X1�
 , . . . ,Yn exp�−Xn�
 are independent and identi-
cally distributed copies of the “generic” random variable
Y exp�−X�
. Hence, �i� The mean of �n��� is given by

E��n���� = E�Y exp�− X�
� ª ���� . �B2�

�ii� The variance of �n��� is bounded by

Var��n���� =
1

n
Var�Y exp�− X�
�



1

n
E��Y exp�− X�
�2� =

1

n
E�Y2 exp�− 2X�
� .

�B3�

Equation �B3�, in turn, implies that

�
0

�

Var��n����d� 
 �
0

� 1

n
E�Y2 exp�− 2X�
�d�

=
1

n
E�Y2�

0

�

exp�− 2X�
d�	 =
1

n
E� Y2

2X
	 .

�B4�

Step 2.

E��	n�t� − 	�t��2� �B5�

�using Eqs. �17�, �B1�, and �18��

=E���
−�

t

��n�t − t�� − ��t − t���Ṅ�t��dt��2	 �B6�

�using “Ito’s isometry”—see, for example, Eq. �2.14� in Ref.
�39��

=�
−�

t

E���n�t − t�� − ��t − t���2�dt� �B7�

�using equations �B2� and �B4��

=�
−�

t

Var��n�t − t���dt� = �
0

�

Var��n����d� 

1

n
E� Y2

2X
	 .

�B8�

Step 3. Step 2 yields the bound

E��	n�t� − 	�t��2� 

1

n
E� Y2

2X
	 . �B9�

Given −��a�b��, Eq. �B9� further yields the bound
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E��
a

b

�	n�t� − 	�t��2dt	 = �
a

b

E��	n�t� − 	�t��2�dt



b − a

n
E� Y2

2X
	 . �B10�

With Eq. �B10� at hand, we conclude that

lim
n→�

E��
a

b

�	n�t� − 	�t��2dt	 = 0. �B11�

Step 4.

Var�	�t�� = Var��
−�

t

��t − t��Ṅ�t��dt�	 �B12�

�using Eqs. �3� and �12��

=�
−�

t

��t − t��2dt� = �
0

�

����2d� = �
0

�

E�Y exp�− X�
�2d�

�B13�

�using Jensen’s inequality—see, for example, Eq. �8.6� in
Ref. �40�; and repeating the calculation conducted in Eq.
�B4��


�
0

�

E��Y exp�− X�
�2�d� = E� Y2

2X
	 . �B14�

Dependence. In the case the amplitude-pairs
�X1 ,Y1� , . . . , �Xn ,Yn� are identically distributed—yet
dependent—random variables, we have the following coun-
terparts of equations �B3� and �B4�:

Var��n���� =
1

n2 �
k,l=1

n

Cov�Yk exp�− Xk�
,Yl exp�− Xl�
�



1

n2 �
k,l=1

n

E�Yk exp�− Xk�
Yl exp�− Xl�
�

�B15�

and

�
0

�

Var��n����d�


 �
0

� 1

n2 �
k,l=1

n

E�Yk exp�− Xk�
Yl exp�− Xl�
�d�

=
1

n2 �
k,l=1

n

E�YkYl�
0

�

exp�− �Xk + Xl��
d�	
=

1

n2 �
k,l=1

n

E� YkYl

Xk + Xl
	 . �B16�

Consequently, the counterpart of Eq. �B10� is

E��
a

b

�	n�t� − 	�t��2dt	 

b − a

n2 �
k,l=1

n

E� YkYl

Xk + Xl
	 .

�B17�

Hence,

lim
n→�

1

n2 �
k,l=1

n

E� YkYl

Xk + Xl
	 = 0 ⇒ lim

n→�
E��

a

b

�	n�t� − 	�t��2dt	
= 0. �B18�

APPENDIX C: PROOF OF PROPOSITION 2

1. Memory function

Since the memory function ��·� is the Laplace transform
of the base function �1�·� we have

���� = �
0

�

exp�− �x
�1�x�dx �C1�

�using the change of variables y=�x�

=�
0

�

exp�− y
�1�1

�
y�1

�
dy

=

�1�1

�
�

�
�

0

�

exp�− y

�1�1

�
y�

�1�1

�
� dy �C2�

�using the fact that �1�x�� l�x�xp−1, as x→0, the function
l�·� being slowly varying at the origin�

�
�→�

l�1

�
��1

�
�p−1

�
�

0

�

exp�− y
yp−1dy =

l�1

�
�

�p ��p� .

�C3�

2. Macroscopic autocovariance

With no loss of generality, consider t�0. Applying Eq.
�20� we have

Rmacro�t� = �
0

�

��x���x + t�dx �C4�

�using the change of variables y=x / t�

=�
0

�

��ty���t�1 + y��tdy = t��t�2�
0

� ��ty�
��t�

��t�1 + y��
��t�

dy

�C5�

�using Eq. �26��

�
t→�

t���p�
l�1/t�

tp �2�
0

� 1

yp�1 + y�pdy �C6�

�using Eq. �4.3� in Ref. �40��
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=t���p�
l�1/t�

tp �2��1 − p���2p − 1�
��p�

�C7�

�using the identity ��p���1− p�=� /sin��p�, 0� p�1�

=����2p − 1�
sin��p� � l�1/t�2

t2p−1 . �C8�

The result proved in this part is valid for exponents p
taking values in the range 1 /2� p�1. This, in turn, corre-
sponds to exponents �=2p−1 taking values in the range 0
���1.

3. Macroscopic power spectrum

With no loss of generality, consider ��0. Applying Eq.
�22� we have

Smacro��� =
1

2�
��

0

�

exp�i�x
��x�dx�2

�C9�

�using the change of variables y=�x�,

=
1

2�
��

0

�

exp�iy
�� 1

�
y� 1

�
dy�2

=
1

2�

�� 1

�
�2

�2 ��0

�

exp�iy

�� 1

�
y�

�� 1

�
� dy�

2

�C10�

�using Eq. �26��,

�
�→0

1

2�

���p�
l���
�−p �2

�2 ��
0

�

exp�iy
y−pdy�2

�C11�

�using Eq. �6� of Table 1 �p. 503� in Ref. �40��,

=
1

2�
���p�l���

�1−p �2

���1 − p�i1−p�2 =
1

2�
���p�l���

�1−p �2

��1 − p�2

�C12�

�using the identity ��p���1− p�=� /sin��p�, 0� p�1�,

=� �/2
sin��p�2� l���2

�2−2p . �C13�

The result proved in this part is valid for exponents p
taking values in the range 0� p�1. This, in turn, corre-
sponds to exponents �=2−2p taking values in the range 0
���2. Power-spectrum exponents �, however, correspond
to admissible autocovariance functions if and only if they are
in the range 0���1.

APPENDIX D: PROOF OF PROPOSITION 3

1. Autocovariance limit

Rc�t� = Cov�Zc�0�,Zc�t�� �D1�

�using Eq. �29��,

=Cov� 1

��c�
	�c0�,

1

��c�
	�ct�	 =

1

��c�2Cov�	�0�,	�ct��

�D2�

�using Eq. �20��,

=
1

��c�2Rmacro�ct� =
1

��c�2�
0

�

��x���x + �ct��dx �D3�

�using the change of variables y=x /c�,

=
1

��c�2�
0

�

��cy���cy + �ct��cdy

= ��c��c�
��c�

�2�
0

� ��cy�
��c�

��c�y + �t���
��c�

dy �D4�

�using Eq. �26� and the scaling ��c���c��c� �as c→���

→
c→�

�
0

�

y−p�y + �t��−pdy . �D5�

Thus, we have obtained that

R��t� ª lim
c→�

Rc�t� = �
0

�

x−p�x + �t��−pdx . �D6�

Calculating the right-hand-side integral of Eq. �D6� �using
Eq. �4.3� in Ref. �40�� we conclude that

R��t� = ���1 − p���2p − 1�
��p�

� 1

�t�2p−1 . �D7�

Comparing Eq. �D6� to Eq. �20� we observe that plugging
the memory function ����=�−p into Eq. �20� yields the au-
tocovariance function R��·�. The memory function ����
=�−p, in turn, is the Laplace transform of the base function
�1�x�=xp−1 /��p�. The result proved in this part is valid for
exponents p taking values in the range 1 /2� p�1.

2. Power-spectrum limit

Sc��� =
1

2�
�

−�

�

exp�− i�t
Rc�t�dt �D8�

�using step 1�,

=
1

2�
�

−�

�

exp�− i�t
� 1

��c�2Rmacro�ct��dt �D9�

�using the change of variables s=ct�,

=
1

c��c�2

1

2�
�

−�

�

exp�− i
�

c
s�Rmacro�s�ds

=
1

c��c�2Smacro��

c
� �D10�

�using Eq. �22��,
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=
1

c��c�2

1

2�
��

0

�

exp�i
�

c
x���x�dx�2

�D11�

�using the change of variables y=x /c�,

=
1

c��c�2

1

2�
��

0

�

exp�i�y
��cy�cdy�2

= ��c��c�
��c�

�2 1

2�
��

0

�

exp�i�y

��cy�
��c�

dy�2

�D12�

�using Eq. �26� and the scaling ��c���c��c� �as c→���,

→
c→�

1

2�
��

0

�

exp�i�y
y−pdy�2

. �D13�

Thus, we have obtained that

S���� ª lim
c→�

Sc��� =
1

2�
��

0

�

exp�i�x
x−pdx�2

.

�D14�

Calculating the right-hand-side integral of Eq. �D14� �using
Eq. �6� of Table 1 �p. 503� in Ref. �40�� we conclude that

S���� = ���1 − p�2

2�
� 1

���2−2p . �D15�

Comparing Eq. �D14� to Eq. �22� we observe that: Plugging
the memory function ����=�−p into Eq. �22� yields the
power-spectrum function S��·�. The memory function ����
=�−p, in turn, is the Laplace transform of the base function
�1�x�=xp−1 /��p�. The result proved in this part is valid for
exponents p taking values in the range 0� p�1.

APPENDIX E: PROOF OF PROPOSITION 4

We split the proof into three steps, and thereafter explain
why the stochastic limit Z is a noise process. Throughout the
proof, �i� the function ��·� will denote an arbitrary Fourier
variable test function and �ii� we shall consider the memory
function ��·� as defined on the entire real line �−� ,��, and
vanishing on the nonpositive half-line �−� ,0�.

Step 1. Using the definition of the scaled process Zc �Eq.
�29�� and the macroscopic COU process 	 �Eq. �18�� we
have

�
−�

�

��t�Zc�t�dt = �
−�

�

��t�� 1

��c�
	�ct��dt

= �
−�

�

��t�� 1

��c��−�

�

��ct − t��Ṅ�t��dt��dt

= �
−�

� � 1

��c��−�

�

��t���ct − t��dt�Ṅ�t��dt�.

�E1�

Applying Eq. �1� to Eq. �E1� further gives

E�exp�i�
−�

�

��t�Zc�t�dt�	 = exp�− Jc���
 , �E2�

where

Jc��� ª �
−�

�

L� 1

��c��−�

�

��t���ct − t��dt�dt�. �E3�

Using the change of variables s= t� /c in Eq. �E3� we con-
clude that

Jc��� = �
−�

�

cL� 1

��c��s

�

��t���c�t − s��dt�ds . �E4�

Step 2. Eq. �E4� can be rewritten as

Jc��� = �
−�

�

cL� 1
�c

Ic�s��ds , �E5�

where

Ic�s� ª ��c��c�
��c�

��
s

�

��t�
��c�t − s��

��c�
dt �E6�

�s real�. Equation �26�, together with the scaling ��c�
��c��c� �as c→��, imply that

I�s� ª lim
c→�

Ic�s� = �
s

�

��t��t − s�−pdt . �E7�

On the other hand,

L� 1
�c

Ic�s�� = L�0� + L��0�� 1
�c

Ic�s�� +
1

2
L��0�� 1

�c
Ic�s��2

+ o�� 1
�c

Ic�s��2	 =
1

2

1

c
Ic�s�2 + o�1

c
Ic�s�2	

�E8�

�we used the fact that L�0�=0, as well as the fact that the

driving noise Ṅ is centered—i.e., L��0�=0 and L��0�=1�.
Hence, combining Eqs. �E7� and �E8� together, we have

lim
c→�

cL� 1
�c

Ic�s�� =
1

2
I�s�2. �E9�

Consequently, plugging Eq. �E9� into Eq. �E10� we obtain
that

J��� ª lim
c→�

Jc��� = �
−�

� 1

2��s

�

��t��t − s�−pdt�2

ds .

�E10�

Step 3. Combining Eqs. �E2� and �E10� together implies
that
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lim
c→�

E�exp�i�
−�

�

��t�Zc�t�dt�	
= exp�− �

−�

� 1

2��s

�

��t��t − s�−pdt�2

ds� . �E11�

Consider now the MA process Z= �Z�t��t given by

Z�t� = �
−�

t

�t − t��−pṄWN�t��dt�, �E12�

where ṄWN is a white noise. Equations �E2� and �E4� imply
that �setting c=1=��c� and recalling that LWN���= 1

2 ���2�:

E�exp�i�
−�

�

��t�Z�t�dt�	
= exp�− �

−�

� 1

2��s

�

��t��t − s�−pdt�2

ds� . �E13�

Since the right-hand sides of Eqs. �E11� and �E13� coincide,
we arrive at the conclusion that

lim
c→�

E�exp�i�
−�

�

��t�Zc�t�dt�	
= E�exp�i�

−�

�

��t�Z�t�dt�	 . �E14�

Namely, the scaled process Zc converges, in the scaling limit

c→�, in law, to a limiting MA process Z= �Z�t��t.
The limiting process Z. The MA limit Z is not a “real

process” but rather, a noise process—as we now explain. The
�one-dimensional� Fourier transform of the random variable
Z�t� is given by

E�exp�i�Z�t�
� = E�exp�i�
−�

t �

�t − t��p ṄWN�t��dt��	
�E15�

�using Eq. �1�, and thereafter the change of variables �= t
− t��,

=exp�− �
−�

t 1

2
� �

�t − t��p�2

dt��
= exp�−

�2

2
�

0

� 1

�2pd���� real� . �E16�

The integral 
0
��−2pd� appearing on the right-hand side of

Eq. �E16� is divergent. This, in turn, implies that the function
��t��=� / �t− t��p �t�� t� is a nonadmissible integrand with
respect to white noise. In other words, the MA process Z is
ill defined. On the other hand, the Fourier transform of the
process Z appearing in Eq. �E13� is well defined �say, for test
functions ��·� which are bounded and have a bounded sup-
port�. This means that Z is a noise process—ill defined as a
process per se but well defined as a noise measured via its
“action” on test functions.
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