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The hierarchical reference theory �HRT� and the self-consistent Ornstein-Zernike approximation �SCOZA�
are two liquid state theories that both yield a largely satisfactory description of the critical region as well as the
phase coexistence and equation of state in general. In two previous works, unification of these theories has
been considered and general equations were established. Further it was shown that the solution of the mean
spherical model and a generalized version of it can be obtained in this way. In the present work, analysis of the
critical region for fluids and lattice gases is performed. A key result of our HRT-SCOZA approximation is that
for the standard three-dimensional fluid, lattice gas, or Ising model, the critical index for the critical isotherm
is �=5 and for the curve of coexistence it is �=1 /3 provided full scaling is assumed. More generally we find
�=2 / ��+1�.
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I. INTRODUCTION

Both the self-consistent Ornstein-Zernike approximation
�SCOZA� �1–3� and the hierarchical reference theory �HRT�
�4–6� have been found to give very accurate results for fluids
in thermal equilibrium. In particular, the respective nonlinear
partial differential equations can be solved in the critical re-
gion, and their solution gives nonclassical, and partly Ising-
like, critical indices. These equations are obtained by deriv-
ing the equation of state in two independent ways and using
thermodynamic consistency to fix a free parameter in the
direct correlation function.

Although both approaches appear similar in various ways,
there are also marked differences. Both approaches make use
of the compressibility route to thermodynamics, but the
SCOZA combines it with the internal energy route while the
HRT, inspired by momentum-space renormalization group
theory �7�, uses the Helmholtz free energy route. Thus, in
short, the SCOZA adds effective strength to the attractive
interaction by increasing the inverse temperature �=1 /kBT
while the HRT adds contributions to the interaction by in-
cluding its Fourier components for smaller wave numbers Q
until the limit of interest Q→0 is obtained.

In a recent work thermodynamic consistency between the
internal energy and free energy routes to thermodynamics
was considered �8�. This work was extended to incorporate
consistency with the compressibility route as well �9�. The
resulting equations that unify the HRT and SCOZA were
applied to an exactly solvable model, the mean spherical
model �MSM� �10�, and a generalization of it, the GMSM,
that was introduced. The MSM is the exact solution for spins
with spin dimensionality D→�. �It corresponds to a Gauss-
ian model where the average spin length is kept fixed.� The
GMSM is a generalization of the MSM that turns out to have
the same SCOZA and HRT equations; the difference lies in
the boundary condition at �=0 �9�. So when referring to the
GMSM one needs only to have the MSM in mind in this

work. We shall refer to our unification of the HRT and
SCOZA theories as the HRT-SCOZA theory.

In the present work we want to consider this unification
for ordinary fluids and lattice gases or the Ising model, and
we will focus upon the critical region where we are able to
perform some analysis analytically. To do so we utilize
known properties of the HRT and SCOZA, and we are fur-
ther guided by the explicit solution of the unified GMSM
problem just mentioned. Again the SCOZA and HRT equa-
tions and the resulting HRT-SCOZA equation�s� cover a
rather general situation where the main difference lies in the
boundary condition at �=0 �the reference system�. Also
there is a difference between lattice and continuum systems
that is neglected as we here will focus upon the critical re-
gion. Thus one can always have the usual Ising model in
mind when performing derivations in the critical region as
long as an ordinary critical point is considered.

To perform our analysis we start by establishing the par-
tial differential equation for the unified HRT-SCOZA prob-
lem. This follows closely the derivations of Ref. �9� where
details can be found. The resulting equation is essentially a
sum of the HRT and SCOZA equations. In the limit of zero
wave vector k=Q=0 the HRT part will dominate. The Q is
the wave vector inside which the Fourier transform of the
attractive interaction is cut. The HRT, using a renormaliza-
tion approach, has a fixed-point solution. Small deviations
from this solution are described by eigenfunctions of which
two of them will dominate. These are assumed to immedi-
ately give the critical indices with full scaling implied. We,
however, find the situation less straightforward in this re-
spect, and the generalized scaling found for the SCOZA will
play a crucial role. Further, the interplay between HRT and
SCOZA properties are important. It is as if a term is missing
in the SCOZA itself. This prevents full scaling. However,
this missing term may be supplied from the HRT part of the
resulting equation. In this way full scaling that gives the
critical index �=1 /3 can be obtained with index �=5 for the
critical isotherm. Based on a preliminary investigation this
result was suggested previously �11�.

In the HRT the temperature eigenvalue just mentioned
turns out to be adjustable by modifying the cutoff of the*johan.hoye@phys.ntnu.no
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interaction in momentum space �12�. A sharp cutoff yields
��0.345�1 /3 �4�. However, by using a smooth cutoff, val-
ues �=0.330 �13� and 0.332 �14� have been found. Thus,
from this, the value �=1 /3 can be a possible one also for the
HRT alone if a suitable cutoff is used. More generally, for the
unified problem we here find

� =
2

� + 1
. �1.1�

This is also consistent with the well-known solution of the
two-dimensional Ising model for which �=15. With scaling
relations

� + 2� = �� + 1�� = �d = 2 − 	 �1.2�

and ��=�, 	�=	, and ��=�, this implies �d is dimensional-
ity�

	 = 0, � =
� − 1

� + 1
, � =

2

d
, 2 − 
 = d

� − 1

� + 1
. �1.3�

Below the index � will be replaced with �c to distinguish it
from the inverse temperature �.

To obtain our results we are guided by previous results of
SCOZA, HRT, and the HRT-SCOZA solutions of the
GMSM. Thus in addition to establishing the HRT-SCOZA
equation we in several sections will review properties of
these previous results that will form the basis for the HRT-
SCOZA results for lattice gases and fluids. In view of the
HRT-SCOZA results, we found reason to study the implica-
tions of the assumption that �=5 in three dimensions and the
conditions under which this assumption might hold. Thus we
have reconsidered results from previous analysis by Stell
where logarithmic corrections were found for �=5 �15,16�,
and in Sec. X we conclude that � should to be an odd number
whenever the long-range decay of the direct correlation func-
tion dominates the one of the pair interaction at the critical
point.

To determine the critical behavior we find that it is not
sufficient to merely investigate the fixed-point solution and
the two dominant eigenfunctions connected to it. It turns out
that the leading correction to it is needed, and one obtains a
kind of feedback loop that determines details of scaling by
which we find �c as given by Eq. �1.1�. This brings into the
picture the previous SCOZA analysis with its generalized
type of scaling. But standard SCOZA alone cannot give full
scaling. Because a scaling term is missing in the SCOZA, the
coupling to HRT in the resulting equation can compensate
for this missing term by which full scaling may be obtained.

In Sec. II we establish the general structure of the HRT-
SCOZA differential equations which may determine two free
parameters by combining both the SCOZA and HRT meth-
ods. The individual SCOZA and HRT equations with one
free parameter are also defined there.

In Sec. III the assumed form of the Fourier-transformed
correlation function with the two free parameters � and z
embedded is established. From this form the explicit expres-
sions for the internal energy, change in free energy due to
change in the cutoff wave vector Q, and inverse compress-
ibility follow. Thus the quantities X, Y, Z, and their deriva-

tives that enter the HRT-SCOZA equations are established.
At the end of the section the parameter � is partly eliminated
to obtain one partial differential equation for the parameter z
with free parameters Q, �, and m.

In Sec. IV the HRT-SCOZA equation for z is considered
close to the critical point �i.e., 1−z→0, Q→0� to sort out its
leading terms expressed in powers of the magnetization m
→0. It turns out that the HRT part dominates. However, the
HRT part does not have explicit temperature dependence or a
derivative with respect to �. Thus the subdominant SCOZA
part is also needed to possibly obtain critical properties based
upon analysis near the critical point. However, the latter fea-
ture has the consequence that a single dominant scaling func-
tion is not sufficient to describe critical properties; correc-
tions to it are needed.

In Sec. V the critical isoterm with subdominant correction
is evaluated for small m. This evaluation needs only the
dominant HRT part of the equation for z. The result is con-
sistent with the SCOZA critical isotherm in the next section.
There and in Secs. VIII and IX the correction is crucial to
determine critical properties connected to temperature depen-
dence.

In Sec. VI the critical properties of the SCOZA equation
alone are briefly reviewed, exhibiting its generalized type of
scaling. In Sec. VII the HRT equation alone is considered
close to the critical isotherm. Then it is noted that its tem-
perature dependence is indeterminate due to its lack of de-
rivative with respect to � or other explicit � dependence
�away from external boundary conditions�. However, the
coupling to the SCOZA part of the resulting HRT-SCOZA
equation may rectify this.

In Sec. VIII the possible influence of a coupling between
the HRT and SCOZA parts of the HRT-SCOZA equation is
considered. This coupling can be mediated via the second
free parameter �. Its influence will be the same as adding a
new term to the usual SCOZA problem. Such a term turns
out to have the ability to remove the generalized scaling of
SCOZA when suitably chosen. Evaluation of the curve of
coexistence then leads to the critical index �c=2 / ��+1� for
this curve provided full scaling is required.

In Sec. IX a more general investigation of the scaling
behavior is performed. Then the solution of the HRT-SCOZA
problem is regarded as an expansion of functions with scaled
variables where the coefficients are powers of m. These pow-
ers must be consistent with both the dominant power and
subdominant power of the critical isotherm. A basic assump-
tion here is that the parameter � follows the same powers by
which it again is sufficient to focus upon the SCOZA part of
the problem. Full scaling with �c=2 / ��+1� is then again
obtained.

In Sec. X graph expansions are considered in view of �
ordering �17–19�. Based upon the leading correction term by
graph expansion we find that the critical index � should be an
odd number whenever the long-range tail of the direct corre-
lation function at the critical point dominates the long-range
part of the potential. This is the case for both the two-
dimensional Ising model as well as the three-dimensional
one. In three dimensions this is marginal, and logarithmic
corrections earlier found by Stell will be present �15,16�.
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II. COMBINED SCOZA AND HRT

In this section we establish the HRT-SCOZA equations
that unify the SCOZA and HRT. This follows closely the
development in Ref. �9� where details are given for the
GMSM case. However, most of that development is valid for
the present case too.

Thus, to follow Ref. �9� in the general situation, consider
the function ��� ,Q ,m� that represents free energy which is
to be determined via two free, but unknown parameters

z = z��,Q,m� ,

� = ���,Q,m� . �2.1�

For the determination of �, z and �, one needs the deriva-
tives of � that are given by known functions of �, Q, m, z,
and � as

�� = X = X��,Q,m,z,�� ,

�Q = Y = Y��,Q,m,z,�� ,

�� = Z = Z��,Q,m,z,�� . �2.2�

Here and below the subscripts mean partial derivatives with
respect to � and � etc. while the double prime means second
derivative with respect to magnetization m. For the GMSM
the latter is replaced by the first derivative with respect to
u=m2. In addition to the free energy function � in Eq. �2.2�
the X, Y, and Z apart from simple factors are the internal
energy, the change in free energy due to change in wave
vector Q, and the inverse compressibility or susceptibility.
These quantities are made explicit in Sec. III. Equation �2.2�
consists of three different equations with three different un-
knowns �, z, and �. The � can be eliminated, and differen-
tiation gives

d�� = X�d� + XQdQ + Xmdm + Xzdz + X�d� ,

d�Q = Y�d� + YQdQ + Ymdm + Yzdz + Y�d� ,

d�� = Z�d� + ZQdQ + Zmdm + Zzdz + Z�d� . �2.3�

With three unknowns �, z and � the set of equations �2.2�
represents a rather complex problem. It is then noted as in
Ref. �8� that use of the identity ��� /�Q=��Q /�� will sim-
plify this to obtain

XQ + XzzQ + X��Q = Y� + Yzz� + Y��� �2.4�

by use of Eq. �2.3�. Further by combining the equations in
�2.2�

���

��
= Z� + Zzz� + Z��� = X�,

���

�Q
= ZQ + ZzzQ + Z��Q = Y� �2.5�

or

�� =
1

Z�

�X� − Zzz� − Z�� ,

�Q =
1

Z�

�Y� − ZzzQ − ZQ� . �2.6�

With Eq. �2.6� we have obtained two HRT-SCOZA equa-
tions with two parameters z and � to be determined. Note
that Eq. �2.4� is not independent of Eq. �2.6�. For the
SCOZA problem alone or the HRT problem alone only the
parameter z is kept �i.e., � is constant�. Then the first equa-
tion of �2.6� is the SCOZA equation ���=0� while the second
one is the HRT equation ��Q=0�. The SCOZA equation is the
enforcement of thermodynamic self-consistency by using the
first equation and the last one of Eq. �2.2� while the HRT
equation is the similar use of its second and last equations.

To obtain explicitly the resulting HRT-SCOZA equations
the X� and Y� must be evaluated. In the present case we then
have

X� = Xm + Xzzm + X��m,

X� = Xmm + 2Xmzzm + 2Xm��m + Xzzzm
2

+ 2Xz�zm�m + X���m
2 + Xzzmm + X��mm, �2.7�

with similar expression for Y� with X replaced by Y. One
notes that the �mm term will cancel when this is used in Eq.
�2.6� which is further inserted in Eq. �2.4�. In this way one
HRT-SCOZA equation is obtained. It is a second-order par-
tial differential equation for z with coefficients that depend
on � and its first-order derivatives. By a possible numerical
treatment this may for instance be treated iteratively starting
with some approximate �, but this will not be considered
further here.

III. TWO-PARAMETER PAIR CORRELATION FUNCTION

A simple way to introduce two parameters in the correla-
tion function ��r� is to consider its Fourier transform as
given in Ref. �9�

�̃ =

̃�k�

1 − 
̃�k���̃�k�
=

�z

��1 − z�̃�k��
�3.1�

for k�Q and for k=0 while �̃= 
̃�k� for 0�k�Q. The

−�̃�k� is the Fourier transform of the attractive interaction

which is cut inside k=Q and normalized such that �̃�0�=1.


̃�k� is the general hypervertex function introduced and used
by Lebowitz, Stell, Baer, and Theumann in their investiga-
tions of the � ordering for interactions of long range �18,19�.
The parameter � is the inverse range of interaction. It was
further used by Høye and Stell in their initial work to obtain
the general structure of the pair correlation function of polar
fluids �20�. Equation �3.1� means that the “self-energy” func-

tion �with uncut �̃�k� for all k� is


̃�k� =
�z

��1 − z�1 − ���̃�k��
. �3.2�

Compared with Ref. �9� this expression is different in the
way the parameter � enters, as the previous � is here replaced
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with �z /�. The reason is that we find this form more conve-
nient since the usual HRT or SCOZA with one parameter z
then simply means �=1 by which ��=�Q=0, and Eqs. �2.6�
become nothing but the separate SCOZA and HRT equa-

tions. For fluids or lattice gases one can also write �̃=� / �1
−�c̃�k�� where c�r� is the direct correlation function. With

Eq. �3.1� one finds �̃c�k�=1−�� / ��z�+ ���� /���̃�k��.
A special feature of expression �3.1� is the adjustable am-

plitude � to which the internal energy is proportional. This
can influence critical properties. For the SCOZA there is a
generalized kind of scaling �21�. The independence of � from
z may change this. Note that here the � is not tied to a core
condition which is omitted for simplicity. Such an omission
is not expected to be crucial for critical properties. Anyway,
at least for SCOZA itself, the core condition is not crucial in
this respect �22�.

With �̃ given above we can now evaluate the quantities
that enter the HRT-SCOZA equation. With �= I=−�f , where
f is Helmholtz free energy per particle, we have �9�

X =
�I

��
= C� �̃�k��̃�k�dk =

�

�
J�z� +

1

2
m2, �3.3�

Y =
�I

�Q
= 4�CQ2 ln�1 − 
̃�Q���̃�Q��

= 4�CQ2�ln�1 − z�̃�Q�� − ln�1 − z�1 − ���̃�Q��� ,

�3.4�

Z =
�2I

�m2 = −
1

�̃�0�
= − �

1 − z

�z
, �3.5�

with, for given Q,

J = J�z� = C�
k�Q

z�̃�k�

1 − z�̃�k�
dk with C =

1

2�2��3 .

�3.6�

Here X=−U where U is the internal energy, Y represents the
change in free energy due to change in Q, while Z represents
the inverse compressibility or susceptibility. From this we
obtain the partial derivatives

Y� = 0, Ymm = 0,

Yz = − L�Q,z� + �1 − ��L�Q,�z� ,

Y� = − zL�Q,�z� , �3.7�

where �z=z�1−�� and

L = L�Q,z� = −
1

z

�J�z�
�Q

= 4�CQ2 �̃�Q�

1 − z�̃�Q�
. �3.8�

Further, with J��z�=�J�z� /�z

XQ = −
�z

�
L�Q,z� ,

Xz =
�

�
J��z� ,

X� =
1

�
J�z�, Xmm = 1, �3.9�

and finally

Z� = −
1 − z

�z
, ZQ = 0,

Zz =
�

�z2 , Z� =
��1 − z�

�2z
. �3.10�

Second order partial derivatives are not written down here as
they will not be used below, but they follow easily from Eqs.
�3.7�–�3.10�. By inserting the above expressions into expres-
sions �2.6� and �2.7�, which are further used in Eq. �2.4�, one
resulting HRT-SCOZA equation is obtained. This equation
can be written in the form

F1 = F2 + F3 �3.11�

with

F1 = X�Z��Q, F2 = Y�Z���,

F3 = Z��Y� + Yzz� − XQ − XzzQ� . �3.12�

With �Q and �� inserted from Eqs. �2.6� and �2.7� one notes
that the second derivative �mm cancels, by which Eq. �3.11�
mainly becomes an equation for z. The two basic equations
for � and z are still Eq. �2.6�, but Eqs. �2.4� and �3.11� are a
related combination that via Eq. �2.7� partly eliminates �.

With �=1 and �2.6� inserted, one further notes that F1
=0 gives the HRT equation, F2=0 gives the SCOZA equa-
tion, while F3=0 is the consistency between free energy and
internal energy considered in Ref. �8�. For the GMSM case
studied in Ref. �9� the value �=1 was solution. But with
�2.7� this is no longer the case.

IV. DIFFERENT ORDERS OF MAGNITUDE

The critical point is approached when z→1, Q→0, m
→0. In this limit the HRT has the scaling relations 1−z
	Q2	m4 for fluids with interaction of finite range in three
dimensions �4�. This will persist in our case too, and one can
compare the magnitudes of the three quantities in �3.11�. The
purpose of this comparison is to show that the HRT part F1
dominates close to the critical point. This enables us to
evaluate the critical isotherm as done in the next section
where we obtain its subleading contribution besides its obvi-
ous leading one. However, the subleading one, according to
our analysis, is crucial for the precise temperature depen-
dence of critical properties.

From Eqs. �3.7�–�3.11� one sees that X�	1, Z�	1−z
	m4, Y�	Q2	m4, and Yz	1. Further, the integral �3.6�
will give J�z�=const−const�
1−z �Q→0�, which means
that Xz	J��z�	1 /
1−z	1 /m2. In �2.6� we have the quan-
tities

X� 	 Xzzmm 	
1

m2

1 − z

m2 	 1,
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Y� 	 Yzzmm 	 1 �
1 − z

m2 	 m2. �4.1�

In addition we have Y�=0, XQ	1, zQ	m4 /Q	m2, and z�

	m4 / t	mp where p will be 1 or something near 1. t is the
deviation from the critical inverse temperature. Thus F1 con-
tains terms of leading order

X�Y� 	 m2 �4.2�

while F2 and F3 contain terms of leading order

Y�X� 	 m4. �4.3�

From this one sees that F1 and thus the HRT part domi-
nates when the critical point is approached. But this does not
solve the full problem, as the HRT lacks the explicit tem-
perature dependence �i.e., z��, which is in the SCOZA part
F2 and the F3. This has the consequence that there will be
some coupling between different orders, and a fixed point
solution with the related dominant eigenfunctions does not
seem sufficient to determine the critical behavior properly
according to our analysis below.

V. CRITICAL ISOTHERM WITH SUBLEADING
CONTRIBUTION

To dominant order the critical isotherm is given by the
fixed point solution of the HRT equation. However, as men-
tioned in the previous section, we will need the leading cor-
rection to it. To determine this correction we are guided by
the HRT equation for the GMSM problem which we find has
the same correction and can be solved exactly. Thus we will
analyze the GMSM problem in a way that can be extended to
the present case. To the extent we have been able to perform
our analysis below, we find that the leading and subleading
terms in the present case are those of the GMSM. The HRT
equation for the latter problem is �u=m2� �9�

�

z2�Q + 2L�u = 0, �5.1�

with a general solution that can be written as u=−��1
+2J�z��+ f���. Here �=z /�, L and J are as given by Eqs.
�3.6� and �3.8�, respectively, while f is some arbitrary func-

tion. With interaction �̃�k�=1−const�k2+¯, in three di-
mensions one finds �Q→0�

J�z� = a − b� + ¯ , � = 
1 − z �5.2�

where here and below in this section a and b are merely
arbitrary constants.

At the critical point u=0 and �=0. Away from the critical
point, but near it, one has the parabolic shape �2=1−z
=const�u ��m2�. This determines the function f���=const
��2+¯. So altogether

u = a� + b�2. �5.3�

Solved with respect to � this gives

� = au − b�2 + ¯ = au − bu2 + ¯ ,

�2 = au2 − bu3 + ¯ = am4 − bm6 + ¯ . �5.4�

In the limit Q→0 this will also be the critical isotherm of a
fluid or the Ising model. To see this we first note that the
solution of �5.1� gives an explicit expression for u which
suggests exchanging the roles of u and � �=z /�� as free and
dependent variables. With y=�2=1−z we then find

yu = 1/uy, yQ = − uQ/uy . �5.5�

Note the minus sign of the last equation of Eq. �5.5�. It
follows from dy=yudu+yQdQ with dy=0. This inserted in
Eq. �5.1� gives the equation

uQ − 2L = 0. �5.6�

Here � /z can be considered constant near the critical point
and has been deleted for simplicity. With this the solution is
u=−2J�z�+ f�y�. The solution of interest is again �5.3� ��
=
y�.

Fluids or the Ising model have the corresponding HRT
equation �yQ	−Y�=−��Yzym� /�m from Eq. �2.6� with �Q
=0�

yQ +
�

�m
�Lym� = yQ + Lyym

2 + Lymm = 0. �5.7�

This equation differs from Eq. �5.1� with its second deriva-
tive in m that replaces the first derivative with respect to u
=m2 of the latter. The reason for this difference is due to the
susceptibility Z= ��2I /�m2�, as given by Eq. �3.5� in the
present case, while in the GMSM case the transverse suscep-
tibility is used, by which �2I /�m2 is replaced by 2��I /�u�.
Again introducing u=m2 as dependent variable, we find

uy = 2mmy, my =
uy

2m
,

uyy = 2�my
2 + mmyy�, myy =

uyy

2m
−

my
2

m
,

ym =
1

my
=

2m

uy
, ymm = −

myy

my
3 = − 4m2uyy

uy
3 +

2

uy
. �5.8�

Inserted in �5.7�, this gives

uQ − 2Le = 0, Le = 2
u

uy
Ly − 2

uuyy

uy
2 L + L = 0. �5.9�

This equation will have a scaling or fixed point solution

u = 2�Je�1� − Je�z��, Je = −� LedQ , �5.10�

since with this and Eq. �5.9� Le, like L, will depend only
upon the scaling variable y /Q2 for small Q. In the limit Q
→0 we again will have u	
y. However, to fit the boundary
condition away from the critical point the solution �5.10�
must be modified. Thus we can write

u = 2�Je�1� − Je�z�� + g�Q,y�y , �5.11�

since away from Q=0 we should have mean-field behavior
u	g�� ,y�y	y. In the GMSM case above the g�Q ,y� was a
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constant, while in the present case it will vary due to its
influence upon Le. But this influence beyond the scaling part
of the solution is of higher order and vanishes for vanishing
y. Thus we will assume that g�Q ,y� remains finite such that
for Q=0 the solution for the critical isotherm can be written

u = a
y + by �5.12�

by which the GMSM results �5.3� and �5.4� are recovered
��=
y�.

VI. SCOZA EQUATION AND ITS GENERALIZED
SCALING

The purpose of this section is to reestablish basic analytic
properties of the SCOZA equation. These properties play an
important role in the analysis of the HRT-SCOZA problem.
The SCOZA equation is the same as Eq. �2.6� with �=1, and
for �2=1−z small this means X�	z�. Expression �5.2� for
J�z� means that J��z�	1 /� such that the crucial terms of the
SCOZA equation becomes �21�

��2

�t
= − 1 +

1

2
��. �6.1�

To dominant order this equation has the solution �=m2. �De-
pendence upon temperature turned out to be absent to lead-
ing order. This contrasts with the SCOZA study performed in
Ref. �2�, where the exponents of a tricritical point was ob-
tained along with full scaling. Thus the SCOZA investigation
of Ref. �2� was actually an investigation of SCOZA tricritical
properties with ��m2.� Clearly, to obtain temperature de-
pendence the leading correction to this is needed. For super-
critical temperatures t�0 this is given by

� = m2 − c�3t + m4� , �6.2�

where c is a constant. Note that the SCOZA critical isotherm
�t=0� is fully consistent with the HRT one obtained in the
previous section and is given by Eq. �5.4�. However, also
note that SCOZA gives a definite value of the coefficient of
the m2 term while HRT is flexible in this respect. The former
is required to satisfy thermodynamic self-consistency. Other-
wise the internal energy will have a tricritical behavior, i.e.,
U	m2 with �c=1 /4. For subcritical temperatures the situa-
tion is less transparent. However, it was found that the solu-
tion can be written as �21�

� = u2 + tg�z�, u = m − atq, z = u/t1/4. �6.3�

The leading correction g�z� is found by solution of an
ordinary differential equation. The u=0 or m=atq determines
the spinodal curve where the exponent q=3 /4 while a is a
constant. For the critical index �c of the curve of coexistence
one finds �c= �1+q� /5=0.35 while the scaling variable z
alone would imply �c=1 /4. Thus a kind of generalized scal-
ing was found.

VII. HRT EQUATION NEAR THE CRITICAL ISOTHERM

The purpose of this section is to establish basic properties
of the HRT equation from both analytic and numerical work

and from our extension of these results. For Q�y the HRT
equation �5.7� reduces to yQ=0 since L�Q2 / �y+Q2�→0 as
Q→0. Thus any y=y�m� is a solution near Q=0 while the
leading correction to this will be of order Q3. However, not
any solution will fit into the boundary conditions for large Q.
So we have found that the critical isotherm is given by �5.4�
according to the close connection with the GMSM.

According to the investigations of HRT by Reatto, Parola,
and Pini the behavior close to the critical isotherm or fixed
point solution is determined by the eigenfunctions with the
largest eigenvalues �4–6�. To perform these computations
scaled quantities h�z ,Q�=y /Q2 and z=m /
Q were intro-
duced. More precisely the h�z ,Q� is the quantity �2Ht /�z2 of
these references. However, as will be seen below and in the
following sections our analysis restricted to the critical re-
gion will differ somewhat in conclusion from some of the
previous results. This difference in conclusion most likely
lies in the way the problem is approached. The references
base their results upon numerical solution with given outside
boundary conditions for Q large. According to Eq. �55� of
Ref. �4� this gives a contribution which when added to �5.4�
will modify it into �Q→0�

y = �2 = am4 − ctm� − bm6 + ¯ , �7.1�

where t �→0� is a small deviation from the critical tempera-
ture and c is an additional constant. Numerically the expo-
nent � was found to be

� = 2�2 − �1� = 1.098, �7.2�

where �1=1.451 is given by Eq. �61� of Ref. �4�, and the
critical index �c is found from its Eqs. �57� and �58� as

�c =
�

� − 1
=

1

2�1
=

1

4 − �
= 0.345. �7.3�

By modifying HRT it has recently been found that �1
changes somewhat. This is done by replacing the sharp cut-
off Q in k space with a smooth cutoff. Then a value �c
�1 /3 was found �12�. The special point of interest here is
that �c=1 /3, which means �=1, is a possible value between
the two results. This variation in �1 and thus � may reflect
the lack of explicit temperature dependence of the HRT in
the critical region. Thus, when disregarding external condi-
tions, we find that the HRT equation alone is fully flexible
with respect to the value of the exponent � in Eq. �7.1�. This
flexibility can also be realized by regarding the solution of
Eq. �5.6� that was utilized to obtain the critical isotherm for
the HRT equation �5.9�. Its solution was m2=u=−2J�z�
+ f�y� where f�y� is the constant of integration independent
of Q. Thus we can put f�y�=2J�1�+b�2+ct /�� where � is
some exponent �y=�2�. Further J�z�=J�1�−a� when Q→0,
so provided t is small such that t /���� we find

u = a� + b�2 + ct/��,

� = au − b�2 − ct/�� + ¯ = au − bu2 − ct/u� + ¯ ,

�2 = am4 − ctm� − bm6 + ¯ , �7.4�

where a, b, and c are arbitrary constants and �=2�1−��.
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In the full HRT-SCOZA problem we now may expect that
the flexibility of the HRT with respect to the exponent � and
its flexibility pointed to in the preceding section will be re-
moved by the coupling to the SCOZA part of the full prob-
lem. This may be expected in view of the SCOZA results of
that section with no flexibility on the leading term of the
critical isotherm.

Further it can be noted that a shift m→m−ms in solution
�7.1� where ms is a constant is also a solution of the HRT
equation. For small ms this is like adding the derivative of
the solution to it. So the derivative is a solution of the lin-
earized equation, and in Ref. �5� it is considered to be one of
the two relevant eigenfunctions that determines the critical
exponent � via its eigenvalue.

VIII. MODIFIED SCOZA WITH SCALING

In this section we will investigate how full scaling can be
obtained by including a contribution related to the parameter
� to the SCOZA part of the HRT-SCOZA equation. Here we
restrict the investigation to subcritical temperatures and con-
sider the curve of coexistence like we did in Sec. VI. For
Q→0 this inclusion will be a subdominant correction to the
dominant HRT part. With this correction the investigation
below, assuming full scaling, yields our main result �c
=2 / ��+1�.

As pointed out in Sec. VI the SCOZA has a generalized
form of scaling. By closer investigation one sees that a cru-
cial term is missing that prevents scaling from being ob-
tained. Also the two terms on the right-hand side of �6.1�
belongs to different orders of scaling functions. First of all
the −1 term that comes from the mean-field contribution to
the internal energy should cancel, leaving a difference to
higher order in m. The SCOZA gives a difference of order
m2. This works properly for the GMSM, but for fluids, lattice
gases, or the Ising model this order is too high and leads to
generalized scaling. What is needed turns out to be a term of
order m� where ��1. The unified problem may produce
such a term via the second free parameter � that describes the
amplitude of the correlation function and thus the amplitude
of the internal energy U=−X. With X� given by �2.7� this
gives an additional term X���	�� ���=�mm� as X�	1. This
is to be included in Eq. �2.6�. Further, from Eq. �3.10� Z�

	�2 such that ��Z� can be neglected. With this Eq. �2.6� is
the SCOZA equation plus the �� term. Equation �6.1� then
changes into �Q=0�

��2

�t
= − 1 − �� +

1

2
��, �8.1�

when other terms that are not crucial have been neglected.
Now one can assume �	m2+� along the critical isotherm to
get

��2

�t
= − m� − m2. �8.2�

On the left-hand side of Eq. �8.2� the tm� term from �7.1�
now matches the m� term on its right-hand side. Also the
coefficient a, which is flexible in the HRT, must be equal to
1 to cancel the −1 in �8.1�.

To see how this new term will remove the generalized
scaling of the SCOZA one can consider the curve of coex-
istence. For subcritical temperatures one then again can
make the assumption �21�

� = �m − atq�2 + � ,

�2 = �m − atq�4 + 2�m − atq�2� + �2. �8.3�

In view of the HRT this expression for Q=0 is not obvious
as it also includes the two-phase region where the HRT gives
horizontal isotherms in the limit Q→0. Also for Q�0 the
SCOZA would give horizontal isotherms in this limit. This
latter situation has some similarity to the one with SCOZA
for the two-dimensional Ising model �23�. In addition HRT
has infinite susceptibility at phase coexistence when ap-
proaching it from outside. So expression �8.3� assumes that
for the unified problem this latter deficiency vanishes. How-
ever, recent work on HRT using a smooth cutoff of wave
vector strongly indicates finite susceptibility at coexistence
�12,13�. In this way a continuous transition from the HRT to
the SCOZA is possible. The latter is thus an additional indi-
cation that �8.3� is valid for the unified problem too �outside
phase coexistence�. In this respect the HRT with a smooth
cutoff may be something intermediate between the original
HRT and SCOZA with properties that seem close to or may
be equal to those, e.g. �c=1 /3, of the unified theory consid-
ered in this work.

With �8.3� the spinodal curve is given by m=atq where a
is a constant. Without the m� term the � is the scaling func-
tion tg�z� in �6.3� with q=3 /4. If now the m� term is inserted
the � will incorporate the tm� term of �7.1�. By that, � is no
longer tied to or required to scale to its higher-order m6 term
alone, i.e. m6	m2� is no longer required. In this way it can
contribute to the leading scaling part of � too by which the
critical index �c becomes 1 / �4−�� as follows from �7.2� and
�7.3�.

As in SCOZA the tq term will still be tied to the higher-
order m2 term of �8.2�. By inserting �8.3� in the left-hand side
of �8.2� one will thus again obtain the scaling relation �tq

�m�

tq−1mm2 	 m2 or m 	 t1−q. �8.4�

But with the tm� term incorporated into �, the q will no
longer be tied to the SCOZA value q=3 /4 either, and it may
be possible to have full scaling. This requires that the value
of �c that follows from �8.4� equals the one in terms of �, so

�c = 1/�4 − �� = 1 − q . �8.5�

The curve of coexistence can now be evaluated in the same
way as for the SCOZA �21�. The relevant term in the internal
energy U �3.3� �U=−X� is then −m2+�	 tqm. This term is
integrated with respect to t to obtain the free energy. This
integration will include an m�+1 term �so far with �=5� as a
constant of integration. The reason is that the second deriva-
tive of the free energy with respect to m is the susceptibility
	�2	m�−1. So the free energy becomes 	−t1+qm+m�+1.
Differentiation of the free energy once with respect to m then
yields the magnetic field 	−t1+q+m�. Phase equilibrium in
zero magnetic field thus means �t�0�
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t1+q 	 m�, �8.6�

which implies the critical index

�c =
1 + q

�
. �8.7�

Full scaling requires that �8.5� and �8.7� result in the same
�c. Accordingly

1 − q =
1 + q

�
or q =

� − 1

� + 1
, �8.8�

from which we obtain our main result

�c =
2

� + 1
. �8.9�

This is the result given in Eq. �1.1� by which other indices
become those of Eq. �1.3� provided full scaling is present.
For �=5 the value for � becomes �=1. One can also note
that scaling consistency of the internal energy term 	tqm
�see below Eq. �8.5�� and the m� term of Eq. �8.2� requires
tqm	m2+� or q=�c�1+��, consistent with Eq. �8.5� for �
=5.

Although we here primarily have �=5 in mind Eq. �8.2�
can be extended to the more general situation considered in
the next section. Then the �� of Eq. �8.1� is replaced by
��4/��−1��� as follows from Eq. �9.6� for J�z� below while �2

	m�−1 according to Eq. �9.3�. With this the m2 term on the
left-hand side of Eq. �8.2� and the m2 terms of Eq. �8.4� are
replaced by m�−3. There will be corresponding changes in
Eq. �8.3�, and the 4−� in Eq. �8.5� is replaced by �−1−�.
With this one finds that Eqs. �8.4�–�8.9� also hold for more
general values of �. The exponent � then obtains the value
�= ��−3� /2.

IX. MORE DETAILED EVALUATION

The derivation in the previous section hinges on the as-
sumption that full scaling is actually present and that the
parameter � is consistent with this. As demonstrated the lead-
ing scaling function is closely connected to its leading cor-
rection as seen from condition �8.4� that couples terms in Eq.
�8.1� of different orders in �2. This coupling gives a kind of
feedback that led to the simple result �8.9� for �c. We will
now justify this in another way, which also includes super-
critical temperatures, by assuming that a scaling solution
with corrections to it exists. Then the solution for the free
energy of the unified problem can be written in the form

I = m�+1�I0 + m�I1 + m�−3I3 + ¯ � �9.1�

where Ii �i=0,1 ,2� are functions of the scaled variables �d is
dimension�

m

Qd/��+1� and
t

Q�1
. �9.2�

For �=5 this is in accordance with the critical isotherm
�5.4�, but holds more generally as we will show below. �In
GMSM the m� term is zero as it is not needed there.� From

expression �9.1� for I the forms of other quantities are ob-
tained via Eqs. �3.3�–�3.10�. We get

X =
m�+1

t
�X0 + m�X1 + m�−3X2 + ¯ � ,

�2 = 1 − z 	 Z =
m�+1

m2 �Z0 + m�Z1 + m�−3Z2 + ¯ � ,

��2

�t
	

m�+1

m2t
�Z0t + m�Z1t + m�−3Z2t + ¯ � , �9.3�

where again Xi and Zi, etc. �i=1,2 ,3�, are functions of the
scaled variables �9.2�.

The SCOZA equation is the relation X�	��2 /�t with �
=1. Via Eq. �2.7� for the unified problem the X can be related
to the parameters �2 and � as

X� = Xmm + Xzz� + X��� + ¯ , �9.4�

where first-order derivatives of z and � have been disre-
garded and where

Xmm = 1, Xz 	 J��z� 	 1/�, X� 	 J�z� 	 1 �9.5�

with J�z� given by �3.6�.
More generally, one finds �below a and b are again arbi-

trary constants�

J�z� = a − b�4/��−1�. �9.6�

This follows from integration of Eq. �3.8� when the interac-
tion is such that

L 	
Qd−1

�2 + Q2−
 . �9.7�

Note that 
�0 implies an interaction or more generally a
direct correlation function of long range. So this goes beyond
and is a generalization of the correlation function �3.1� where

=0 was assumed. Thus for a general situation with 
 given
by �1.3�

J�z� − a 	 − b
Qd

Q�2−
� 	 − b�2�d−2+
�/�2−
� 	 − b�4/��−1�.

�9.8�

With this, Eqs. �5.3� and �5.4� for the critical isotherm gen-
eralize to

u = a�4/��−1� + b�2,

�4/��−1� = au − b�2 = au − bu��−1�/2 + ¯

= au�1 − bu��−3�/2 + ¯ � ,

�2 = au��−1�/2�1 − bu��−3�/2 + ¯ � = am�−1�1 − bm�−3 + ¯ � .

�9.9�

Expression �9.3� for � is consistent with this �with Z1=0 for
t=0�.

With Eqs. �9.4� and �9.5� and expression �9.8� for J�z�, we
now have �Q→0�
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X� = c − a��4/��−1��� + b�� + ¯ . �9.10�

At an ordinary critical point the constant c will cancel to
leading order as pointed out in Sec. VI. �But this will not be
the case if the critical point is a tricritical one with �=5 and
�c=1 /4, i.e., �2	m4	 t and thus X�	c as pointed out too.�
Further we will assume that the expression for � will contain
scaling terms with the same powers of m as the coefficients
of the other terms in �9.10�. This assumption about the pa-
rameter � is a central one as it is a key assumption behind
our results. Anyway, away from the critical point �→1, so
its significance will decrease as �� will vanish. With expres-
sion �9.3� for �2 inserted in �9.10�, we then find �as the con-
stant c should cancel�

X� = m�Z1x + m�−3Z2x + ¯ . �9.11�

But this expression for X should be equivalent to both the
first and the last equations �X�	��2 /�t� of Eq. �9.3�. Thus,
comparing �9.3� and �9.11�, we obtain the conditions

m�−1

t
	 m� and

m�−1

t
m� 	 m�−3. �9.12�

The solution of these equations is

� =
� − 3

2
and t 	 m��+1�/2. �9.13�

Thus the critical index �c given by expression �8.9� is recov-
ered.

The conditions expressed by Eq. �9.12� are due to the
coupling of different orders of scaling functions via thermo-
dynamic self-consistency. This coupling is directly con-
nected to the leading correction to the critical isotherm �9.9�.
Thus with �9.3�, �9.11�, and �9.12� we have for the internal
energy

X 	 m��+1�/2�X0 + m��−3�/2X1 + ¯ � . �9.14�

This expression is possible due to the �� term of �9.4� which
is present in the unified HRT-SCOZA problem. For the
SCOZA alone, on the contrary, with Eq. �6.1� where this
term is absent, this is not possible, and instead generalized
scaling is obtained. With critical isotherm �9.9� inserted in
�6.1� one then gets �with �� replaced by ��4/��−1���, and the
−1 should again cancel�

X 	 m�−1, �9.15�

which corresponds only to the X1 term of Eq. �9.14�. The X0
term is thus missing.

For the GMSM problem, however, where �=1, the X0
term also vanishes. But in this case expression �9.15� is the
sought result. Then the m� terms are not present either, and
there is instead a direct coupling between the X0 term of �9.3�
and the Z2x term of �9.11� by which m�−1 / t	m�−3 or t	m2,
i.e., critical index �c=1 /2.

X. LOGARITHMIC CORRECTIONS

The HRT-SCOZA analysis performed in the preceding
sections is self-consistent in a way that does not rule out the

possibility that our indices are exact with a suitable choice
for � along with our main result �8.9� for �c. However, they
are not consistent with known epsilon-expansion results
�24,25�. A reason for our expectation of this possibility is
that the pair correlation function to be used with two free
parameters for its amplitude and range covers a rather gen-
eral situation. And there is little or no room for further sig-
nificant adjustments of leading contributions to thermody-
namic quantities. But “logarithmic” type adjustments that do
not change indices are at least possible. This is the situation
for �=5 by which 
=0 for d=3. Earlier, this situation was
studied by Stell as part of an investigation of the pair corre-
lation function for more general � and d �15,16�. He found
that there would be logaritmic corrections to the decay of the
pair correlation function as well as to the direct one for 

=0. These functions are related by the scaling relation c�r�
	h��r� at the critical point. Thus with 
=0 and d=3 and
expression �10.3� below, one has

c�r� 	 h��r� 	
e−��r

r5 . �10.1�

However, its Fourier transform c̃�k� deviates from a pure
power, 	k2−
=k2, by a logarithmic correction like integral
�10.5� below to become 	k2 ln k. This will further produce a
logarithmic term ln r in h�r� whose Fourier transform is

h̃�k�= c̃�k� / �1−�c̃�k��. Thus a more detailed computation that
was performed in Ref. �15�, is needed to obtain the type of
logarithmic correction present. For d=3 and 5 the more gen-
eral result obtained in Ref. �15� becomes

h̃�k� 	
1

k2�− ln�k/k0��1/6 or h�r� 	
1

r�ln�k0r��1/6 .

�10.2�

In the Appendix we give details of the evaluation that yields
this result where k0 is a constant �in the reference k0=1�.
Comparing with h̃�k�	1 /k2−
 expression �10.2� can be con-
sidered to effectively give a small positive value for the in-
dex 
 although strictly speaking Eq. �10.2� means that 

=0.

Although �=5 was studied in Refs. �15,16� it was not
concluded that � was equal to 5 for fluids due to other evi-
dence �24�. However, in view of the HRT-SCOZA analysis
we find reason to reconsider this. If our analysis is correct the
critical index 	 as given by Eq. �1.3� is equal to zero in any
case. Likewise it may be reasonable that � can be an odd
number, i.e. �=5 for d=3 as already suggested in Refs.
�15,16�. We find that we can justify this in terms of graph
expansion. Then we have in mind the � ordering of graph
expansions for potentials of long range where � is the in-
verse range of interaction �17–19�. There, Mayer bonds are
subdivided into potential bonds that further are linked to-
gether into chains. In these chains � vertices are replaced by
hypervertices to form the leading contribution to the correla-
tion function h�r� or ��r� whose Fourier transform has the
structure of Eq. �3.1�. There will be higher-order contribu-
tions in � to the correlation function. However, these contri-

butions can be incorporated in the self-energy function 
̃�k�,
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which for the HRT-SCOZA problem is approximated by the
parameters � and z to be determined. This structure was also
utilized by Høye and Stell in their work on polar fluids to
obtain the basic structure of dipolar correlations �20�. By

subtracting 
̃ from �̃ and then remove both end points 
̃
from the remaining part one is left with a chain bond where


̃ represents the hypervertices. This chain bond which has
the r dependence of ��r� itself near the critical point may
then replace the original chain bond of � ordering. Thus
these bonds will be

h�r� �
e−�r

rd−2+
 , � � t�, �10.3�

where t is the deviation from critical temperature �here � is
critical index�. For the critical index 
 one has from the
standard scaling relation �1.3�

d − �2 − 
� =
2d

� + 1
. �10.4�

Now the dominating graph to the direct correlation func-
tion is the potential bond as utilized by the SCOZA and HRT.
Beyond the potential bond the leading graph in the order
parameter � will be the one with two bonds in parallel. These
bonds meet at two three-point hypervertices, each of which
has a root point. �It can be noted that the graphs for the direct
correlation function are those of the free energy with two
root points added.� For a general graph these bonds meet at
n-point hypervertices where n−1 bonds meet. If the three-
point hypervertex is zero the graph with three bonds in par-
allel will be the leading one, and so on with 4, 5,… bonds in
parallel. Due to symmetry reasons �for lattice gases or the
Ising model at least� these graphs with an even number of
bonds becomes zero at critical density. Thus we find reason
to conclude that the � is an odd number in Eq. �10.1�. There
are also graphs of higher order in �. However, one may
expect that these higher-order graphs do not have a decisive
role as critical properties are not expected to depend upon �
as long as it is finite.

A detailed study of the correlation function at the critical
point was earlier performed in Sec. 4B of Ref. �19�. There
contributions from graphs to the “self-energy” 
�r� �named

Ŵ�r� in the reference� were studied in view of the � ordering.
The dominating graphs with respect to slow r decay for r
→� were considered. These graphs were those with four-
point hypervertices ��4� since odd-numbered ones were
found to be zero at critical density. The resulting sum of
graphs was discussed, but its convergence properties re-
mained unclear. As Ref. �19� used a different notation, it can
be mentioned that its Eq. �4.3� �n=2� / �1+m�� is identical to
Eq. �10.4� above except for the use of symbols.

By the present study of the situation at the critical point
we have come to the conclusion that retaining a nonzero
four-point hypervertex may be one part of the problem. Thus
we find that the ��+1�-point hypervertex can be the domi-
nating one that contributes right at the critical point while
those with fewer points thus must be zero. From this follows
that � is an odd number. Further one finds that this coincides
with scaling properties as can be seen from expression �10.6�

for the free energy below. The justification for our assump-
tion or hypothesis about hypervertices at or close to the criti-
cal point is the resemblance to the basic � ordering. There
n-point hypervertices �n�2�, when regarded as � functions,
follow from derivatives of the two-point hypervertex which
again follows from the equation of state of the reference
system via the compressibility relation �3.5�. Likewise, the
renormalized hypervertices at the critical point may be cor-

responding derivatives of the renormalized hypervertex 
̃�k�.
At the critical point also the 
�r� may be regarded as �
function compared with the single h�r� bond ��→0�, and its

integral 
̃�0� is determined by the equation of state via Eqs.
�3.1� and �3.5�.

We will also consider the leading graph correction to the
free energy not included in the HRT-SCOZA analysis. This
graph may account for the logarithmic singularity of the spe-
cific heat of the two-dimensional Ising model. The situation
here is similar to the one for the direct correlation function
considered above except that the free energy graphs have no
root points. Thus the graph in question is the one with two
nonzero hypervertices and a number of �+1 bonds in parallel
between these two vertices. Thus for the contribution to the
free energy one finds ��→0�

�F �� �h�r���+1dr 	� e−��+1��r

r2d dr 	 �d ln � .

�10.5�

�This follows from d partial integrations of �10.5�, which
gives the integral ��e−�r /r�dr	 ln � for d integer.� Thus with
�10.3� and �1.3� we get

�F 	 t�d ln t 	 t2 ln t , �10.6�

by which the leading contribution to the specific heat be-
comes 	ln t, i.e., 	=0. For d=3 this situation is less obvious
due to the logarithmic terms in Eq. �10.2� and a correspond-
ing uncertainty in the inverse correlation length �; so we will
not pursue this further here.

XI. SUMMARY

The unified HRT-SCOZA theory has been investigated in
the critical region. The resulting equation is essentially a sum
of the separate HRT and SCOZA equations. Close to the
critical point the HRT part dominates �Q→0�. But this part
lacks explicit temperature dependence, and there is thus via
the SCOZA part a coupling to higher-order scaling terms.
These terms should match the leading part of the critical
isotherm and its leading correction that is found to be com-
mon to that of the GMSM. In the unified theory the missing
term that prevents scaling in the SCOZA may be obtained
from the HRT part of the resulting equation by which full
scaling is made possible. The coupling to higher-order scal-
ing terms gives through the thermodynamic self-consistency
of the SCOZA a feedback loop from which the relation �c
=2 / ��+1� for critical indices is obtained. In Sec. X, in addi-
tion, we argue in view of graph contributions that � should
be an odd number.
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So, provided our main assumption about the parameter �
and the corresponding expansion of the scaling solution in
higher-order terms holds, it is not ruled out that our evalua-
tions may give the exact critical indices for interactions of
short range for fluids, lattice gases, and Ising spin systems in
three dimensions. With the standard interactions of short
range this implies scaling with the critical indices 
=0, �
=5, �c=1 /3, �=4 /3, �=2 /3, and 	=0 plus corrections of
logarithmic type. However, this is somewhat at variance with
best estimates, which are 
=0.036, �=4.789, �c=0.327, �
=1.237, and 	=0.110 �14,25�. On the other side our results
may be consistent with the numerical results of Ref. �14� for
the HRT with a smooth cutoff that can be something inter-
mediate between HRT and SCOZA. Then, as mentioned ear-
lier, for given �=5 the values �c=0.330 and 0.332 were
found in Refs. �13,14�, respectively. The other indices of the
last of these two references then follow from the scaling
relations �1.2� while for the first one they are not quite sat-
isfied.

Due to the assumptions made during the derivations in
this work, further analytic and numerical investigations are
needed to possibly confirm the results or show inaccuracies

APPENDIX: CRITICAL PAIR CORRELATION
FUNCTION

Below we will give an evaluation of the correlation func-
tion at the critical point for �=5 and d=3 to recover the
result obtained by Stell �15�. Then consider the function
a�r�=1 /r	. Its Fourier transform is �three dimensions, 0
�	�3�

ã�k� = 4�k	−3��2 − 	�sin��

2
	
 , �A1�

where � is the � function that satisfies

��u���1 − u� =
�

sin��u�
�A2�

such that

ã�k� =
− 2�2k	−3

��	 − 1�cos��

2
	
 . �A3�

By taking the limit 	→1 one finds the well-known result
ã�k�=4� /k2. For 	 close to 5, on the other hand, one finds

ã�k� � −
4�k	−3

3!�5 − 	�
	 k2k�

�
, � = 	 − 5. �A4�

Here it is assumed that analytic continuation can be used for
	�3 to obtain the term of interest. At the critical point one
further may assume

h�r� =
1

r
�

0

� f�t�
rt dt , �A5�

where only small values of t are assumed significant. For the
direct correlation function then in accordance with Eq. �10.1�
one should have �for �=5�

c�r� 	 − h5�r� = −
1

r5 � d�

r� , �A6�

where

� = �
i=1

5

ti and d� = �
i=1

5

�f�ti�dti� .

By Fourier transform one now finds

h̃�k� 	
1

k2 I, I = �
0

�

ktf�t�dt �A7�

and by use of Eq. �A4�

c̃�k� 	 − k2� k�

�
d� . �A8�

From the relation between h̃ and c̃, the Ornstein-Zernike
equation, given above Eq. �10.2�, one has

h̃�k� 	 �c̃�k��−1. �A9�

The solution of Eq. �A9� with Eqs. �A7� and �A8� inserted is
then

ktf�t� 	 t−5/6�k/k0�−t = t−5/6e−Lt �A10�

with L=−ln �k /k0� where k0 is a constant. So from this and
Eq. �A5� it follows that

I 	 L−1/6, h̃�k� =
1

k2L1/6 , h�r� 	
1

r�ln�k0r��1/6 .

�A11�

As a check of this solution one has −d�c̃�k� /k2� /dL
	�k�d�	L−5/6 by which −c̃�k�	k2L1/6.
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