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Results of a previous paper with the same title are retrieved by a different method. A one-component plasma
is bounded by a plane surface. The plasma is fully coupled to the electromagnetic field, therefore, the charge
correlations are retarded. The quantum correlation function of the surface charge densities, at times different by
t, at asymptotical large distances R, at inverse temperature �, decays as −1 / �8�2�R3�, a surprisingly simple
result: The decay is independent of Planck’s constant �, the time difference t, and the velocity of light c. The
present paper is based on the analysis of the collective vibration modes of the system.
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I. INTRODUCTION

In a previous paper �1�, we studied the asymptotic form of
the two-point correlation function of the surface charge den-
sities on a plane wall bounding a conductor �in the special
case when the conductor is a one-component plasma �OCP�,
also called jellium�, taking into account the retardation and
the quantum nature of both the one-component plasma and
the radiation. The special feature was the retardation; instead
of assuming as an interaction the Coulomb potential only, in
�1� the coupling was through the full electromagnetic radia-
tion. In other words instead of assuming the velocity of light
c to be infinite, the full Maxwell equations were used.

The previous paper �1� used the elaborate formalism of
Rytov �2�, presented also in �3�. This formalism is macro-
scopic, using frequency-dependent dielectric functions. In
the present paper, we retrieve the same results by a simpler
method, based on the analysis of the collective vibration
modes of the system. This method is partially microscopic. It
has already been used in the nonretarded case �4�, Sec. IV.

We use Gaussian units. The OCP is made of nonrelativis-
tic point particles of charge e, mass m, and number density n,
immersed in a uniform neutralizing background of charge
density −ne. We recall the geometry �Fig. 1�. We use Carte-
sian coordinates; a point is r= �x ,y ,z�. The OCP occupies the
half-space �1= �x�0�, the half-space �2= �x�0� is vacuum;
the two half-spaces are separated by a plane wall, impen-
etrable to the jellium, at x=0. A point on the wall is
R= �y ,z�.

After long calculations, a very simple result was found
in �1�,

�S�t,R� � �
1

2
���t,R���0,0� + ��0,0���t,R�	T


 −
1

8�2

1

R3 , R → 	 , �1�

where � is the inverse temperature, �¯	T represents a trun-
cated statistical average, ��t ,R� is the surface charge density
at time t and at point R on the surface. This value �1� sur-
prisingly is independent of t, �, and c, boiling down to the
classical result at time difference zero without retardation.

We define the Fourier transform of a function f�R� as

f�q� =� d2R exp�iq · R�f�R� . �2�

A result equivalent to �1� is that the Fourier transform of its
left-hand side �lhs�, �S�t ,q�, has a kink singularity at q=0,
behaving at small q like q / �4��.

In the present paper, we consider a fluctuation of the sur-
face charge density �, of wave number q and frequency 
,
such that � is of the form

��R,t� = �q
�t�exp�iq · R� + c.c., �3�

where c.c. means complex conjugate. �q
�t� is a complex
quantity, vibrating at frequency 
. This surface charge is
viewed as an external excitation, while the response of the
plasma is treated in the linear regime. Various domains of
frequencies must be considered. The total energy �electro-
magnetic energy plus the kinetic energy of the particles� is
obtained as a function of �q
�t� and �̇q
�t� in the form of a
harmonic oscillator. The final step deals with equilibrium
statistical averages, which involve standard calculations for
these oscillators, combined with frequency integrations.

The present paper is organized as follows. Section II is a
general exposition of the formalism of vibration modes. Sec-
tion III describes the contribution of surface modes �which
are localized on both sides of the wall�. Section IV describes
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FIG. 1. The geometry.

PHYSICAL REVIEW E 79, 021111 �2009�

1539-3755/2009/79�2�/021111�5� ©2009 The American Physical Society021111-1

http://dx.doi.org/10.1103/PhysRevE.79.021111


the contribution of transverse modes delocalized on the
vacuum side. Section V describes the contribution of trans-
verse modes delocalized on both sides. In Section VI, we
recall the contribution of the longitudinal modes. Section VII
is the Conclusion.

II. COLLECTIVE VIBRATION MODES

The emitted radiation corresponding to the source �3� is
described by Maxwell equations �we use the microscopic
ones, involving only the electric field E and the magnetic
field B, averaged in a suitable way �5��. The charge density is
�, the electric current density is J, the velocity of light is c.
These Maxwell equations are

� � B =
1

c

�E

�t
+

4�

c
J , �4�

� � E = −
1

c

�B

�t
, �5�

� · E = 4�� , �6�

� · B = 0. �7�

In the quantum case, the quantities appearing in these equa-
tions are operators. In region �2, �=0 and J=0, of course.

Furthermore, in region �1, the Maxwell equations �4�–�7�
must be supplemented by

E =
4�


p
2

�J

�t
, �8�

where 
p= �4�ne2 /m�1/2 is the plasma frequency. This
Eq. �8� is obtained from assuming that the OCP can be
considered as a collection of nonrelativistic free charges and
the dynamics can be linearized. The velocity of a particle,
v�r , t� obeys the Newton equation m�v /�t=eE. The term
e�v /c��B in the Lorentz force is suppressed because for a
nonrelativistic plasma v /c is negligible �the condition that
the plasma is nonrelativistic is �mc2
1�. The current den-
sity is J=env �the density is the constant n, because of the
linearization�.

It should be remarked that in Eq. �8�, there is no damping
term; this absence of damping term is valid for the small
wave numbers which will be considered, and is a property
special to the OCP.

Macroscopic Maxwell equations equivalent to �4�–�8� can
also be obtained. Combining �4� and �8�, at frequency 
, we
obtain

� � B =
1

c

���E�
�t

, �9�

where the frequency-dependent dielectric function is

��
� = 1 −

p

2


2 , �10�

which is of the Drude form, without dissipation. Multiplying
�6�, where �=0, by � does not change anything if ��0 �the

case �=0 will be studied later�. For a nonrelativistic plasma,
we have neglected the magnetic force in �8�; therefore, it is
consistent to take the magnetic permeability as �=1. Thus
we have obtained the macroscopic Maxwell equations �5�,
with now J=0.

There are solutions to these Maxwell equations which are
superpositions of transverse waves, which we shall study
first. In region �1, for these transverse waves, �=0. The
wave-number vector has components �k1 ,q� in region �1
and �k2 ,q� in region �2, where k1 and k2 are the x compo-
nents �the wave numbers have the same components parallel
to the surface q= �qy ,qz� as a consequence of the boundary
conditions, as will be shown later�.

From the Maxwell equations �4�–�8�, the dispersion rela-
tions are


2 = c2�q2 + k2
2� �11�

in region �2, and


2 = 
p
2 + c2�q2 + k1

2� �12�

in region �1. Depending on the value of 
, k1 or k2 are
real or pure imaginary, as shown from �11� and �12�.
If 
2� �cq�2, both k1 and k2 are pure imaginary. If
�cq�2�
2�
p

2 + �cq�2, k1 is pure imaginary and k2 is real. If

2�
p

2 + �cq�2, both k1 and k2 are real.
In addition to these transverse plane waves, in region

�1, the Maxwell equations have solutions with frequency

p �then �=0� which are longitudinal waves, without mag-
netic field �5,6�. They have already been studied in �4�.
The equations �4�–�8� reduce to ��E=0, � ·E=4��,
E= �4� /
p

2���J /�t�, supplemented by the continuity equa-
tion ��� /�t�+� ·J=0.

The energy density in region �2 is �5�

U2 =
1

8�
�E2 + B2�; �13�

the energy density in region �1 is

U1 =
1

8�
�E2 + B2� +

2�


p
2 J2, �14�

where the last term in �14� is the kinetic energy. A derivation
of �14� is presented in the Appendix, as well as another form
of it �6�.

At x=0, the existence of a surface charge density � is
associated with a discontinuity of the x component of the
electrical field

4�� = Ex
+ − E x

−, �15�

where the superscripts plus or minus mean approaching the
plane x=0 from the regions �1 or �2, respectively. The other
conditions at x=0 are the continuity of the components of the
electric and magnetic fields parallel to the surface. From the
conditions at x=0, one easily deduces that the �y ,z� compo-
nents of the wave numbers indeed are q. Since the system is
invariant by rotations around the x axis, general results can
be obtained by choosing q along the y axis: q= �qy ,0�; then
qy

2=q2. We consider only modes which contribute to �; these
modes are TM waves, with the electric field in the plane
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determined by the wave vector q and the normal to the sur-
face.

III. �2� (cq)2 (SURFACE POLARITONS)

The surface polaritons are the only modes in this fre-
quency range. They are TM waves �7�; k1 and k2 are pure
imaginary. These solutions of the Maxwell equations are of
the form �the subscript j=1,2 denotes the region �1 or �2�

E j = �aj�t�,bj�t�,0�exp�iqyy − � j�x�� + c.c., �16�

B j = �0,0,dj�t��exp�iqyy − � j�x�� + c.c., �17�

where, from �11� and �12�, c�2=
�cq�2−
2 and
c�1=

p

2 + �cq�2−
2. Since all fields are localized near the
surface, these modes are called surface plasmons; polariton
is also used when retardation, as here, is taken into account.

From the Maxwell equations and the conditions that Ey
and Bz are continuous at x=0, in this section there is a rela-
tion between 
 and q,


2 = 
p
2/2 + �cq�2 − 
�
p

2/2�2 + �cq�4. �18�

Therefore, in this section, �q
 will be called �q. 
 has its
nonretarded value 
p /
2 only at large q. For the small val-
ues of q, that we are interested in, 
 behaves as cq. From
�18� follows �1�2=q2, a useful relation in the calculations
�the detail of which is omitted� which follow.

Taking into account �15� and the continuity of Ey and Bz,
the Maxwell equations �5�, �6� ��=0 in �6�� give the prefac-
tors ai ,bi ,di as functions of �q. One finds

a1�t� =
�2

�1 + �2
4��q�t�, a2�t� = −

�1

�1 + �2
4��q�t� ,

b1�t� = b2�t� = − i
qy

�1 + �2
4��q�t� ,

d1�t� = d2�t� =
iqy

c�2

1

�1 + �2
4��̇q�t� . �19�

In region �1, J can be obtained from �4�. One finds

J1x = − exp�iqyy − �1x��̇q�t� + c.c.,

J1y =
iqy

�2
exp�iqyy − �1x��̇q�t� + c.c. �20�

From �19� and �20�, one computes the energy densities �13�
and �14� and the total energy Hq. Later, we shall consider
that the large area A of the wall goes to infinity; therefore,
the oscillatory terms exp��2iqyy� do not contribute to the
integral on R. One finds

Hq � �
A

d2R��
0

	

dxU1 + �
−	

0

dxU2�
= A2���1

�2
+

�2

�1
� 1

�1 + �2
���q�t��2 +

1


2 ��̇q�t��2�
� ACq���q�t��2 +

1


2 ��̇q�t��2� . �21�

One sees that Hq is the energy of a two-dimensional har-
monic oscillator �two-dimensional because �q�t� is a com-
plex quantity�. For such a quantum oscillator, where the vari-
able �q�t� plays the role of the position variable, the
contribution to �S�t ,q� is

�SA�t,q� =
1

Cq
f�
�cos�
t� , �22�

where

f�
� =
��


2
coth

��


2
. �23�

Here, for q→0, 

cq, Cq is proportional to 1 /q2, and �22�
behaves like q2. Therefore, the polaritons do not contribute
to the retarded asymptotic form of S�t ,R�.

On the contrary, in the nonretarded case c→	, 
=
s
�
p /
2, and �22� becomes

�SA�t,q� =
q

2�
f�
s�cos�
st� , �24�

in agreement with �4�.

IV. (cq)2��2��p
2+(cq)2

Now k1 is pure imaginary while k2 is real. With
q= �qy ,0�, in region �2 the general form of component Ex
must be

E2x = exp�iqyy��a�t�cos�k2x� + b�t�sin�k2x�� + c.c. �25�

Using the Maxwell equations �5� and �6� gives the other
nonzero components of the fields in region �2 as

E2y = exp�iqyy�
ik2

qy
�− a�t�sin�k2x� + b�t�cos�k2x�� + c.c.,

�26�

B2z = − exp�iqyy�
1

cqy
�ȧ�t�cos�k2x� + ḃ�t�sin�k2x�� + c.c.

�27�

In region �1, since k1 is pure imaginary, the fields depend on
x like exp�−�1x�. The continuity of Ey and Bz at x=0 deter-
mine the coefficients in function of a and b, and �3� and �15�
give

a�t� =

2 − 
p

2


p
2 4��q
�t�, b�t� = −

�1
2

k2
p
2 4��q
�t� .

�28�
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Let �2 be the region 0�x�−L2 �with a large L2, which
at the end will be taken as infinite�. Since U1 has an expo-
nential factor exp�−2�1x�, the region �1 does not contribute
to the total energy in this limit. The total energy only is
Hq
=A�−L2

0 dxU2. Using �25�–�28� in �13� gives

Hq
 = 2�AL2

2�
+

2 − 
2��
2 − 
−
2�


p
2�cq�2�
2 − �cq�2�

���q
�t��2 +
1


2 ��̇q
�t��2�
� AL2Cq
���q
�t��2 +

1


2 ��̇q
�t��2� , �29�

where 
−
2 is given by �18� and 
+

2 is given by a modified �18�
with a plus sign in front of the square root. Therefore, the
contribution of this mode to �S�t ,q� is

�SB
�t,q� =
1

L2Cq


f�
�cos�
t� . �30�

There are an infinity of modes of this kind, labeled
by their frequency 
, or, equivalently, by k2. For obtaining
the total contribution of these modes, �SB�t ,q� to �S�t ,q�,
one must take the sum on k2 of �30�. Since L2 is large,
�k2

¯ = �L2 /���dk2¯. Furthermore, dk2=d�
2� / �2c2k2�.
Therefore,

�SB�t,q� =
1

�
�

�cq�2


p
2+�cq�2

d�
2�
1

2c

2 − �cq�2Cq


� f�
�cos�
t� . �31�

After the change of variable 
2= �cq�2�1+u�, �31� becomes,
in the limit q→0,

�SB�t,q� 

q

4�2 f�0�cos 0�
0

	 du

u�1 + u�

=
q

4�
. �32�

Equation �32� will be found as the only contribution of order
q to �S�t ,q�.

V. �2��p
2+(cq)2

Now, k1 and k2 are both real. The general form of the
components x of the electrical fields are

Ejx = exp�iqyy��aj�t�cos�kjx� + bj�t�sin�kjx�� + c.c. �33�

Equation �33� involves four coefficients, instead of three in
Eix of Sec. IV �where E1x, not written explicitly, involves
only one coefficient�. Therefore, the equations which were
used in Sec. IV are not enough for determining all the coef-
ficients in the fields as functions of �q
�t�. Fortunately, parts
of the fields are uncoupled to � and, for describing the
modes coupled to �, it is enough to choose in �33� bi=0.
Then, the Maxwell equations and the conditions at x=0 de-
termine all the fields as functions of �q
�t�. Assuming region
�i to be of large length Li in x, one finds the total energy
H=H1q
+H2q
 where the energy in region �1 is

H1q
 = AL1
2�
2


p
4�cq�2
2�
2 − 
p

2����q
�t��2 +
1


2 ��̇q
�t��2�
� AL1C1q
���q
�t��2 +

1


2 ��̇q
�t��2� , �34�

and in region �2,

H2q
 = AL2
2�
2


p
4�cq�2 �
2 − 
p

2�2���q
�t��2 +
1


2 ��̇q
�t��2�
� AL2C2q
���q
�t��2 +

1


2 ��̇q
�t��2� . �35�

For obtaining the total contribution of these modes, of
different frequencies 
, to �S�t ,q�, it would be necessary to
sum on 
 the quantity

�SC
�t,q� =
1

L1C1q
 + L2C2q


f�
�cos�
t� . �36�

We were not able to perform this sum. Fortunately, it turns
out that, in the limit of small q, the sum over 
 involves only
frequencies close to 
p; for such frequencies, �35� is negli-
gible compared to �34�. Thus, we can neglect the term
L2C2q
 in �36�, writing

�SC
�t,q� =
1

L1C1q


f�
�cos�
t� , �37�

and perform the sum on 
 by replacing it by an integral like
in Sec. IV. Therefore, the contribution of these modes is

SC�t,q� =
1

�
�


p
2+�cq�2

	

d�
2�

�

p

4 f�
�cos�
t�

4�c

2 − 
p
2 − �cq�2
4�
2 − 
p

2�
. �38�

After the change of variable 
2=
p
2 + �cq�2�1+u�, �38� be-

comes, in the limit q→0,

SC�t,q� 

q

4�2 f�
p�cos�
pt��
0

	 du

u�1 + u�

=
q

4�
f�
p�cos�
pt� . �39�

VI. LONGITUDINAL MODES

In addition to the transverse modes studied up to now, in
region �1, there are longitudinal modes of frequency 
p
�then ��
p�=0� �5,6�. They are solutions of Eqs. �4�–�8� with
now ��0 and B=0; therefore, they occur also in the nonre-
tarded case already studied in �4�. These longitudinal modes
are a superposition of waves with the electric field parallel to
the wave-number vector. Here, we summarize the calcula-
tions of �4�, using a slightly different notation.

Since all modes have the same frequency but differ by
the component x of the wave vector, in �3� �q
�t� must be
replaced by �qk�t�. Since B=0, �5� reduces to ��E=0, and
E is derivable from a potential. This potential is of the form
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� = �a�t�exp�iqyy� + c.c.�sin�kx�; �40�

this form ensures that the x component of the electric field

E1x = − k�a�t�exp�iqyy� + c.c.�cos�kx� �41�

is nonzero at x=0, thus is coupled by �15� to �qk�t� �in region
�2, there are no longitudinal waves, thus E2=0�. Equation
�15� gives −ka�t�=4��qk�t�. After E2y has been expressed
from �40�, one finds for the energy

Hqk = 4�AL1
k2 + q2

k2 ���qk�t��2 +
1


p
2 ��̇qk�t��2� . �42�

After an integration on k, one finds for the contribution of the
longitudinal modes

�SD�t,q� =
1

2�2 f�
p�cos�
pt��
0

K

dk
k2

k2 + q2 , �43�

where K is a cutoff beyond which the use of collective vari-
ables breaks down. For small q, the integral in �43� is
K− �� /2�q+O�q2�; therefore, �SD�t ,q� has a kink singular-
ity at q=0 of the form

�SD�t,q� 
 −
q

4�
f�
p�cos�
pt� . �44�

VII. CONCLUSION

Equations �39� and �44� cancel each other. The only con-
tribution of order q to �S�t ,q� is �32�. Thus

�S�t,q� 

q

4�
, �45�

which is the classical nonretarded result at t=0, as an-
nounced in the Introduction. This classical nonretarded result
at t=0 was found previously �4� as the result of two contri-
butions: The one from the nonretarded surface plasmons
2q / �4�� and the one from the longitudinal bulk modes in the
plasma −q / �4��. Things are different for the present retarded
result, which comes from the fields in vacuum �in Sec. IV the
fields in the plasma do not contribute to the total energy�, and
a cancellation of the contributions of the transverse waves
and the longitudinal waves in the plasma.

The present analysis relies on several assumptions. In par-
ticular, the linearization implies that the fluctuations are
small �the same assumption is made in �1��. Furthermore, in
the derivation of �8�, the plasma is treated as a collection of
free charges; the frequency-dependent dielectric function
�10� is obtained by the same approximation. The validity of

these assumptions should be confirmed by a fully micro-
scopic derivation.

Like in �1�, our model is restricted to the OCP. For real
conductors, with dissipation, the same simple final result
might survive or not; this is an open problem. Another open
qualitative problem is to understand by a physical argument
why the retarded quantum result at an arbitrary t is so simple,
at least for an OCP, not involving �, nor t, nor c.
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APPENDIX

The energy density of a one-component plasma �14� can
be obtained from the Maxwell equations �4�–�7� and the
force equation �8�. Energy conservation can be expressed as
�5�

1

8�

�

�t
�E2 + B2� + J · E = − � · S , �A1�

where

S =
c

4�
�E � B� �A2�

is the Poynting vector �energy flow� and J ·E is the rate per
unit volume of performing work by the electric field. Equa-
tion �8� gives

J · E =
2�


p
2

��J2�
�t

. �A3�

The lhs of �A1� is the time derivative of the energy density,
thus which is �14�.

The last term of �14� can be expressed in terms of E. One
must be careful about the sign: Since oscillatory terms are to
be discarded, J2= �J�2 and E2= �E�2. Using again �8�, at fre-
quency 
, one can replace the last term in �14� by

p

2E2 / �8�
2�. Taking into account �10�, we obtain

U1 =
1

8�
�d�
��

d

E2 + B2� , �A4�

as written in �6�.
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