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The ferromagnetic phase of an Ising model in d=3, with any amount of quenched antiferromagnetic bond
randomness, is shown to undergo a transition to a spin-glass phase under sufficient quenched bond dilution.
This result, demonstrated here with the numerically exact global renormalization-group solution of a d=3
hierarchical lattice, is expected to hold true generally, for the cubic lattice and for quenched site dilution.
Conversely, in the ferromagnetic–spin-glass–antiferromagnetic phase diagram, the spin-glass phase expands
under quenched dilution at the expense of the ferromagnetic and antiferromagnetic phases. In the
ferromagnetic–spin-glass phase transition induced by quenched dilution, reentrance as a function of tempera-
ture is seen, as previously found in the ferromagnetic–spin-glass transition induced by increasing the antifer-
romagnetic bond concentration.

DOI: 10.1103/PhysRevE.79.021110 PACS number�s�: 64.60.ah, 75.10.Nr, 05.10.Cc, 75.50.Lk

The spin-glass phase �1� is much studied due to its promi-
nent role in complex systems, as an example of random or-
der. In its simplest realization in the Ising model, the under-
lying system has randomly distributed ferromagnetic and
antiferromagnetic bonds. In spatial dimension d=3, at low
temperatures, ferromagnetic or antiferromagnetic ordered
phases occur when the system has predominantly �e.g., more
than 77% �2�� ferromagnetic or antiferromagnetic bonds, re-
spectively. In between, the spin-glass phase occurs. The oc-
currence of the spin-glass phase, in which the local degrees
of freedom are frozen in random directions, has strong im-
plications in physical systems that are realizations of the
spin-glass system, spanning from materials science to infor-
mation theory and neural networks.

We have studied possibly the simplest modification of the
spin-glass system, to be commonly expected or realized in
physical systems, namely, the removal of bonds. We find
important qualitative and quantitative effects. This Ising
spin-glass system with quenched bond vacancies �3–10� has
the Hamiltonian

− �H = �
�ij�

Kijsisj , �1�

where si= �1 at each site i and �ij� indicates summation
over nearest-neighbor pairs of sites. The local bond strengths
are Kij =K�0 with probability p+, Kij =−K with probability
p−, or Kij =0 with probability q=1− p+− p−, respectively cor-
responding to a ferromagnetic interaction, an antiferromag-
netic interaction, or a bond vacancy. This model has previ-
ously been studied at zero temperature �6,9� and in its spin-
glass phase diagram cross section �10� by position-space
renormalization-group theory, in its n-replica version at zero
temperature �3,5�, by mean-field theory �4�, and by
momentum-space renormalization-group theory around d=6
dimensions �4�, and by series expansion �7,8�.

We have performed the numerically exact
renormalization-group solution of this system on a d=3 hi-
erarchical lattice �11–13�, to be given below. Exact solutions

on hierarchical lattices constitute very good approximate so-
lutions for physical lattices �14�. We calculate the global
phase diagram in the variables of temperature 1 /K, bond
vacancy concentration q, and antiferromagnetic bond frac-
tion p− / �p++ p−�, obtaining a rich structure and finding reen-
trance as a function of temperature induced by bond vacancy.
Our results agree with and extend the previous results �3–10�
on this system.

Our results are most strikingly seen in Fig. 1. The top
curve in Fig. 1�a� corresponds to the quenched dilution of the
system with no antiferromagnetic bonds �p−=0�. As the sys-
tem is quench diluted, by increasing the missing-bond con-
centration q, the transition temperature to the ferromagnetic
phase is lowered from its value with no missing bonds at q
=0, until it reaches zero temperature and the ferromagnetic
phase disappears at the percolation threshold of q=0.789 �to
be compared with the value of 0.753 in the simple cubic
lattice �15��. However, with the inclusion of even the small-
est amount of antiferromagnetic bonds �lower curves�, a
spin-glass phase, extending to finite temperatures, always ap-
pears before percolation. This result was previously obtained
at zero temperature �3,6,7,9� and around d=6 �4�.

The phase boundary between this vacancy-induced
ferromagnetic–spin-glass phase transition shows reentrance,
as also seen �16–18� in conventional spin-glass phase dia-
grams where the antiferromagnetic bond concentration is
scanned. In Fig. 1�b�, where the curves correspond to higher
percentages of antiferromagnetic interactions among the
bonds present, starting with p− / �p++ p−�=0.25 in the top
curve, the ferromagnetic phase has disappeared and only
spin-glass ordering occurs. As seen from Fig. 1�a�, the per-
colation threshold of the spin-glass phase is slightly lower
than that of the pure ferromagnetic phase and, before the
disappearance of the ferromagnetic phase, the percolation
threshold of the spin-glass phase has a slight dependence on
p− / �p++ p−�. The percolation threshold of the spin-glass
phase settles to the value of 0.763 after the disappearance of
the ferromagnetic phase.

Figure 2 shows the conventional phase diagrams of tem-
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perature versus the fraction p− / �p++ p−� of antiferromagnetic
bonds in the nonmissing bonds, at fixed values of the dilution
q. As the dilution is increased, the phases are depressed in
temperature, as can be expected. However, simultaneously, it
is seen that the spin-glass phase expands �10� along the
p− / �p++ p−� axis, at the expense of the ferromagnetic and
antiferromagnetic phases, eventually dominating the entire
low-temperature region. It is also seen, for q=0.763 and
higher, that the spin-glass phase occurs in the phase diagrams
as two disconnected regions, near the ferromagnetic and an-
tiferromagnetic phases. A similar disconnected topology has
recently been seen in the Blume-Emery-Griffiths spin glass
�19�.

The dashed lines in Figs. 1 and 2 are the Nishimori sym-
metry lines �20,21�

e�2K =
p+

p−
. �2�

All multicritical points occurring in the currently studied sys-
tem are on the Nishimori symmetry lines �22,23�, as also
previously seen �10� for this system. Thus, as illustrated in
Fig. 2, it is possible to continuously populate, with multicriti-
cal points, the low-temperature segment of the Nishimori
line, by gradually changing the quenched dilution q. The
Nishimori symmetry condition appears in Fig. 1 as a hori-
zontal line for each value of p− / �p++ p−�. This horizontal line
intersects the upper curve in Fig. 1�a� at zero temperature,
thereby implying the occurrence of a zero-temperature mul-

ticritical point at the percolation threshold, as also deduced
from the sequence of phase diagrams in Fig. 2. The horizon-
tal lines of the Nishimori condition intersect the two other
phase diagrams in Fig. 1�a� at their multicritical point. In Fig.
1�b�, multicritical points do not occur and the horizontal
lines of the Nishimori condition do not intersect the phase
boundaries, occurring at higher temperatures than the phase
boundaries.

Figure 3 shows the zero-temperature limit of the global
phase diagram of the currently studied system. In the zero-
temperature phase diagram, it is again seen that a spin-glass
phase intervenes �3,6,7,9�, with the smallest amount of
quenched antiferromagnetic bonds, between the ferromag-
netic phase and percolation, causing a direct ferromagnetic–
spin-glass phase transition.

Our method, detailed in other works �19,24–26�, will be
briefly described now. We use the d=3 hierarchical lattice
whose construction is given in Fig. 4. This hierarchical lat-
tice has the odd rescaling factor of b=3, for the a priori
equivalent treatment of ferromagnetism and antiferromag-
netism, necessary for spin-glass problems. Hierarchical lat-
tices admit exact solutions, by a renormalization-group trans-
formation that reverses the construction steps �11–13�. Thus,
hierarchical lattices have become the testing grounds for a
large variety of cooperative phenomena, as also seen in re-
cent works �14,27–37�. The hierarchical lattice of Fig. 4 has
been used in this work, because it gives numerically accurate

FIG. 1. �Color online� Calculated phase diagrams at constant
p− / �p++ p−�. All phase transitions �full lines� are second order. The
dashed horizontal lines �shown only partly in �a�� are not phase
boundaries, but the Nishimori symmetry lines, given by Eq. �2�, for
each value of p− / �p++ p−�. The multicritical points in �a�, mediating
the ferromagnetic, spin-glass, and paramagnetic phases, occur on
the Nishimori symmetry lines. These lines do not cross the phase
boundaries at any other type of point. Thus, the Nishimori symme-
try lines in �b� are at temperatures above the phase boundaries.

FIG. 2. �Color online� Calculated phase diagrams at constant
quenched dilution q=1− p++ p−. Since phase diagrams are symmet-
ric about p− / �p++ p−�=0.5, with the antiferromagnetic phase replac-
ing the ferromagnetic phase, only the p− / �p++ p−��0.5 halves are
shown. All phase transitions �full lines� are second order. The
dashed curve is the Nishimori symmetry line given by Eq. �2�. All
multicritical points, mediating the ferromagnetic, spin-glass, and
paramagnetic phases, lie on the Nishimori symmetry line.
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results for the critical temperatures of the d=3 isotropic and
anisotropic Ising models on the cubic lattice �14�.

In systems with quenched randomness, the
renormalization-group transformation determines the map-
ping of the quenched probability distribution P�K� �38�. At
each step, the innermost unit of the lattice as pictured on the
right side of Fig. 4 is replaced by a single bond. This is
effected by a series of pairwise convolutions of the quenched
probability distributions,

P̃�K̃� =� dKIdKIIPI�KI�PII�KII��„K̃ − R�KI,KII�… , �3�

where R�KI ,KII� is

R�Kij
I ,Kij

II� = Kij
I + Kij

II �4�

for replacing two in-parallel random bonds with distributions

PI�KI� and PII�KII� by a single bond with P̃�K̃�, or

R�Kij
I ,Kjk

II � =
1

2
ln	 cosh�Kij

I + Kjk
II �

cosh�Kij
I − Kjk

II �

 �5�

for replacing two in-series random bonds by a single bond.
The probability distributions are in the form of probabilities
assigned to interaction values, namely, histograms. Starting
with the three histograms described after Eq. �1�, the number
of histograms quickly increases under the convolutions de-
scribed above. At the computational limit, a binning proce-
dure is used before each convolution to combine nearby his-
tograms �19,24–26�, so that 160 000 histograms are kept to
describe the probability distributions. The flows of these
probability distributions, under iterated renormalization-
group transformations, determine the global phase diagram
of the system.
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