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Pressure-induced orientational glass phase in molecular para-hydrogen
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We propose a theoretical description of a possible orientational glass transition in solid molecular para-
hydrogen and ortho-deuterium under pressure supposing that they are mixtures of J=0 and J=2 states of
molecules. The theory uses the basic concepts and methods of standard spin-glass theory. We expect our
orientational glass to correspond to the II' phase of the high-pressure hydrogen phase diagram.
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I. INTRODUCTION

The high-pressure phase diagram of solid hydrogen and
its isotopes has been a fascinating subject of investigation
during recent decades. Although the p-T phase diagrams of
ortho-H, and para-D, under not too high pressures are well
understood, the same cannot be said for para-H, and
ortho-D, and about extremely high pressures (see, e.g., the
reviews in Refs. [1-3]).

At low temperature and ambient pressure, pure solid o-H,
and p-D, consisting of molecules with orbital angular mo-
ment J=1 crystallize in hcp lattices with rotating molecules
on the lattice sites. At lower temperature a transition takes
place to the phase with the orientational long-range order
(LRO) of antiferroquadrupolar type. This transition is ac-
companied by a structural transition to the fcc lattice. The
transition temperature increases with pressure depending on
the intermolecular distance R as R™>, thus indicating that it is
due to the anisotropic electric quadrupole-quadrupole (EQQ)
interaction. This picture remains valid up to ¢~ 0.55, where
c is the concentration of moment bearing molecules. At in-
termediate concentrations (¢ =0.12) NMR experiments have
been interpreted in terms of the freezing of the orientational
degrees of freedom and the transition to the quadrupolar
glass phase [1,4,5]. At the lower ¢ concentration, there is no
orientational ordering.

Molecular p-H, and 0-D, also crystallize in hcp structure.
However, at low pressure (LP) they remain in this structure
up to 0 K. This phase has no orientational order (J=0), and
it is called phase I (or LP phase). At higher pressures
(~110 GPa in p-H, and ~28 GPa in 0-D,) solids transform
to orientationally ordered broken-symmetry phases (phase Il
or BSP) [1-3]. The possibility of orientational order in sys-
tems of initially spherically symmetric molecule states is due
to the involving of higher-order orbital moments J=2,4,...
in the physics under pressure. The crystal field of the neigh-
bors perturbs the molecular wave functions, and one can gain
in overall energy if the anisotropic the EQQ interaction be-
tween nonzero quadrupole moments is included. One has to
keep in mind that the EQQ interaction rapidly increases with
increasing pressure. The long-range orientational order ap-
pears abruptly at a fixed value of pressure through the first-
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order phase transition just as it takes place in ortho-para mix-
tures when the concentration of moment-bearing molecules
achieves a certain fixed value.

Goncharov et al. [6] investigated the high-resolution Ra-
man spectra of almost pure o-D,. The authors indicate that in
the intermediate-pressure range between the phases I and II
the ordering is incomplete and orientational frustration takes
place. They further speculate that this intermediate II' phase
exhibits glassy behavior. Phase 11" persists for a narrow pres-
sure range (~2 GPa) and has abrupt boundaries.

It seems obvious that the 7-p phase diagram containing I,
I, and II phases can be considered in close analogy to the
T-c phase diagram of ortho-para mixtures. For simplicity, we
imagine that p maps c¢,(p)—the concentration of molecules
with J=2—although one should take into account other an-
isotropic interactions to understand the results of the precise
experiments (e.g., Raman scattering [7]). The first attempts
to describe in such a way the long-range order and the ori-
entational glass phase in 0-D, and p-H, on a microscopic
theory level were done in Refs. [8—10].

II. J=2 QUADRUPOLE GLASS MODEL

The purpose of this paper is to give a theoretical descrip-
tion of the possible orientational glass transition in solid mo-
lecular para-hydrogen and ortho-deuterium under pressure
supposing that they are mixtures of J=0 and J=2 states of
molecules. The theory uses the basic concepts and methods
of standard spin-glass theory. We expect our orientational
glass to correspond to the I’ phase of the high-pressure hy-
drogen phase diagram.

It is well known that the number of /J=0—J=2 transi-
tions increases rapidly with increasing pressure (see, e.g.,
Refs. [1-3,6,7,11-14]). The anisotropic interaction potential
and the crystal field grow rapidly with increasing density.
The energy of the many-body system can be lowered by
taking advantage of the anisotropic interactions. So the
single-molecule wave functions are no longer spherically
symmetric, but are rather admixtures including higher-order
excitations. This admixture is probably responsible for the
decrease of the critical concentration of /=1 molecules for
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the LRO transition in ortho-para samples at high pressure,
the deficit of momentum-bearing molecules being compen-
sated by J=2 molecules. It seems that the weak dependence
of the transition to the III (or A) phase on the ortho-para
composition can be described in an analogous way.

The rough estimation of J=0— J=2 transition probability
¢ can be done using quantum-mechanical perturbation theory
considering the field of the nearest neighbors as the pertur-

bation [8]:
_7 o[BI\ (R
ST 7’"3'8<261213><R> ’ W)

where B is the rotational constant, R is the intermolecular
distance, and I'/B=0.011 in H, and 0.028 in D, [1]. The
factor of 3.8 has a geometrical nature, and it corresponds to
the hep lattice. Using the compressibility data, we obtain the
pressure dependence of & This dependence is very strong. If
we attribute to the probability & the meaning of the concen-
tration of moment-bearing molecules, we see that the posi-
tion and the width of the II" phase qualitatively coincide with
that of quadrupolar glass in ortho-para mixtures. For ex-
ample, £=0.1 at 40 GPa for o-D,. The isotope dependence is
also roughly correct.

The admixture of J=2 states causes the frustration in the
case of hep lattice. As to disorder, it is not obvious that one
can think of J=2 impurities as of the quenched disorder even
at low temperature. Nevertheless, it seems possible to con-
sider the whole ensemble of physically achievable realiza-
tions of mixed states as a convenient background (see, e.g.,
Ref. [15]) for the formulation of an orientational glass model
in the spirit of the spin-glass theory [16].

Here we present two theoretical models of possible qua-
drupolar glass with J=2. The first one is a generalization of
the well-known Sherrington-Kirkpatrick [17] spin glass, and
it is analogous to the model [18] which describes well the
quadrupolar glass in ortho-para mixtures [4,5]. The second
model is a generalization of the so-called “p-spin glass,” and
it is probably more adequate for high pressures when many
particle interactions can play an important role. We consider
the case p=3 in detail. The results obtained for the models
differ: in the three-site model discontinuities in the specific
heat and in the glass order parameter as the functions of the
temperature do appear. We hope that future experiments will
discriminate between these models. The essential feature of
the obtained intermediate phase in both models is the coex-
istence of the orientational glass with the long-range orien-
tational order as is seen in the experiment [6].

III. QUADRUPOLE GLASS WITH TWO-PARTICLE
INTERACTION

As the first model of the quadrupole glass, we will con-
sider a system of particles on lattice sites i and j with random
truncated EQQ Hamiltonian

A 1 A A
H=--271;00;. )
2%
Here J;; are random interactions distributed with Gaussian
probability
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where the factor N insures the sensible thermodynamic limit.

The operator Q~[3J§—J(J +1)] is the axial quadrupole
moment of the hydrogen molecule in the space J=const;

Tr Q:O. In Ref. [18] quadrupole glass freezing in ortho-para
mixtures has been considered on the basis of the Hamiltonian

(2) in the subspace J=1 with J,=0, =1 and Q:3J§—2, SO
that

0%y=2-0q). (4)
Now the Hamiltonian (2) will be considered in the sub-
space J=2 with J,=0,* 1, *=2 and
A1
0=3[37-6]. (5)

Let us emphasize that the model with J=2 differs essentially
from that with J=1 because of the different operator alge-

bras. For example, now the operators Q are 5 X5 diagonal
matrices, and instead of (4) we have

03=4+40- 0% (6)

Following the standard methods of spin-glass theory (see,
e.g., Ref. [19]) and using the replica technique, we can ex-
press the disorder-averaged free energy of the system in the
form (see also Refs. [10,20])

1 P r
(F),/NT = lim — maX{ =2 (p"?+ 5 > (q°F)?

n—0 n 4, a>B
—In Trypay exp 9}, (7)
where
0=1 gﬁ q*PQ*QF + ’2—22 PO (8)

Here r=J/T and the numbers a and 3 label replicas.

The standard conditions for the free-energy saddle point
determine the glass order parameter g and the regular order
parameter x (average quadrupole moment),

4P =(0"0")y, )
x=(0), (10)

and also the auxiliary order parameter
P*={(0"s, (11)

where

_ T Jespl®] "
Tr[exp(é)]

In the replica-symmetric (RS) approximation, when all
qap are equal, expression (7) for the free energy becomes
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Order parameters

FIG. 1. (Color online) The temperature dependence of the order
parameters for the quadrupole glass with the two-particle interac-
tion. The replica symmetry breaking occurs at the temperature cor-
responding to A (gg)rep1=0-

2q2 2172 -
FRS=_NT IZ—I Z+1nTr(eXp 0RS) . (13)

Here

~q
5 2 (14)

_ d 2
(...)zfﬁ(...)exp(_ ZE) EJdZG(...). (15)

Using the extremum conditions for the free energy, Eq. (13),
we obtain the equations for the order parameters:

P A p
brs = 2\qQ + 1>

9=(0),. (16)
x=(Q)gy (17)
P=(QMg,,- (18)

The results of the numerical solution of Egs. (16)—(18) are
illustrated in Fig. 1. One can see that there is the coexistence
of glass and LRO. The RS glass order parameter and the RS
average quadrupole moment grow continuously on cooling
and are nonzero even at arbitrary high temperature. The ab-
sence of a zero solution of Egs. (16)—(18) follows from the

fact that Tr Q**1#0, k=1,2,... (see Ref. [20] for details).
The orientational contribution to the heat capacity,

CU(RS)_ d [qz—pz}
N d(1/1) 2 I

(19)

has a broad maximum at the temperature slightly lower than
that of the instability of the RS solution. All these features
are common for the quadrupole glass with J=2 and J=1 (see
Refs. [4,5,18]).

The RS solution is stable unless the replicon-mode energy
\ is nonzero [21]. For our model we have
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Nwsyept = 1 = 210D g — ((O)g )T (20)

At the temperature T, defined by the condition A(gg)repi
=0 the RS solution becomes unstable and one needs to look
for the solutions with replica symmetry breaking (RSB). Us-
ing the standard procedure (see, e.g., Ref. [19]), we perform
the first stage of the replica symmetry breaking (1RSB) ac-
cording to Parisi (n replicas are divided into n/m groups with
m replicas in each) and obtain the free energy in the form
(with ¢g*f=r, if @ and B are from the different groups and
g“®=r,+v if a and B belong to the same group)

(”1+U)2_P_2>
4

2 ri
FlRSB=_NT t mZ+(l—m) 4

1 ~
+— J dz%In J dsC[Tr ealRSB]’”} , (21)
m

where

A — A A SP=TF =V
O1rsg = 2N Q + stNvQ + t T

0*. (22
The extremum conditions for Frgp yield the equations for
the glass order parameters r; and v, the regular order param-
eter x, the additional order parameter p, and the parameter m
[see Appendix A, where &g is given by Eq. (22) for [=2].
To estimate the form of the IRSB solution near the bifur-
cation point 7, at which it ceases to coincide with the RS
solution (i.e., in the neighborhood of T,), we expand the
expression for the free energy, Eq. (7), up to the third order
inclusively, assuming that the deviations 6g“* from ggg are
small. In fact, we expand the argument of the exponent:

2
%Pz (092 + qrs >, 0°0F,

a>f

6="12 5q°PQ0F +

a>f

(23)
with 7=7y+Az. Using the formulas of Appendix B, we obtain

2
% = tz(l —PW)=[r—(m- Do +v*m(im-1)}
4
+ %L[r— (m= 1= 5Clr = (m - 1)o]

+D[r—(m—-1vJv’m(m—-1) = Byw’m*(m - 1)

+Bwim(m—-1)2m -1}y + -+, (24)

where t=ty+At, r=r;—qgs, and the expressions for the pa-
rameters W, L, C, D, B, and B, are given in Appendix C.

Using the extremum conditions for the free energy, Eq.
(24), and the fact that L|,=,0¢0, we obtain the branching
condition r—(m—1)v=0+0(At)>—i.e., the condition that
there be no linear term in the glass order parameters. There is
no other linear term because (1—"W)|<; = Nrsjrepili=, =0
at the bifurcation point. Finally, we obtain
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FIG. 2. The heat capacity of the quadrupole glass with two-
particle interactions as a function of temperature. The arrow marks
the temperature corresponding to the boundary between RS and
more stable 1RSB solution.

4
ty to dW 6
2l -—=-— — At=t)[- B4+ m(-B;+ 2B s
l >4 " o[ 4+ m(= B 4)]0
4
ty to dwW
(2m—1)|:—50—zo d_ i|At
! l‘=lO

= 16{(2m = 1)[— B4+ m(= B; +2B,)]
+m(m—1)(-= B3+ 2B,)}v, (25)

where B; and B, are taken at 7=T. So

v~At, r=(m-1)v, (26)

in the neighborhood of T\, where the 1RSB solution appears
and

m=— (27)

at the branch point Tj,.
Let us notice that all the obtained expressions hold for

Hamiltonian (2), where Q is the arbitrary diagonal operator
such that Tr 0=0, Tr Q°, and L| =1, AT NONZero.

For our model with O defined by Eq. (5), it follows from
above formulas that m=0.25 and there is no jump in the
order parameters at the point where the 1RSB solution ap-
pears (as usually when m <1). The solutions of the equations
giving the extremum conditions of (21) are presented in Fig.
1. The orientational order and the glass regime coexist and
grow smoothly on cooling even through the RS-1RSB tran-
sition. In addition, the curve for the heat capacity changes a
little in passing from the RS to 1RSB solution (Fig. 2).

The 1RSB solution is stable above the temperature deter-
mined by the solution of the condition, A(jrsp)repi=0 (see
Fig. 1),
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A(1RS)repl = | —tzdeG

J dsOTr eMme][(0Y = (D), )T
X .

f ds“[Tr eélRSB]’”
(28)

At T<T, we have the nonergodic state. At 7— 0 one expects
the full replica symmetry breaking (FRSB).

IV. p-SPIN-GLASS-LIKE QUADRUPOLE MODEL

In this section we consider a generalized p-spin interac-
tion spin glass model—the p-quadrupole model. The three-
quadrupole case will be considered in detail (see below). The
model of Sec. III is a two-quadrupole model. The
p-spin-glass model with random interaction of p Ising spins
was considered in a large number of papers (see, e.g., Refs.
[22-26]) and serves as a generic model for investigation of
glasses without reflection symmetry.

Now we consider /-quadrupole model described by the
Hamiltonian

H=- 2 Ji1~~~iléiléi2---éila (29)

i1<iy =i

where i=1,2,...N and Q is defined in Sec. III. The coupling
strengths are independent random variables with a Gaussian
distribution

P(J;..;)= W exp[—L] (30)

ll‘“ll ~ ~
1J?

Using the replica approach, we can write the free energy
averaged over the disorder (see for details Ref. [22]) in the
form

1 t2
(F),/NT = lim — max{— ZE (P9 + 2 1 (p®)
n—0n a a

2
1 A
4 2#:'8 (q*P) + gﬂ)\aﬁqaﬁ_ In Trype exp 0} ,
(31)
where
b= 2 NPO“0F + X u* (0. (32)

a#f a

The extremum in Eq. (31) is taken over the physical order
parameters and over the corresponding Lagrange multipliers
A and u® So the saddle-point conditions give the glass
order parameter

g =(00P),, (33)

the regular order parameter (average quadrupole moment)
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FIG. 3. (Color online) Order parameters evolution with the tem-
perature for 3-quadrupole model. The transition RS-1RSB takes
place at the point defined by the condition m=1. Glass order pa-
rameter v has a jump at this point.

X =(0%, (34)
the auxiliary order parameter
Pe= Qs (35)
and the parameters
2 £
NB=lq™ )Y, = (). (36)

Using the standard procedure (see, e.g., Ref. [19]), we can
obtain RS and 1RSB expressions for the free energy. Let us
write Firgg for the case /[=3. The free energy Fyg can be
obtained if one put v=0:

3
r

3
FlRSB =—NT{mt25 + (1 —m)

3
pntv)’ op”
2 2

1 A
+—szG In JdSG[Tf exp(elRSB)]m}~
m

(37
Here
élRSB=Zt %%Q"'St \/ WQ
23 =0’ s, o9

4

The extremum conditions for Firgg yield the equations
for the glass order parameters r; and v, the regular order
parameter x, the additional order parameter p, and the param-

eter m [see Appendix A, where 6,ggg is given by Eq. (38) for
1=3].

It is easy to show that the corresponding condition
Ars)repi=0 does not determine a physical solution in the vi-
cinity of the bifurcation point 7(: one passes to the unphysi-
cal free-energy branch. In fact, the transition RS-1RSB takes
place at the point 7|, > T defined by the condition m=1. At
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FIG. 4. The heat capacity of the quadrupole glass with three-
particle interactions as a function of temperature. There is a jump at
the RS-1RSB transition.

this point, Frg=Frsg- There are no discontinuities in free
energy. The order parameters r, x, and p are continuous and
v has a jump (see Fig. 3). When the temperature is de-
creased, m becomes smaller than 1 and the 1RSB solution
leads to a larger free energy than the RS solution. The tran-
sition obtained by static approach is a thermodynamic one.
Let us remark that the temperature of the dynamical transi-
tion can be obtained in the frame of static approach using the
marginality condition. Usually the dynamic transition tem-
perature is higher than the thermodynamic one (for details
see Refs. [27-33]).

The corresponding discontinuity occurs also in the heat
capacity

. (39)

Cy(1rSB) _d { mr?+(1 -m)(r,+v)* - p?
)

N (1 2
d(_

The form of the curve for the heat capacity, Fig. 4, is analo-
gous to obtained in Ref. [23] for the spherical p-spin model.

The 1RSB solution can be stable above the temperature
T=T, determined by the second solution of the condition
N(1RsB)repi=0 (see Fig. 3):

2l(l—l)(r1+v)(l_2)fdzc

N =1-t
(1IRSB)repl 7

| T e
X .

J dsC[Tr e(;IRSB]’”
(40)

At the point 7, a transition to a FRSB state or to a stable
2RSB state may take place.

V. CONCLUSIONS

In this paper we give a theoretical description of possible
orientational glass transition in solid molecular para-
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hydrogen and ortho-deuterium under pressure supposing that
they are mixtures of J=0 and J=2 states of molecules. The
theory uses the basic concepts and methods of the standard
spin-glass theory. We expect that our orientational glass cor-
responds to the II’ phase of the high-pressure hydrogen
phase diagram.

We present two theoretical models of possible quadrupole
glass with J=2. The first one is a generalization of the well
known Sherrington-Kirkpatrick spin glass. The second
model is a generalization of so-called “p-spin glass,” and it is
probably more adequate for high pressures when many par-
ticle interactions can play an important role. We consider in
detail the case p=3. The results obtained for two models
differ: in the three-site model the discontinuities in the heat
capacity and in the glass order parameter as functions of the
temperature do appear. We hope that future experiments will
discriminate between these models. The essential feature of
the obtained intermediate phase in both models is the coex-
istence of the orientational glass with the long-range orien-
tational order as is seen experimentally [6].
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APPENDIX A

The equations for IRSB glass order parameters r; and v,
the regular order parameter x, the additional order parameter
p, and the parameter m are

; ) 2
f [Tr e?1rs8] "=V T¢ Q691RSB]
e

. f G A . @AD
2 f [Tr ¢frsB]™
G
J [Tr eéIRSB](”’_z)[Tr Qe é’1RSB:|2
G
v+ = f . : - ,  (A2)
K f dsO[Tr e?1rss]"
f [Tr eéIRSB](’"_l)[Tr Qe(;IRSB]
G
x= f . . (A3)
z

f [Tr eélRSB]m
G
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f [Tr gélRSB](m_l)[Tr QzeélRSB]
G
s

f [Tr eélRSB]m
SG

. (A4)

-
ZG

and

2
mz(l - D[(r; + v) - (”1)1]

1 ~
=— —f In J [Tr efrsB]™
mJ .G G

f [Tr ¢%rsB]™ In[ Tr ¢%1rsB]
G
+ f :

G

J [Tr eé] RSB]™
G

(A5)

APPENDIX B
The only nonzero sums are
1
lim =" (8g°%) = (m=1) 77’ = m¢’ (B1)
n—0 n B
and

1
lim = X, ' 8q*P8¢P78¢7 = (m — 1)(m - 2) 77
n~>0 }’l CY,,B,’}/

—3m(m - 1)n& +2m*&,
(B2)

lim + > (89°P)*8q% = (m = 1) — m(m = 1) (& + 7€)

n=0Mgpy

+m?E, (B3)

1
lim — E '5q“35q“75qﬁ‘$= (m—=1)37 +3m?*(m - 1) né&
n—0 naﬁ,%g

-3m(m—-1)*Pé-m’&,
(B4)

where n=r+v and &=r. The prime on the sum means that
only superscripts belonging to the same dg are necessarily
different in 2’. The sum in Eq. (B4) remains the same if we
replace, 8g”° by 8q*°.

APPENDIX C

The formulas used to calculate the parameters are
W=(0703) - 2(010,03) +(0,0,0:0.). (C1)

L=={(010,03) +(0,0,0304), (C2)
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C:—(B2+Bé)+2B3+B§—B4, (C3)

D=-3By—B}+3B,, (C4)

where
1 agana 4 1 A A A A A 4 A A A A A
B,= 5<Q%Q§Q3Q4> +5(01020304050¢) - (070,030405),
1 A A A A A 4 1 ann A A 4
B} = 5(010203040506) — 5(010:0:0,05)
1 aqa 2 A
+ngggm
| B 1 oAb ana 1 A A A A A
By= g<Q?Q§Q§> - 5<Q%Q%Q3Q4> - £(010,050,050¢)

1 ann A A 4
+;ﬁ&&&&x
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/ A AN A A A 5 m0a A A o
B3 =-(0,0,0304050) + 5<Q1Q2Q3Q4Q5>
L oaga o o 3, s o PPy
- 5<Q1Q2Q3Q4> - E<Q1Q2Q3Q4> + E<Q1Q2Q3>,
| A A A A A A I azna 2 4
B,= §<Q1Q2Q3Q4Q5Q6> - <Q%Q2Q3Q4Q5> + g(Q%Q2Q3Q4>

3 Anana A 1 azana 1 asa
+ Z<Q%Q%Q3Q4> - 5<Q?Q%Q3> + E<Q?Q%>,
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