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Higher-order perturbative calculations in quantum �field� theory suffer from the factorial increase of the
number of individual diagrams. Here I describe an approach which evaluates the total contribution numerically
for finite temperature from the cumulant expansion of the corresponding observable followed by an extrapo-
lation to zero temperature. This method �originally proposed by Bogolyubov and Plechko� is applied to the
calculation of higher-order terms for the ground-state energy of the polaron. Using state-of-the-art multidimen-
sional integration routines two new coefficients are obtained corresponding to a four- and five-loop calculation.
Several analytical and numerical procedures have been implemented which were crucial for obtaining reliable
results.
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I. INTRODUCTION

Highly accurate measurements require precise theoretical
calculations which perturbation theory can yield if the cou-
pling constant is small. However, in quantum field theory the
number of diagrams grows factorially with the order of per-
turbation theory and they become more and more compli-
cated as the corresponding loop diagrams involve high-
dimensional integrals over complicated �and singular�
functions.

The prime example is the anomalous magnetic moment of
the electron where new experiments �1,2� need high-order
quantum-electrodynamical calculations. In fact, the estimate
for the fifth-order contribution is the largest source of theo-
retical uncertainty if one attributes an “error” to it at all �3�.
In addition, further improvements of the experimental accu-
racy are foreseen.

As derived in the textbook �4� the number of diagrams
contributing to the vertex function in quantum electrodynam-
ics �QED� is given by the coefficients of the generating func-
tion

� =
4z�1 − S�

S3 , S = − 2z�1 +
K0��z�
K0�z�� �1�

�with z=−1 / �4�� and K0�z� the zeroth-order modified Bessel
function of second kind� when expanded in powers of the
fine-structure constant �

���� = 1 + � + 7�2 + 72�3 + 891�4 + 12672�5 + 202770�6

+ ¯ . �2�

The contributions up to third order are known analytically
�5� and the 891 diagrams in fourth order have been evaluated
numerically by Kinoshita and co-workers �6�. In view of the
ever more precise experiments there are ongoing efforts �7�
to calculate all 12 672 diagrams in O��5� numerically and by
automated routines. This is a huge, heroic effort considering
the complexity of individual diagrams, the large cancella-

tions among them and the intricacies of infrared and ultra-
violet divergencies in the integrands.

Obviously new and more efficient methods would be most
welcome for a cross-check as well as further progress. How-
ever, it is useful first to consider a simpler field theory which
is nontrivial but free from ultraviolet divergencies. This is
supplied by the polaron problem—the field theory of a single
nonrelativistic electron slowly moving in a polarizable crys-
tal and thereby interacting with an infinite number of
phonons. Similar as in quantum electrodynamics there exists
a large number of perturbative calculations for the ground-
state energy and other properties of the quasiparticle which is
made up by the electron and its surrounding cloud of virtual
phonons.

In this paper we investigate a method originally proposed
by Bogolyubov �Jr.� and Plechko �BP� �8� to obtain higher-
order terms in the ground-state energy of a polaron without
evaluating diagrams. As the polaron problem is the prototype
of the worldline approach to relativistic quantum field theory
�9–12� we believe that a similar method also holds promise
for high-order perturbative calculations in particle physics, in
particular QED.

Preliminary results have already been presented in Ref.
�13�. Here I give a detailed account of the analytical and
numerical methods which are required so that the BP method
works. The paper is organized as follows. In Secs. II and III
we recall the basics of the polaron model and the BP method.
Section IV gives an account of the necessary steps to obtain
reliable numerical results. These are presented and discussed
in Sec. V. The last section contains our conclusion and the
outlook for further work whereas more technical details are
collected in three appendixes.

II. THE POLARON PROBLEM—A NONRELATIVISTIC
FIELD THEORY

A model Hamiltonian describing the dressing of the bare
electron by a cloud of phonons has been given by Fröhlich

Ĥ =
1

2
p̂2 +� d3kâk

†âk + i�2�2���1/2� d3k

�2��3

1

	k	
�âk

†eik·x̂

− H.c.�, �âk, âk�
† � = ��3��k − k�� , �3�

where � is the dimensionless electron-phonon coupling con-*roland.rosenfelder@psi.ch
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stant. Due to its interaction with the medium the energy of
the quasiparticle is changed and it acquires an effective mass

Ep = E0 +
p2

2m� + ¯ . �4�

The aim is to calculate the power series expansion for the
ground-state energy of a nonmoving polaron

E0��� ¬ 

n=1

en�n �5�

as function of � �14�. The lowest-order coefficients are well
known

e1 = − 1, �6�

e2 =
1
�2

− ln�1 +
3

4
�2� = − 0.015919622 �7�

from Ref. �15�,

e3 = − 0.000806070 �8�

from Refs. �16,17�, but there has been no progress towards
higher-order terms.

In the path-integral approach �18� the �infinite� phonon
degrees of freedom may be integrated out exactly which
leads to an effective, two-time action

S�x� = �
0

�

dt
1

2
ẋ2 −

�

2�2
�

0

�

dtdt�

�
cosh���/2 − 	t − t�	��

sinh��/2�
1

	x�t� − x�t��	
. �9�

Here � is the Euclidean time or inverse temperature. Some
simplifications are possible: first, the symmetry between the
two times t , t� allows us to restrict the integration range of
the latter to 0� t�� t together with doubling the strength of
the interaction. Second, as we are only interested in the
ground-state energy E0 of the polaron which can be obtained
by the large-� limit of the partition function

Z ª� d3x�
x�0�=x���=x

D3xe−S�x� →
�→�

const e−�E0, �10�

we may replace

cosh��/2 − �t − t���
sinh��/2�

=
exp�− 	� + exp�− �� − 	��

1 − exp�− ��
→

�→�

exp�− 	� , �11�

where 	= t− t� is the relative time �19�. Thus, in the follow-
ing, we will use

S�x� = �
0

�

dt
1

2
ẋ2 −

�

�2
�

0

�

dt�
0

t

dt�
exp�− 	�

	x�t� − x�t��	
¬ S0 + S1

�12�

as a full polaron action.

Useful order-of-magnitude estimates for higher-order en-
ergy coefficients can be obtained in various approximate
treatments of the polaron problem. Most prominent and suc-
cessful among these is Feynman’s approach �18� in which a
quadratic trial action

St = �
0

�

dt
1

2
ẋ2 + �

0

�

dt�
0

t

dt�f�t − t���x�t� − x�t���2 �13�

is used as variational approximation for the full action �12�.
Feynman chose an exponential form of the retardation func-
tion with two variational parameters which are determined
by minimizing Jensen’s inequality. The corresponding energy
coefficients can be calculated analytically to high order �17�
as sketched in Appendix A. The result is

e1
F = − 1, e2

F = −
1

81
= − 1.234568 � 10−2,

e3
F =

16

729
−

56

6561
�7 = − 0.634366 � 10−3,

e4
F =

3200�10 − 633236

1594323
+

78496

531441
�7 = − 0.464315 � 10−4,

�14�

e5
F =

1673496632 − 6044800�10 − 70304�13

129140163

+
793600

43046721
�70 −

1476371144

301327047
�7 = − 0.395686 � 10−5.

�15�

However, one can do better by allowing the variational prin-
ciple to determine the best retardation function itself. Then
one gets �20,21�

e1
best = − 1, e2

best = − � 1

12
−

2

9�
� = − 1.2597803 � 10−2.

�16�

Note that e2
best is only slightly better than e2

F despite the
fact that the retardation function in the unrestricted varia-
tional approach has quite a different small-time behavior
than Feynman’s parametrization. This is due to the �relative�
insensitivity of the polaron energy to small-time dynamics.
In this respect four-dimensional field theories in the world-
line description are quite different, in particular realistic,
renormalizable ones similar to QED �12�. Appendix A also
describes how one can obtain numerically the higher-order
energy coefficients for the best quadratic approximation. We
have obtained the values

e3
best = − 0.64650 � 10−3, e4

best = − 0.4686 � 10−4,

e5
best = − 0.3940 � 10−5 �17�

which—again—are not very much different from the results
using the much simpler Feynman parametrization.
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III. THE BOGOLIUBOV-PLECHKO (BP) METHOD

In order to get the perturbative expansion of E0��� we use
the cumulant expansion of the partition function for large �

Z = Z0 exp�

n=1

�− �n

n!

n���� , �18�

where 
n��� are the cumulants with respect to S1 and Z0 is
the free partition function for a system confined in a large
volume.

The cumulants �or semi-invariants� are obtained from the
�normalized� moments

mn 
 �S1
n� ª C� d3x�

x�0�=x

x���=x

D3xS1
ne−S0�x� �19�

�here the � dependence is suppressed and the normalization
constant C is chosen such that m0=1� via the recursion rela-
tion


n+1 = mn+1 − 

k=0

n−1 �n

k
�
k+1mn−k. �20�

This is standard and easily proved by differentiating the char-
acteristic function �22�

��t� = �e−tS1� = 

n=0

�− �n tn

n!
mn = exp�


n=1
�− �n tn

n!

n�

�21�

with respect to t in moment and cumulant form

− 

n=0

�− t�n

n!
mn+1 = − ��t�


n=0

�− t�n

n!

n+1. �22�

If the moment expansion for ��t� is inserted on the right-
hand size one obtains after rearrangement

− 

n=0

�− t�n

n!
mn+1 = − 


n=0
�− t�n


k=0

n
1

k!�n − k�!

k+1mn−k

�23�

for all powers of t which establishes Eq. �20�. The first few
cumulants are


1 = m1, �24�


2 = m2 − m1
2, �25�


3 = m3 − 3m2m1 + 2m1
3, �26�


4 = m4 − 4m3m1 − 3m2
2 + 12m2m1

2 − 6m1
4, �27�


5 = m5 − 5m4m1 − 10m3m2 + 20m3m1
2 + 30m2

2m1 − 60m2m1
3

+ 24m1
5. �28�

For large � we then get the ground-state energy as zero-
temperature limit of the free energy

E0 = lim
�→�

�−
1

�
�


n=1

�− �n

n!

n��� �29�

since the free partition function does not contribute. By con-
struction the nth moment is proportional to �n and Eq. �20�
�and the examples� show that the cumulants share this prop-
erties. Comparing with Eq. �5� we see that

en =
�− �n+1

�nn!
lim
�→�

1

�

n��� . �30�

The moments mn. We calculate the moments mn by ex-
panding the paths in Fourier components

x�t� = �2�b0
t

�
+ 


k=1

�
2��

k�
bk sin� k�t

�
�, x ¬

�2�b0

�31�

so that

S0 = 

k=0

�

bk
2 �32�

and the functional integration is over the coefficients bk ,
k=0,1 , . . .. Writing

S1 = −
�

�2
�

0

�

dt�
0

t

dt�e−�t−t�� � d3p

2�2

1

p2 exp�ip · �x�t� − x�t����

�33�

we have

mn = �− �n �n

2n/2�
0

�

dt1 ¯ dtn�
0

t1

dt1� ¯ �
0

tn

dtn�

�exp�− �t1 − t1�� − ¯ − �tn − tn���

�� d3p1

2�2

1

p1
2 ¯� d3pn

2�2

1

pn
2

��exp�2i

m=1

n

pm · 

k=0

�

lk�tm,tm� �bk�� , �34�

where

lk�t,t�� = �
1

�2�
�t − t��: k = 0,

��

k�
�sin

k�t

�
− sin

k�t�

�
� : k � 1 � �35�

and

�O� ª
�d3b0d3b1 ¯ O�b0,b1, . . . �exp�− S0�b0,b1, . . . ��

�d3b0d3b1 ¯ exp�− S0�b0,b1, . . . ��
�36�

is the average with respect to the free action S0.
As a Gaussian integral over the bk’s this average can be

done easily and one obtains
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mn = �− �n �n

2n/2 �
m=1

n ��
0

�

dtm�
0

tm

dtm��exp�− 

m=1

n

�tm − tm� ��
� �

m=1

n �� d3pm

2�2

1

pm
2 �exp�− 


k=0

� �

m=1

n

lk�tm,tm� �pm�2� .

�37�

If we now write the mth Coulomb propagator as

1

pm
2 =

1

2
�

0

�

dum exp�−
1

2
pm

2 um� �38�

then all momentum integrations can be performed and give
the result

mn = �− �n �n

�4��n/2 �
m=1

n ��
0

�

dtm�
0

tm

dtm��
0

�

dum�
�exp�− 


m=1

n

�tm − tm� ��
� �detn A�t1, . . . ,tn;t1�, . . . ,tn�;u1, . . . ,un��−3/2.

�39�

Here �A� is the n�n matrix made up by the elements

�A�ij = 2

k=0

�

lk�ti,ti��lk�tj,tj�� + ui�ij ¬ aij + ui�ij . �40�

It is essential that the infinite sum over the modes k can be
performed analytically. Using Eq. �1.443.3� in Ref. �23�



k=1

�
cos kx

k2 =
�2

6
−

�x

2
+

x2

4
, 0 � x � 2� �41�

we indeed have



k=1

�
1

k2�2 sin
k�x

�
sin

k�y

�

=
1

2

k=1

�
1

k2�2�cos
k��x − y�

�
− cos

k��x + y�
�

�
=

1

2�
�min�x,y� −

xy

�
�, 0 � x,y � � �42�

and, therefore,

aij = min�ti,tj� − min�ti,tj�� − min�ti�,tj� + min�ti�,tj�� .

�43�

Using min�x ,y�= �x+y− 	x−y	� /2 this may also be written as

aij =
1

2
�− 	ti − tj	 + 	ti − tj�	 + 	ti� − tj	 − 	ti� − tj�	� . �44�

Note that aij =aji and that

aii = ti − ti� ¬ 	i � 0 �45�

since ti� ti�. This is a special case of the more general fact
that �A� is a positive definite matrix �otherwise the momen-

tum integral would not converge� �24�. Well-known theorems
of matrix analysis �25,26� then guarantee that the principal
minors of all orders are non-negative and the diagonal ele-
ments are just the ones of lowest order.

Introducing total and relative times

	i ª ti − ti�, 
i ª
ti + ti�

2
�46�

we have

mn = �− �n �n

�4��n/2 �
m=1

n ��
0

�

d	m�
	m/2

�−	m/2

d
m�
0

�

dum�
�exp�− 


m=1

n

	m�
� �detn A�	1, . . . ,	n,
1, . . . ,
n;u1, . . . ,un��−3/2.

�47�

Due to time-translational invariance, the nondiagonal matrix
elements, say a12, only depend on three variables which we
denote by

S ª 
1 − 
2, r ª
1

2
�	1 − 	2�, s ª

1

2
�	1 + 	2� � 0.

�48�

Then one has

a12 =
1

2
�	S + s	 + 	S − s	 − 	S + r	 − 	S − r	�

= �s − 	r	 for 	S	 � 	r	 ,
s − 	S	 for 	r	 � 	S	 � s ,

0 for 	S	 � s .
� �49�

Figure 1 shows that a12 is indeed a nonanalytic function
of the times as expected from the absolute values in Eq. �44�.
Note that it is even in S ,r ,s. If we would split up the inte-
gration region into subregions where the time differences
have definite sign we would get rid of that complication at
the price of considering many different contributions. This is
exactly what happens in the diagrammatic approach and is
the source of the proliferation of diagrams in high-order per-
turbation theory.

FIG. 1. �Color online� The nondiagonal matrix element a12 of
the matrix �A� as a function of the time variables defined in Eq.
�48�.
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IV. HOW TO MAKE THE BP APPROACH NUMERICALLY
FEASIBLE

Equation �30� together with Eqs. �20� and �39� specify
how to calculate the nth-order coefficient en for the pertur-
bative expansion of the polaron ground-state energy. Taken
at face value one needs to evaluate a 3n-dimensional integral
at large �asymptotic� values of the inverse temperature �.
While this seems doable in principle, it is clear that in prac-
tice precise values of en or the numerical feasibility of the
whole approach need further improvements and refinements.
As these practical questions have not been addressed at all in
Bogoliubov and Plechko’s paper �8� we will describe several
steps crucial for success.

A. Additional integrations

It is obvious that any reduction in the dimensionality of
the integral to be evaluated numerically will be of great help.
As explained above the integrations over the times can only
be performed by splitting the integration regions in many
subregions leading to the time-honored diagrammatic ap-
proach. However, the dependence on the auxiliary variables
ui is simple and analytic and therefore it is possible to per-
form some of the integrations over them by expanding the
n�n determinant detn A into cofactors �27�. For example,
the dependence on un is simply obtained by expanding with
respect to the nth row �or column�

detn A = unAn + detn A�un = 0� , �50�

where An denotes the determinant of the matrix which is
obtained from �A� by removing the nth row and the nth col-
umn, i.e., it is a special �n−1�� �n−1� determinant known as
principal minor �28�. Therefore the integration over un in Eq.
�39� can be easily performed:

Dn�1,2, . . . ,n� � ª �
0

�

dun detn
−3/2 A�1,2, . . . ,n�

=
2

An
�detn A�un = 0�

. �51�

Here we use the short-hand notation iª �ti , ti� ,ui� and the
integration over un is indicated by underlining the nth argu-
ment. The dependence on un−1 is obtained similarly:

An = un−1An−1,n + An�un−1 = 0� , �52�

detn A�un = 0� = un−1An−1�un = 0� + detn A�un−1 = un = 0� .

�53�

Here An−1,n denotes the determinant �principal minor� of the
matrix which is obtained from �A� by removing both the �n
−1�th and the nth row and column. The subsequent integra-
tion over un−1 is therefore still an elementary one �un−1=un
=0 is understood in all determinants from now on�

Dn�1,2, . . . ,n − 1,n� �

ª �
0

�

dun−1�
0

�

dun detn
−3/2 A�1,2, . . . ,n�

= �
0

�

dun−1
2

un−1An−1,n + An

1
�un−1An−1 + detn A

�54�

but depends on the sign of the combination AnAn−1
−An−1,n detn A. This is fixed since all the coefficients in the
integrand are principal minors of the positive semidefinite
matrix �A� which not only are non-negative themselves but
also obey the Hadamard-Fischer inequality �Ref. �25�, Eq.
�7.8.9��

An−1An � An−1,nA �55�

�A
detnA�. Therefore the integration over un−1 gives �see,
e.g., Ref. �29�, Eq. �192.11��

Dn�1,2, . . . ,n − 1,n� � =
4

�An−1,nAn−1An

arcsin �xHF

�xHF

, �56�

where

0 � xHF ª 1 −
An−1,nA

An−1An
� 1 �57�

is non-negative and does not exceed unity as needed for a
proper argument of the arcsin function.

Let us illustrate that for the case n=2 where all principal
minors can be evaluated easily. With Eqs. �25� and �39� one
then obtains


2 =
�2

4�
�

0

�

dt1dt2�
0

t1

dt1��
0

t2

dt2�e
−�t1+t2−t1�−t2��

��D2�1� ,2� � − D1�1� �D1�2� ��

=
�2

�
�

0

�

dt1dt2�
0

t1

dt1��
0

t2

dt2�e
−�t1+t2−t1�−t2��

�
1

�a11a22

f2� a12

�a11a22
� , �58�

where

f2�x� ª
arcsin�x�

x
− 1. �59�

Thus the second cumulant �and therefore the second energy
coefficient� would vanish without the nondiagonal matrix el-
ement a12, i.e., the correlation between the times when the
two phonons have been emitted �absorbed�.

B. Extrapolation for �\�

A crucial question for the feasibility of the BP approach is
how the asymptotic limit �=� is reached. From Appendix B
where the cases n=1,2 are treated explicitly we expect


n��� → �en + dn + O�e−�/��� �60�
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so that from Eq. �30� only a rather slow convergence to the
asymptotic value is expected:

en = lim
�→�

�en +
dn

�
� . �61�

This can be greatly improved not by dividing 
n��� by � but
by taking the derivative of 
n���, i.e., considering

en��� ª
�− �n+1

�nn!
lim
�→�

�
n���
��

�62�

which approaches the asymptotic value exponentially

en��� →
�→� �

��
��en + dn + O�e−�/���� = en + O�e−�/���

�63�

—at least in the analytical examples given in Appendix B for
n=1,2.

We therefore will assume that for large enough �

en��� → en +
an

��
e−� �64�

for all values of n in the following. Alternatively, the behav-
ior

en��� →
�→�

en +
an

��n
e−� �65�

will be fitted to the numerical data if they are precise enough
to determine also the power �n.

Moreover, evaluating the differentiation with respect to �
also lowers the dimension of the integral which has to be
evaluated numerically because the variable � enters as upper
limits of the multidimensional integral �47�. Writing the cor-
responding cumulant as


n ¬ �− �n �n

�4��n/2�
j=1

n ��
0

�

d	 j�
	j/2

�−	j/2

d
 j� �66�

�Fn�	1,
1;	2,
2; . . . ;	n,
n�

we find no contribution by differentiating the upper limit of
the 	 j integration since the range of 
 j then vanishes. Thus

�
n

��
=

�− ��n

�4��n/2�
j=1

n ��
0

�

d	 j�

i

n

�
k�i

��
	k/2

�−	k/2

d
k�
�	Fn�	1,
1;	2,
2; . . . ;	n,
n�	
i=�−	i/2

. �67�

For example, for n=2 we have

�
2

��
=

�2

�
�

0

�

d	1d	2
1

�	1	2

e−�	1+	2�

���
	2/2

�−	2/2

d
2f2� a12

�	1	2
�


1=�−	1/2
+ �1 ↔ 2�� .

�68�

C. Symmetrization

We may exchange simultaneously

	 j,
 j ↔ 	k,
k, j � k = 1, . . . ,n �69�

in the integrand of Eq. �67�. There are n! ways of doing that
and thus

��n

��
=

�− ��n

�4��n/2�
j=1

n ��
0

�

d� j��
i

n

�
k�i

��
�k/2

�−�k/2

d�k� 1

n!

���
permut.

Fn�	� j,�k
�

¬Fn
symm�	�j,�k
�

�
�i=�−�i/2 �70�

and the domain of integration can be reduced �30�:

�
n

��
=

�− ��n

�4��n/2�
0

�

d	1 ¯ �
0

	n−1

d	n

i

n

�
k�i
���

	k/2

�−	k/2

d
k�
�Fn

symm��	 j,
k���

i=�−	i/2

. �71�

Again taking n=2 as simple example we find from Eq. �68�
that F2

symm=2F2 as the integrand is already completely sym-
metric. Hence

�
2

��
=

2�2

�
�

0

�

d	1�
0

	1

d	2
exp�− 	1 − 	2�

�	1	2

����
	1/2

�−	1/2

d
1f2� a12

�	1	2
��


1=�−	1/2

+ �1 ↔ 2�� ,

�72�

where we have used aii=	i. Further evaluation of Eq. �72� is
presented in Appendix B. For n�2 we have to perform the
symmetrization explicitly as the integrations over un ,un−1
lead to a nonsymmetric integrand.

D. Mapping

Finally for Monte Carlo integration we need a mapping to
bring all integration variables into the hypercube �0,1�. After
some experimentation we have chosen

ui = 	i� 1

�i
2 − 1�, i = 1,2, . . . ,�n − 2� �73�

and

	1 = �s1
2, 	i = 	i−1si

2, i = 2, . . . ,n , �74�


i = �� − 	i�Si +
1

2
	i �75�

as transformation of the remaining variables. Here all
�i ,si ,Si� �0,1�. Equation �74� removes possible square-root
singularities which are seen in the examples for n=1,2 in
Appendix B—these are integrable analytically but would
pose severe problems for numerical integration. More refined
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mappings of the relative times �for example, to include the
exponential suppression� have been tried but did not result in
significant improvements.

V. NUMERICAL RESULTS

A. A test: e3

We have tested our approach by determining the third-
order coefficient e3 which has been calculated by Smondyrev
�16� with later improvements in accuracy �17�. Table I lists
the values of e3��� obtained by Monte Carlo integration us-
ing the classic VEGAS program �31� with nMC=4.9�108

function calls per iterations. We have used 100 iterations for
each � value. Thus the total number of function calls was

ntot
�3� = nMCnit = 4.9 � 1010. �76�

Figure 2 shows that e3��� monotonically approaches
Smondyrev’s value with increasing �. The sheer fact that
e3��� converges to a constant value at large � is a good
signal: individual moments mn would behave as �n for large
values of � but the construction of the cumulants takes away
all these � powers except the linear one which contains the
information about the ground state energy.

We have fitted these data with the ansatz �64� which, of
course, only holds for asymptotic values of �. Therefore the
lower limit �min of the fit range ��min,�max� was successively
raised until the �2 /NDF of the fit reached a minimum. This is
displayed in Table II. If �min is too close to �max the degrees
of freedom decrease which should cause the �2 /NDF to in-
crease in turn �32�. This fitting strategy yielded

e3 = − 0.8056�8� � 10−3. �77�

If we allow the more general ansatz �65� we obtain as best fit

e3 = − 0.8055�6� � 10−3 �78�

and

�3 = 0.55�3� . �79�

The above error estimates may be a little bit optimistic since
we have taken the VEGAS errors at face value. In addition, the
power �3 and the parameter a3 in the fit function �65� turn
out to be highly correlated. Nevertheless the exp�−�� /��
behavior also seems to hold for higher cumulants and the
extrapolated result is in good agreement with Smondyrev’s
analytical result �8�. The main message of this test therefore
is that �our implementation of� the BP method is working
and able to give accurate values for the perturbative expan-
sion of the ground-state energy of a polaron.

B. A new coefficient: e4

When applying the previous approach to the calculation
of the first unknown coefficient e4 an unpleasant outcome is
found: as seen in Fig. 3 for a fixed value of �=5 the conver-
gence with the number of function calls is very slow. Since
the cancellations in the integrand are more severe for the
large � which is needed for determining e4 only a very rough
determination of this coefficient was possible in acceptable
CPU time.

Fortunately a solution was found by performing the re-
maining integrations over ui, i=1,2 by a deterministic inte-

TABLE I. Third-order energy coefficient e3��� from the deriva-
tive of the third cumulant as a function of the inverse temperature
�. The numerical results were obtained with the Monte Carlo rou-
tine VEGAS for evaluating the full six-dimensional integral. Num-
bers in parenthesis are the estimated errors in units of the last digit.
The last column gives the �2 per degree of freedom �NDF� moni-
tored during the iterations. This should be close to one if the itera-
tions are consistent with each other.

� −e3����103 �2 /NDF

4.0 0.7474 �5� 0.969

4.5 0.7704 �7� 0.876

5.0 0.7846 �8� 0.836

5.5 0.7934 �10� 0.837

6.0 0.7987 �11� 0.821

6.5 0.8017 �13� 0.792

7.0 0.8033 �15� 0.768

7.5 0.8039 �17� 0.775

8.0 0.8041 �19� 0.772

FIG. 2. �Color online� Monte Carlo results for the derivative of
the third cumulant as a function of the Euclidean time �inverse
temperature� �. The total number of function calls is denoted by ntot

and the full �open� circles are the points used �not used� in the fit
�see Table II�.

TABLE II. Extrapolation of e3��� to �=� using the data from
Table I, the fitting range �� ��min,�max� and the fixed power �3

=0.5 in the ansatz �64�. The last column gives the �2 /NDF of the
two-parameter fit where NDF=number of data points −2.

�min �max −e3�103 �2 /NDF

4.0 8.0 0.8043 �6� 0.989

4.5 8.0 0.8052 �7� 0.138

5.0 8.0 0.8056 �8� 0.048

5.5 8.0 0.8055 �10� 0.058
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gration routine. While such an option is not available for the
time integrations for which the integrand is nondifferentiable
�see Fig. 1� it is possible for the integration over the auxiliary
variables ui where the dependence is an analytic one �see
Eqs. �39� and �40��.

We have used the powerful tanh-sinh integration proce-
dure �33� which—after a judicious transformation of
variables—is nothing else than the trapezoidal approxima-
tion to the transformed integral

�
a

b

dxf�x� � h
b − a

2 

k=−kmax

kmax

wkf�b + a

2
+

b − a

2
xk� �80�

with precalculated abscissae xk and weights wk. Since this
quadrature rule seems not to be very well known �see, how-
ever, Ref. �34�� Appendix C gives a short account of its basic
features together with details of our implementation. Having
in mind an application to our multidimensional case the con-
vergence rate with the number of function calls

nt = 2kmax + 1 �81�

is of paramount interest. In the one-dimensional case the
error may decrease as fast as exp�−cnt / ln nt� �35,36� depend-
ing on the analyticity domain of the transformed function
f�x�. However, without any knowledge about that and in a
multidimensional application, such an error estimate is of no
help and we have to test the convergence of the quadrature
rule with increasing nt. The outcome is also shown in Fig. 3
as function of

ntot
�4� = nt

2nMCnit �82�

and demonstrates an improvement by two orders of magni-
tude compared to the previous approach which fully evalu-
ated the nine-dimensional integral by stochastic methods.

Figure 4 shows a comparison with Gaussian integration
which also gives fairly good results.

This improvement now allows a much more precise de-
termination of the coefficient e4 �and, of course, also of the
third-order coefficient �37��. Table III contains the data for
e4��� from �=4 to �=8 each with 12 iterations; the first 2
iterations were used for establishing the optimal grid while
the following 10 were utilized for the statistics �denoted by
nit=12�2� in the following�. In addition to the classic VEGAS

program �as in the previous test for e3� we also have used the
VEGAS program from the CUBA library �38� which employs
Sobol quasirandom numbers. This allowed to extend the
range of inverse temperatures up to �=10. Typical run times
were about 1 day on a 2.4 GHz PC. It is seen that for all �
there is agreement between the two data sets within the error
bars. Despite larger statistics and higher accuracy in the de-
terministic integration the VEGAS �CUBA� routine returns
larger errors which reflects our experience that the VEGAS

�classic� error estimate often is too optimistic. This is also
corroborated by the observation that at various � values the
VEGAS �classic� results have an unacceptable large �2 /NDF
indicating inconsistencies between different iterations within
the given error bars.

But also for the VEGAS �CUBA� results the probability that
the error is unreliable increases with the value of �. This just
reflects the fact that the cancellations inside the integrand are
becoming more and more challenging at high �. Fitting the
VEGAS �CUBA� data with the asymptotic ansatz �64� yields

e4 = − 0.5328�9� � 10−4. �83�

Data and best fit are shown in Fig. 5. The more general
ansatz �65� leads to

e4 = − 0.5330�7� � 10−4 �84�

with �4=0.35�7�. We therefore take

FIG. 3. �Color online� Convergence of the fourth-order coeffi-
cient e4��=5� for a fixed value of the inverse temperature � as
function of the total number of function calls ntot. Square �blue�
points denote the case where the full nine-dimensional integral was
evaluated by the Monte Carlo routine VEGAS, �red� circles show the
result if two of the integrations are done by the deterministic tanh-
sinh-quadrature rule and the rest stochastically.

FIG. 4. �Color online� Comparison of deterministic integration
routines for e4��=5� as a function of the number of integration
points. The number of Monte Carlo calls �nMC� and iterations �nit� is
kept fixed. An open symbol indicates a Monte Carlo result with
inconsistent iterations.
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e4 = − 0.533�1� � 10−4 �85�

as our final result.

C. A further step: e5

We have extended the BP approach to the calculation of
the fifth-order coefficient e5���. Numerically this is much
more challenging than the fourth-order calculation since
these coefficients drop by roughly one order of magnitude in
each order. This has to be achieved by cancellation in a 12-
dimensional integral over a much more complicated inte-
grand leading to much larger CPU times. Nevertheless the
combination of deterministic integration and Monte Carlo
integration leads to reasonable results. Figure 6 shows a
slight advantage of the tanh-sinh integration rule compared
to Gaussian integration. Of course, due to the more severe
cancellations in the 12-dimensional integrand higher accu-
racy, i.e., a larger number of deterministic integration points
is needed. At the same time the number of Monte Carlo calls
cannot be as large as before to avoid excessive running
times.

Another numerical problem which already plagued the
numerics for n=4 �and to a much lesser extent n=3� became
more severe in the present case: due to round-off errors the

Hadamard-Fisher inequality �55� was not fulfilled exactly all
the time: negative values down to

xHF
min = − 3.1 � 10−9 �86�

were recorded in double-precision arithmetic. Fortunately,
this “digit-deficiency error” �see Appendix B of Ref. �39��
does not affect the outcome of the Monte Carlo runs: checks
have shown that e5��=4� comes out the same whether the
negative argument is set to zero or the absolute value of xHF
is taken. In addition, the use of quadruple precision gives a
consistent result �within error bars� but reduces the violation
of the Hadamard-Fisher inequality considerably—at the
price of a 20-fold longer running time.

The data are collected in Table IV and show that at high �
it becomes more and more difficult to get consistent numeri-
cal results. Typical run times for each � value were about
1 month on a 3.0 GHz xeon machine. With the Intel ifort
compiler some loops could be vectorized leading to a reduc-

TABLE III. Same as in Table I but for the fourth-order term
e4���. The numerical results were obtained by a combination of
deterministic and stochastic integration of the nine-dimensional in-
tegral �see text�. Two different versions of the VEGAS program have
been used: the classic one with pseudorandom numbers and the
CUBA version with Sobol quasirandom numbers. The number of
points in the deterministic tanh-sinh integration is denoted by nt. In
the VEGAS �classic� evaluation nit=12�2� iterations were used at
each � value. Data marked by an asterisk have an unacceptable
�2 /NDF �underlined� indicating that the iterations do not lead to a
consistent error estimate. The last column gives the probability p
that the error estimate for the VEGAS �CUBA� results is not reliable
�p�0.95 is considered to be safe�.

�

VEGAS �classic�:
nMC=4.7�105

nt=23

VEGAS �Cuba�:
nMC=3�106

nt=25

−e4����104 �2 /NDF −e4����104 p

4.0 0.4549 �6� 0.637 0.4563 �10� 0.164

4.5 0.4828 �7� 0.995 0.4839 �11� 0.157

5.0 0.5013 �8�* 1.404 0.5020 �12� 0.170

5.5 0.5129 �8� 1.087 0.5136 �13� 0.406

6.0 0.5193 �9�* 1.739 0.5209 �14� 0.413

6.5 0.5239 �9�* 1.488 0.5254 �15� 0.480

7.0 0.5271 �10� 0.977 0.5287 �16� 0.534

7.5 0.5293 �10�* 1.830 0.5304 �18� 0.588

8.0 0.5309 �11�* 1.520 0.5309 �17� 0.646

8.5 0.5313 �19� 0.387

9.0 0.5320 �19� 0.355

9.5 0.5327 �20� 0.483

10.0 0.5333 �19� 0.553

FIG. 5. �Color online� Same as in Fig. 2 but for the derivative of
the fourth cumulant. The plotted data points are the VEGAS �CUBA�
results from Table III.

FIG. 6. �Color online� Comparison of tanh-sinh and Gaussian
integration for the derivative of the fifth cumulant at �=4. Notation
as in Fig. 4.
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tion in CPU time by more than a factor of 2. If we exclude
the data with �2 /NDF�1.3 and p�0.9 we obtain from a fit
with �5=0.5 fixed

e5 = − 0.378�4� � 10−5. �87�

This is shown in Fig. 7 together with the corresponding val-
ues of

ntot
�5� = nt

3nMCnit �88�

for the different data from Table IV. It is not possible to
determine the exponent �5 unambiguously from the data
which scatter too much. Taking a range of reasonable values
for �5 we end up with

e5 = − 0.38�2� � 10−5 �89�

as final result for the fifth-order energy coefficient. It is ob-
vious that the given error is more an educated �and conser-
vative� guess than a precise outcome of the fit.

VI. CONCLUSION AND OUTLOOK

We have shown that the Bogoliubov-Plechkov �BP� ap-
proach to calculate perturbative coefficients without dia-
grams works for the polaron problem �a simple field theory
of electrons and phonons� if it is combined with several
simple but crucial “tricks” to enhance the numerical feasibil-
ity and convergence. There is no indication that higher cu-
mulants are “unbounded from below” as was reported in Ref.
�40� in a much simpler anharmonic oscillator model �41�. It
is worthwhile to point out the advantages and disadvantages
of the BP approach compared to the standard perturbative
method.

While in the diagrammatic approach a factorial increasing
number of individual �zero-temperature� diagrams adds up to
the final result, much fewer terms �moments� �see, e.g., Eqs.
�27� and �28�� must cancel inside the finite-temperature inte-
gral in the BP approach to obtain a result which is linear in �
so that the perturbative ground-state energy of the polaron
can be determined. Of course, diagrams can be calculated
exactly at zero temperature whereas in the BP approach the
extrapolation �→� must be performed numerically. We
have demonstrated that by evaluating the derivative of the
various cumulants, an exponential convergence to the zero-
temperature limit can be exploited. Two new perturbative
coefficients e4 and e5 for the ground-state energy of a po-
laron have been obtained in this way and compared to results
from Feynman’s approximate treatment.

It should be emphasized that the BP approach says noth-
ing about the convergence of the perturbative series as it
works in a fixed order. For the polaron case it is known that
the ground-state energy is an analytic function of the cou-
pling constant �42� but this is not necessary and systems
where the perturbative expansion is known �or suspected�
not to converge could be treated as well. Indeed, there is
some hope that the methods which in the present work have
been applied successfully for a simple nonrelativistic field
theory may also be suited for relativistic field theories such
as QED and QCD if these are formulated in the worldline
formalism. Renormalization of the occurring divergencies is
the main new challenge which is under investigation.
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APPENDIX A: ENERGY COEFFICIENTS FROM A
QUADRATIC TRIAL ACTION

Here we briefly describe the results obtained with Feyn-
man’s variational method and with the best quadratic ap-

TABLE IV. Same as in Table III but for the fifth-order term
e5���. For all deterministic numerical integrations nt=25 integration
points were used in the tanh-sinh integration routine. The Monte
Carlo integrations were either done with the VEGAS �CUBA� program
�nMC=1.5�105� or the classic VEGAS routine with nMC=7.9�104,
nit=6�2� except for the data in boldface for which nMC=9.8�104,
nit=5�2�.

�
VEGAS �classic�

−e5����105 �2 /NDF

VEGAS �CUBA�
−e5����105 p

4.0 0.290 �4� 0.240 0.295 �10� 0.369

4.5 0.337 �7� 1.052 0.317 �25� 0.722

5.0 0.347 �6� 0.537 0.349 �18� 0.353

5.5 0.365 �14� 0.177 0.330 �22� 0.365

6.0 0.367 �7� 0.287 0.327 �26� 0.657

6.5 0.361 �8� 0.846 0.370 �18�* 0.956

7.0 0.365 �10� 0.984 0.394 �30� 0.404

7.5 0.390 �13� 1.296 0.390 �42� 0.329

0.390 (9) 0.592

8.0 0.366 �10�* 2.514 0.367 �35� 0.326

0.380 (15)* 1.755

FIG. 7. �Color online� Same as in Fig. 2 but for the derivative of
the fifth cumulant. Data points with open triangles are from statis-
tically inconsistent Monte Carlo iterations �see Table IV� and are
not used in the fit.
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proximation �43�. Employing Jensen’s inequality and work-
ing out the various path integral averages one finds that the
true ground-state energy is below the variational energy

E0 � Et = � + V , �A1�

where

� =
3

2�
�

0

�

dE�ln A�E� +
1

A�E�
− 1� , �A2a�

V = −
�

��
�

0

�

d	
exp�− 	�
��2�	��1/2 . �A2b�

Here A�E� is the “profile function” which is related to the
retardation function by

A�E� = 1 + 8�
0

�

d	f�	�
sin2�E	/2�

E2 �A3�

and �2�	� the “pseudotime” �44� given by

�2�	� =
4

�
�

0

�

dE
1

A�E�
sin2�E	/2�

E2 . �A4�

In Feynman’s original work the retardation function is pa-
rametrized as

fF�	� = Ce−w	 �A5�

which has the advantage that profile function, pseudotime
and the kinetic term can be calculated analytically:

AF�E� =
v2 + E2

w2 + E2 , �F
2�	� =

w2

v2 	 +
v2 − w2

v3 �1 − e−v	� ,

�A6a�

�F =
3

4

�v − w�2

v
. �A6b�

Here v=�w2+4C /w is used as parameter instead of the
original strength C. Setting 	=s2 we thus have to minimize

EF�v,w� =
3

4

�v − w�2

v
−

2�

��

v
w
�

0

�

dse−s2

��1 +
v2 − w2

vw2

1 − e−vs2

s2 �−1/2

=
3

4

�v − w�2

v
− �

v
w


n=0

�

bn�v��v2 − w2

vw2 �n

, �A7�

where �45�

bn�v� =
2

��
�− 1/2

n
��

0

�

dse−s2�1 − e−vs2

s2 �n

=
1

n!
k=0

n �n

k
��− �k�1 + kv2k−1. �A8�

For the actual calculation it is more convenient to introduce
c=v2 /w2−1=4C /w3 so that

EF�c,v� =
3

4
v�1 −

1
�1 + c

�2

− ��1 + c

n=0

�

bn�v�� c

v
�n

�A9�

and to expand the parameters as

c = c1� + c2�2 + ¯ , �A10�

v = v0 + v1� + v2�2 + ¯ . �A11�

Including terms up to second order in � one finds v0=3 ,c1
=4 /27, and EF→−�−�2 /81. In higher orders the minimiza-
tion always leads to linear equations for the coefficients
cn ,vn so that they can be solved easily. With the help of a
symbolic algebra system �such as MAPLE� the higher-order
coefficients en

F can then be evaluated in a straightforward
manner and are given in Eqs. �14� and �15�.

It should be noted that in lowest order also the retardation
parameter w=3+O��� instead of w→1 as one would have
expected naively. This is due to the wrong small-	 behavior
in the ansatz �A5� for Feynman’s retardation function and
would be corrected by an “improved parametrization” �10�

f I�	� = xI
�

6��

exp�− wI	�
	3/2 . �A12�

It is easy to check that both xI ,wI→1+O��� for small �.
However, one can do even better by letting the functional
form of the retardation function free. In this “best quadratic
approximation” �43� one finds

fbest�	� =
�

6��

exp�− 	�
��best

2 �	��3/2 �A13�

for which Eq. �A12� is a convenient approximation since one
knows that generally

�2�	� ——→
	→0

U0�	� 
 	 . �A14�

Indeed, inserting U0�	� into the virial expression for the po-
laron ground state energy �43�

Evirial = −
�

��
�

0

�

d	
exp�− 	�
��2�	�

�3

2
− 	� �A15�

one obtains Evirial→−� for �→0, i.e., e1
best=−1.

In second order we need the first-order change of the pro-
file function and pseudotime

Abest�E� = 1 + �a1�E� + �2a2�E� + ¯ , �A16�

�best
2 �	� = 	 + �U1�	� + �2U2�	� + ¯ . �A17�

From the connection �A3� between profile function and re-
tardation function one finds

a1�E� =
4

3��
�

0

�

d	
exp�− 	�

	3/2
sin2 E	/2

E2 �A18�

and therefore from Eq. �A4�
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U1�	� = −
4

3��

4

�
�

0

�

d	�
exp�− 	��

	�3/2

��
0

�

dE
sin2 E	/2 sin2 E	�/2

E4

= −
1

9��
�

0

�

d	�
exp�− 	��

	�3/2 	�
2 �3	� − 	�� ,

�A19�

where 	�=min�	 ,	��. It is possible to express the last inte-
gral exactly in terms of error functions and exponentials.
However, for the calculation of the second-order energy it is
better to plug this expression directly into the virial energy
�A15� and expand ��best

2 �	��−1/2 up to first order.
Substituting 	=s2, 	�=s�2 we then obtain

E0
best = − � −

2�2

9�
�

0

�

ds
3/2 − s2

s2 e−s2

��
0

�

ds�
s�

4 �3s�
2 − s�

2 �
s�2 e−s�2

+ O��3� , �A20�

where s�=min�s ,s��. Introducing polar coordinates s
=r cos �, s�=r sin � the integral with � /4���� /2 can be
combined with the one in which 0���� /4 and one obtains

e2
best = −

2

9�
�

0

�

drr3�3 − r2�e−r2

��
0

�/4

d� tan2 ��3 cos2 � − sin2 ��

= − � 1

12
−

2

9�
� . �A21�

Higher-order terms may be calculated numerically by using a
delay-type equation for the pseudotime which was found in
the variational approximation for worldline QED and dubbed
“variational Abraham-Lorentz equation” �VALE� �46�. It can
be easily checked that the corresponding equation for the
three-dimensional polaron case is

�̈best
2 �	� 


d2�2�	�
d	2 =

4

3
�

0

�

d	�
�V

��2�	��
X�	,	��

=
2�

3��
�

0

�

d	�
exp�− 	��

��best
2 �	���3/2X�	,	�� , �A22�

where

X�	,	�� ª �best
2 �	� −

1

2
�best

2 �	 + 	�� −
1

2
�best

2 �		 − 	�	�

�A23�

is the delayed pseudotime �due to the phonon degrees of
freedom which have been integrated out�. Equation �A22�
may be integrated with the boundary conditions �2�0�
=0, �̇2�0�=1 to give

�best
2 �	� = 	 +

2�

3��
�

0

	

d	��	 − 	��

��
0

�

d	�
exp�− 	��

��best
2 �	���3/2X�	�,	�� . �A24�

This gives an iterative scheme to calculate the perturbative
terms �A17� for the pseudotime and eliminates the corre-
sponding expansion �A16� for the profile function com-
pletely. Expanding in powers of � we obtain

Un�	� =
2

3��
�

0

	

d	��	 − 	��

��
0

�

d	�
exp�− 	��

	�3/2 Yn�	�,	��, n � 1.

�A25�

Defining the delayed pseudotime of order n as

Xn�	�,	�� ª Un�	�� −
1

2
Un�	� + 	�� −

1

2
Un�		� − 	�	� ,

n = 0,1, . . . , �A26�

the functions Yn are given by �for simplicity all arguments
are suppressed�

Y1 = X0, Y2 = X1 −
3

2

X0U1

	�
, �A27a�

Y3 = X2 −
3

2

X0U2 + X1U1

	�
+

15

8

X0U1
2

	�2 , �A27b�

Y4 = X3 −
3

2

X0U3 + X1U2 + X2U1

	�
+

15

8

2X0U1U2 + X1U1
2

	�2

−
35

16

X0U1
3

	�3 . �A28�

Once the perturbative terms Un�	� are known it is straight-
forward to calculate the energy coefficients en

best ,n�1 from
the virial energy �A15�

en
best = −

1
��
�

0

�

d	
exp�− 	�

�	
�3

2
− 	��n�	� �A29�

with �again suppressing the argument 	�

�1 = 1, �2 = −
1

2

U1

	
, �3 = −

1

2

U2

	
+

3

8

U1
2

	2 , �A30�

�4 = −
1

2

U3

	
+

3

4

U1U2

	2 −
5

16

U1
3

	3 , �A31�

�5 = −
1

2

U4

	
+

3

8

2U1U3 + U2
2

	2 −
15

16

U1
2U2

	3 +
35

128

U1
4

	4 .

�A32�
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We have evaluated Eqs. �A25�–�A32� by numerical inte-
gration. This is a nontrivial task because of the square-root
singularities at 	=0 and the nonanalytic behavior of �2�		
−	�	�. The first problem was solved by transforming to 	
=s2, 	�=s�2, etc., the second one by using the trapezoidal
integration rule so that s=s� is precisely hit �and not inte-
grated over�. In addition, for the first three intervals of each
integral a Newton-Cotes formula of open type �Eq. �25.4.21�
in Ref. �47�� was employed in order to avoid evaluation of
the various integrands at s=0. While this cures the integrable
singularities at the origin, it makes the treatment of the delay
more problematic: in general Un�		�	�	= 	s2�s�2	� is not in
the tabulated values of Un�	=s2� so that a three-term inter-
polation had to be used. In addition, the values of Un�1 for
small 	 were determined from the �	=0� limit of Eqs. �A22�
and �A23�

�̈2�0� = −
2�

3��
�

0

�

d	
exp�− 	�

��best
2 �	��1/2 , �A33�

i.e.,

Un�	� ——→
	→0 �−

1

3��
�

0

�

d	
exp�− 	�

�	
�n�	��	2 + ¯ ,

n � 1 �A34�

with the same functions �n�	� as used for calculating the
energy coefficients.

Although the trapezoidal �as well as the Newton-Cotes�
integration rule is not very precise �it exhibits errors of O�h3�
where h=smax /N is the increment� it offers an additional ad-
vantage: the tabulation of Un�	=s2� could be done step by
step avoiding the time-consuming calculation of the integral
over 	� in Eq. �A24� for each value of 	. Taking 	max=20 so
that the retardation factor exp�−	� is sufficiently small at the
upper limit of integration, we have achieved stable numerical
results with N=1000–1500. The numerical value of the
second-order coefficient �A21� was confirmed with high ac-
curacy �seven digits�.

APPENDIX B: ANALYTICAL RESULTS FOR THE
CUMULANTS �1 AND �2

Here we calculate the cumulants 
n for n=1,2. In the first
case a11= t− t�
	 and we have for the first moment

m1 =
− �

�4�
�

0

�

dt�
0

t

dt��
0

�

du
exp�− �t − t���
�t − t� + u�3/2

=
− �

�4�
�

0

�

dt�
0

t

dt� exp�− �t − t���
2

�t − t�

= −
�

��
�

0

�

d	�
	/2

�−	/2

d

exp�− 	�

�	

= −
�

��
�

0

�

d	�� − 	�
exp�− 	�

�	
. �B1�

The remaining 	 integration is easily done by substituting
s=	2. This gives


1 
 m1 = − ���� −
1

2
�erf���� +��

�
e−��

→
�→�

− ��� −
1

2
+

1
���

e−� + ¯ � , �B2�

where erf�x� is the error function �47�. Thus we indeed have
e1=−1 for the first-order coefficient of the expansion of the
ground-state energy in powers of the coupling constant. It is
also seen that the subleading term in 
1 is a constant which
disappears if one calculates the derivative of the cumulant
with respect to �:

�
1���
��

= − � erf���� →
�→�

− ��1 −
1

���
e−� + ¯ � .

�B3�

The analytical calculation is more involved for n=2. We
start from Eq. �72� for the derivative of the second cumulant
and substitute S=
1−
2 for the integration variable 
1,2
with 
2,1=�−	2,1 /2 fixed. This gives

�
2

��
=

4�2

�
�

0

�

d	1�
0

	1

d	2
exp�− 	1 − 	2�

�	1	2

��
0

�−s

dSf2� a12

�	1	2
� , �B4�

where s= �	1+	2� /2�r= �	1−	2� /2�0. The explicit form
�49� of a12 may now be used to write the last integral in Eq.
�B4� as

�
0

r

dSf2� s − r
�	1	2

� + �
r

min�s,�−2�

dSf2� s − S
�	1	2

� , �B5�

where the two parts correspond to the constant and linear
behavior of a12, respectively, on the �S�0� side of Fig. 1.
We thus obtain

�
2

��
=

4�2

�
�

0

�

d	1�
0

	1

d	2e−	1−	2

��	1 − 	2

�	1	2

f2��	2

	1
� + 2�

t0

�	2/	1

dtf2�t�� �B6�

with

t0�	1,	2,�� =
	1 + 	2 − �

�	1	2

��	1 + 	2 − �� . �B7�

One sees that for �→� t0�	1 ,	2 ,��→0 since the relative
times are bounded by the exponential retardation factors. In
other words,
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�
2

��
→

2�2

�
�

0

�

d	1e−	1�
0

	1

d	2e−	2

��	1 − 	2

�	2	1

f2��	2

	1
� + 2�

0

�	2/	1

dtf2�t��
�B8�

and the corrections are of order exp�−��. Putting 	2= t2	1,
the 	1 integration can be performed in the first term and an
integration by parts in the second term gives

�
2

��
→

4�2

�
�

0

1

dt� arcsin�t�
t

− 1�� 2

�1 + t2�2 −
1

2
� + O�e−�� .

�B9�

Finally a combination of partial integrations �to get rid of the
arcsin�t�� and integrals which MAPLE can do, leads to

�
2

��
→ �2�4 ln�1 + �2� − 3 ln 2 − �2� + O�e−�� .

�B10�

We thus obtain the second-order coefficient of the ground-
state energy as given in Eq. �7�.

In our approach it is very important to know the precise
way how Eq. �B10� approaches the asymptotic value calcu-
lated above. The easiest way to find out is to differentiate Eq.
�B6� again with respect to �:

�2
2

��2 =
2�2

�
e−��

0

�

d	2e−	2

��� − 	2

��	2

f2��	2

�
� + 2�

t0��,	2,��

�	2/�
dtf2�t��

−
4�2

�
�

0

�

d	1e−	1�
0

	1

d	2e−	2f2�t0�

�
�t0�	1,	2,��

��
¬ I1 + I2. �B11�

Consider first the contribution I1: since t0�� ,	2 ,��=�	2 /�
is the same as the upper limit of the integral, the latter van-
ishes so that

I1 =
2�2

�
e−��

0

�

d	2e−	2
� − 	2

��	2

f2��	2

�
� . �B12�

The substitution 	2=�s2 gives

I1 =
4�2

�
e−���

0

1

dse−�s2
�1 − s2�� arcsin s

s
− 1� �B13�

and in the limit �→� the exponential factor forces s→0 in
all other terms �48�. Therefore we may expand these in pow-
ers of s, integrate term by term, and obtain

I1 →
�→�4�2

�
e−���

0

1

dse−�s2�1

6
s2 −

11

120
s4 + ¯ �

=
�2

6��

exp�− ��
��

�1 + O� 1

�
�� . �B14�

For the contribution I2 we use

�t0

��
= −

��	1 + 	2 − ��
�	1	2

�B15�

so that

I2 =
4�2

�
�

0

�

d	1�
0

	1

d	2
��	1 + 	2 − ��

�	1	2

�e−	1−	2f2�	1 + 	2 − �

�	1	2
� . �B16�

Using the variables of Eq. �48� we obtain

I2 =
4�2

�
2�

�/2

�

ds�
0

�−s

dr
exp�− 2s�
�s2 − r2

f2� 2s − �

�s2 − r2�
�B17�

since the Jacobian of the transformation is 2. The substitu-
tions s=��1+u� /2, r=s sin � give

I2 =
4�2

�
��e−��

0

1

due−�u�
0

�0�u�

d�f2� 2u

�1 + u�cos �
� ,

�B18�

where sin �0�u�= �1−u� / �1+u�. Again, for �→� the low-u
behavior of the nonexponential part of the integrand deter-
mines the asymptotic behavior. We have

g�u� ª �
0

�0�u�

d�f2� 2u

1 + u

1

cos �
�

→
1

6
� 2u

1 + u
�2�

0

�0�u�

d�
1

cos2 �

+
3

40
� 2u

1 + u
�4�

0

�0�u�

d�
1

cos4 �
+ ¯ . �B19�

The � integrals are elementary �see, e.g., Ref. �29�, pp. 103,
104� and one obtains

g�u� →
u→01

3
u3/2 + O�u5/2� . �B20�

Therefore

I2 →
�→� �2

��

exp�− ��
�3/2 �B21�

is subasymptotic and after integration of Eq. �B14� with re-
spect to �large� � we obtain
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e2��� →
�→�

e2 −
1

12��

exp�− ��
�1/2 . �B22�

Comparison with Eq. �B3� shows that this is the same func-
tional approach to the asymptotic value as for the case n=1;
only the numerical coefficient is different.

APPENDIX C: TANH-SINH INTEGRATION

Here we briefly outline the “tanh-sinh-integration” proce-
dure proposed by Takahashi and Mori �33� and used in most
of our deterministic calculations. For a one-dimensional in-
tegral over the interval x� �−1, +1� it is based on the trans-
formation

x = g�t� = tanh�� sinh t�, t � �− �, + �� , �C1�

g��t� =
1

cosh2�� sinh t�
� cosh t �C2�

which has the effect that the transformed integrand
g��t�f�g�t�� vanishes at the boundaries along with all deriva-
tives �for sufficiently well-behaved f�x��. Therefore the
Euler-Maclaurin summation formula �see, e.g., Ref. �47�, Eq.
�25.4.7�� with a stepsize h does not get any �power� contri-
butions from the endpoints and we have

�
−1

+1

dxf�x� = �
−�

+�

dtg��t�f�g�t�� � h 

k=−�

k=+�

wkf�xk� �C3�

with

xk = g�kh� 
 tanh�� sinh�kh�� , �C4�

wk = g��kh� 

1

cosh2�� sinh�kh��
� cosh�kh� . �C5�

For large 	k	 and fixed h we find

xk → 1 − 2 exp�− �e	k	h� , �C6�

wk → 2� exp�− �e	k	h + 	k	h� �C7�

showing the “double-exponential” character of this transfor-
mation.

Although the value �=� /2 has been reported to be opti-
mal �35� we have found little difference in efficiency by
taking

� = 1, �C8�

which is our choice in this work. In practice, the infinite sum
in Eq. �C3� is finite since the weights wk decrease rapidly
with 	k	 as seen in Eq. �C7�. We use

h	k	 � hkmax = 3.4 �C9�

as a cutoff so that x�kmax= � �1−2.01�10−13� and w�kmax
=6.02�10−12. The number of function calls then is

nt = 2kmax + 1. �C10�

Conversely, if nt is chosen �as we do to estimate the run time
in advance� the increment is given by

h =
6.8

nt − 1
. �C11�

It is straightforward to extend Eq. �C3� to an arbitrary inte-
gral as shown in Eq. �80� in the main text.
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