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This paper presents the modeling of microwave �2.45 GHz� discharges with cylindrical symmetry, produced
in the absence of an external magnetic field by TM00 surface waves �SW� within either cylindrical or coaxial
structures. A stationary, one-dimensional �radial� moment model �including the continuity and the momentum-
transfer equations for electrons and positive ions, and the electron mean energy transport equations� is solved
self-consistently coupled to Poisson’s equation for the space-charge electrostatic field and the appropriated
Maxwell’s equations for the SW electromagnetic field. The model is solved for argon discharges over a broad
range of operating conditions: Average electron densities from 1011 to 3�1012 cm−3 and gas pressures from
10−2 to 5 Torr. Results are compared to those of a simplified classical model that disregards charge separation
near discharge boundaries, ignoring also the development of electron-plasma resonances caused by the severe
electron density gradients within space-charge sheath regions. Simulations show that the presence of a sheath-
resonance region has a strong influence on the values of the SW attenuation constant, particularly at low
pressures and high electron densities, affecting also the local budget of the discharge power deposition �hence
discharge maintenance�.
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I. INTRODUCTION

Surface-wave �SW� plasmas produced by microwave dis-
charges have been extensively investigated, both theoreti-
cally and experimentally, as reviewed in Refs. �1–9�. Recent
studies on SW discharges �10–13� pointed out the role of
plasma boundaries on the wave-plasma power coupling,
through an interplay between the development of charge
separation regions �termed space-charge sheaths� and local
electron-plasma resonances. Charge separation within
plasma sheaths is limited by a so-called space-charge �elec-
trostatic� field. Its self-maintenance involves a considerable
amount of energy transported from different discharge re-
gions towards plasma boundaries �electrodes, walls�, in order
to compensate for the enhanced losses therein �14–16�.
Electron-plasma resonances �17� develop in the vicinity of
over-dense plasma boundaries wherever �p�� �� is the SW
excitation frequency; �p=�nee

2 /�0me is the electron plasma
frequency; e and me are the electron charge and mass, re-
spectively; ne is the electron density; and �0 the vacuum
permittivity�, due to the severe gradient of ne in these re-
gions. The development of resonances at �p�� in SW plas-
mas �corresponding to an electron density neres

=7.45
�1010 cm−3 at 2.45 GHz� has been theoretically analyzed in
the past for both cylindrical and infinite planar configurations
�18–24�. Indirect evidence of the existence of such reso-
nances has been reported for SW discharges with various
configurations and dimensions, using different experimental
techniques: �i� Measuring a peak in the plasma-floating po-

tential difference �25�; �ii� detecting and monitoring the lo-
calized resonance peak with the SW field, sometimes corre-
lating this measurement with the observation of the electron
density at resonance position �17,26–29�; �iii� observing an
energetic population with the electron energy distribution
function, measured near the quartz window of a large-area
planar SW �30�; �iv� detecting high-energy electron fluxes
with directional Langmuir probes �31–35�. A review of ex-
periments and discussions about the existence of such reso-
nances can be found in �36�.

The sheath-resonance relationship is usually not ac-
counted for in classical discharge models for SW-sustained
plasmas. A considerable number of such models adopts a
physical description that separates the two main features of
the problem �electromagnetic and plasma production and
maintenance�, focusing exclusively on �i� the axial wave
propagation and attenuation �together with the wave-plasma
power transfer�, considering a plasma density whose radial
distribution either follows an imposed profile �usually of
Bessel-type� �37,38� or is just assumed as uniform
�20,39–50�; �ii� the structure of the electron energy distribu-
tion function �51–53�, the calculation of electron rate coeffi-
cients �54–56�, or the definition of a kinetic scheme respon-
sible for plasma production �57–59�, under the presence of a
uniform microwave field. These �separated� approaches were
recently upgraded in order to better describe the plasma pro-
duction mechanisms in axially inhomogeneous SW discharge
columns, by coupling an electromagnetic description to the
kinetic models of atomic �60,61� and molecular �62–65�
gases. However, the development of space-charge sheaths
and their interplay with electron-plasma resonances is still
not considered in these works. Self-consistent models includ-
ing a radial description of the discharge �22,66–70� also
avoid this issue, by neglecting the space-charge sheath re-
gion �assuming its thickness to be negligibly small or,
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equivalently, considering ambipolar conditions, even for
pressures as low as tens of mTorr�, and thus by stopping the
problem description at the sheath edge defined by Bohm’s
criterion �71�. Because this criterion overestimates the
boundary value of the electron density, the condition for
resonance formation is never attained for typical radially av-
eraged electron densities n̄e�1012 cm−3. An exception to this
are the works of Aliev et al. �22�, of Zhang et al. �70�, and of
Pérès et al. �72,73�. The first work �22� solves a self-
consistent �electromagnetic and kinetic� model for SW-
sustained discharges in the presence of plasma resonances.
However, ambipolar conditions are once again adopted and
the results presented are not radially resolved, as a conse-
quence of the spatial averaging associated to the nonlocal
approach, used in solving the electron Boltzmann equation.
The other works deal with the radial modeling of SW dis-
charges, produced either by a coaxial structure �70� or by a
magnetically confined cylindrical structure �72,73� �present-
ing also simulation results for a zero dc magnetic field�, at
low radially averaged electron densities �n̄e�5�109–5
�1010 cm−3 in �70� and �1010–1011 cm−3 in �72��. Although
ambipolar conditions are also considered here, these authors
report a plasma resonance phenomenon near the discharge
wall, when the models run at very low n̄e values. In both
cases, however, the description of the wave-plasma energy
coupling is still incomplete, because it neglects the formation
of the space-charge sheath.

The work reported in this paper is an extension of the
classical discharge models �66–70�, providing the radial de-
scription of magnetic-free SW-sustained plasmas at low and
moderate pressures. The update is mainly associated with the
inclusion of space-charge sheath regions near discharge
boundaries. This is achieved by developing a self-consistent,
stationary radial model, which couples the classical model
equations �charged particle transport equations and Max-
well’s equations� to Poisson’s equation �accounting for
charge separation across the discharge�, and to the nonlocal
electron energy balance equation �accounting for energy
transport and deposition, as to ensure sheath formation�. The
model is applied to the study of microwave discharges with
cylindrical symmetry, produced in the absence of an external
magnetic field by TM00 SWs within either a cylindrical or a
coaxial structure. Notice that the one-dimensional �radial�
description accounts for the maintenance of an axial plasma
slice, which can be used afterwards to deduce the axial dis-
tribution of the plasma density �39,67�.

Because our goal is the improvement of a discharge
model for SW-sustained plasmas, the study will adopt a sim-
plified kinetic scheme, considering electron collisions with
ground-state atoms only. This decision has two direct conse-
quences. First, by neglecting electron-neutral stepwise ion-
ization processes, model predictions will overestimate the
values of the electron mean energy. Second, by ignoring
electron-electron collisions, the model also excludes calcu-
lating the electron energy distribution function �EEDF� from
the solution to the electron Boltzmann equation. In fact, for
microwave discharges running at 2.45 GHz with relatively
high ionization degrees ��5�10−4, for typical 30 mTorr gas
pressure, 500 K gas temperature, and 2.5�1011 cm−3 elec-
tron density�, and for the particular case of gases �such as

argon� exhibiting a Ramsauer’s minimum in its momentum-
transfer cross section �74�, electron-electron collisions can
have a leading role in defining the electron distribution func-
tion. In this case it is preferable, and certainly closer to real-
ity, to assume a Maxwellian EEDF �69,74�, instead of calcu-
lating a nonequilibrium distribution function.

As mentioned, the formation of space-charge sheaths in
SW plasmas, at low electron densities, is automatically
linked to the development of electron-plasma resonances,
due to the strong decrease in ne down to the fulfillment of
condition �p=�, near discharge walls. In this case, the
sheath and the resonance phenomena are inseparable, hence
requiring a joint description, even if our main interest is with
the study of charge separation regions. By itself, the revised
formulation presented here immediately provides additional
information about the radial structure of SW-sustained plas-
mas, allowing for a control upon the influence of space-
charge sheaths in the local budget of discharge power. More-
over, the present model can add a contribution to the study of
the sheath-resonance relationship, for example, by providing
information about the relative positions of these structures, to
be subsequently used in the construction of more detailed
kinetic models.

The organization of this paper is the following. Section II
presents the general formulation of the model, Sec. III details
the description of resonance region, and Sec. IV summarizes
the numeric procedures adopted. Model results, focusing on
the comparison with predictions of a simplified classical
model and the analysis of discharge power deposition, are
presented in Sec. V and final remarks conclude in Sec. VI.

II. MODEL FORMULATION

The model developed here solves the stationary equations
for the radial transport of charged particles with the plasma
�obtained by calculating the moments of the corresponding
kinetic Boltzmann equation�, which are self-consistently
coupled to Poisson’s equation for the space-charge electro-
static field and the appropriated Maxwell’s equations for the
SW electromagnetic field. The moment model includes the
continuity and the momentum-transfer equations for elec-
trons and positive ions, and the electron mean energy trans-
port equations, adopting the drift-diffusion approximation
�16� for the electron particle and energy fluxes.

A. Framework

The model is applied to SW discharges in argon at fre-
quency � /2�=2.45 GHz, pressures p�10−2–5 Torr, gas
temperature Tg=500 K, and radially averaged electron den-
sities n̄e�1011–3�1012 cm−3. We consider two different ex-
citation structures with cylindrical symmetry �a cylindrical
structure and a coaxial structure�, assuming in both cases that
an azimuthally symmetric propagation mode develops in a
plasma �of radius R�1–10 cm�, with electrons and positive
ions. In the cylindrical structure �1,4,7,8� the plasma is sur-
rounded by a dielectric glass tube with external radius Rd
�R and by an outer conductor with radius Rc,out�Rd; in the
coaxial structure �12,27,34,35,75,76� the plasma is created
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between an inner antenna �metal rod with radius Rc,in, sur-
rounded by a layer of air with radius Rv�Rc,in and by a
dielectric with radius Rd�Rv�, and an outer conductor �ra-
dius R�Rd�.

These work conditions validate the use of a stationary
fluid description, as they yield ��1.5�1010 rad s−1��eff
�1.9�107–2.7�109 s−1, and ve /�eff�5.1�10−3–3.7
�10−5 cm�R�1–10 cm �where �eff /N�10−7−2.8
�10−8 cm3 s−1, according to pressure, is the effective
electron-neutral collision rate coefficient �77,78� and ve
�105 cm s−1 is the electron drift velocity obtained from
simulation results, see Sec. V A�.

Another relevant issue to discuss is the nature of the elec-
tron heating phenomena involved in plasma maintenance. In
SW discharges, these phenomena are usually associated to
the collisional �Joule� heating under the action of the SW
field. However, the fact that we are accounting for the devel-
opment of �very intense� electron-plasma resonances intro-
duces the possibility of electron heating due to noncollisional
mechanisms in the oscillating field, such as �i� transit-time
heating �19,79,80�, associated to the change of the SW-field
sharp peak during the transit-time interval 	 of an electron
across the resonance width 
; �ii� resonance mode conver-
sion, associated to the conversion of long-wavelength elec-
tromagnetic waves �with phase velocity vph�c, where c is
the vacuum speed of light� into short-wavelength electro-
static electron-plasma waves �with phase velocity vph�vth
= �kBTe /me�1/2�c, where Te is the electron temperature and
kB is the Boltzmann constant� �9,18,22,23,81�, produced in
the under-dense side of the sheath-resonance region �hence
for �2=�p

2 +3k2vph
2 ��p

2, where k is the wave number�,
where they are easily absorbed by collisional or Landau
damping.

According to our simulations, transit-time heating can
probably become a relevant phenomenon only for intermedi-
ate pressures ��100 mTorr�, in which case 	�2� /�. At
lower pressures the transit time is very small �	�2� /��,
because both the very thin resonance width and the high drift
velocity contribute for an “instantaneous” electron transit
across resonance region. At higher pressures the resonance
width increases substantially and the electron drift velocity
decreases, which leads to very long transit times satisfying
	�2� /�. In both these pressure regions, we expect elec-
trons to interact only with an effective high-frequency field
�55,68,78�, gaining energy mainly through collisional heat-
ing. For this reason, the transit-time heating mechanism will
not be considered here, although in Sec. V A we quantify the
variation with pressure of the electron transit-time 	 across
resonance region. Resonance mode conversion involves a
wave-plasma interaction inducing oscillations upon the elec-
tron density, and thus cannot be accounted for in the present
stationary transport description.

Because of these limitations, we have controlled the
physical coherence of the simulation results obtained within
this framework. The procedure searches for a single value of
the SW attenuation constant �, calculated by using two dif-
ferent �although complementary� descriptions: �i� Wave de-
scription, according to which � is obtained as an eigenvalue
to the solution of Maxwell’s equations; �ii� plasma descrip-
tion, which calculates � from the solution to the electron

power balance equation. This convergence upon � is only
achieved for an adequate description of resonance region, in
terms of both the interval size and the number of grid points
used in its numerical treatment, as will be shown in Sec. III.

B. Electron equations

The description of the electron particle and energy radial
transport uses the corresponding continuity and flux equa-
tions �82�

1

r

d

dr
�r
e� = ne�I, �1a�


e = − ne�eEs −
d�neDe�

dr
, �1b�

1

r

d

dr
�r
�� + 
eEs + �collne = Re��p�/eEhf

2 , �1c�


� = − ne���Es −
d�ne�D��

dr
. �1d�

In these equations, 
e is the electron radial flux; �I is the
electron ionization collision frequency; Es is the electrostatic
space-charge radial field; �e and De are the electron dc mo-
bility and free-diffusion coefficient, respectively; � is the
electron mean energy; 
� is the electron mean energy radial
flux; �coll is the power lost in collisions �elastic and inelas-
tic� per electron; Re��p� represents the real part of the
plasma conductivity; Ehf is the root-mean-square of the total
high-frequency �hf� electric field; �� and D� are, respec-
tively, the electron mobility and diffusion coefficient with the
energy flux.

The description of the plasma energy absorption is given
by the electron power balance equation �1c�. The terms on its
left-hand side �lhs� represent, respectively, the power lost �or
gained� due to convection �energy flow following the radial
transport of electrons in the discharge�, including a term of
drift under the action of the space-charge field and a �colli-
sionless� pressure gradient term �79,83� �see Eq. �1d��; the
power lost in diffusion against the dc space-charge field �col-
lisional cooling�; and the power lost in friction due to
electron-neutral collisions. Its right-hand side �rhs� repre-
sents the power gained from the SW field due to collisional
heating, which is usually represented by the quantity �ne
�Re��p� /eEhf

2 . Note that, in a classical local regime, the first
two terms on the lhs of Eq. �1c� are neglected, as in this
situation the energy acquired from the applied field is locally
dissipated in collisions.

Equations �1a�–�1d� are directly obtained by integration,
over all energies, of the radial-dependent electron Boltzmann
equation written under the classical two-term approximation,
which yields a drift-diffusion form for the corresponding par-
ticle and energy flux equations �16,82�. The expressions of
the electron transport parameters and rate coefficients, as in-
tegrals of the electron distribution function, can be found
elsewhere �82�.

The model adopts the local mean energy approximation
�16,84–89� �also termed nonlocal moment method, or just
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described mentioning the use of look-up tables of the elec-
tron collision rates as a function of the electron mean en-
ergy�, to introduce a radial dependence for the different elec-
tron parameters �EP�. The procedure starts by tabulating, as a
function of the electron mean energy, the different EP calcu-
lated from the corresponding EEDF. The table previously
constructed is then used to map the EP in space by taking, for
each position r, the value of the mean energy profile, ��r�, as
obtained from the solution to Eqs. �1c� and �1d� within the
model. In the local mean energy approximation, the EP are
assumed to bear the same relation to the space-dependent
mean energy, as they do for the mean energy calculated from
a homogenous EEDF. Therefore, this approximation ac-
counts for the nonlocality of the electron particle and energy
transport, allowing for a �indirect� modification of the EEDF,
related to the spatial variation of the macroscopic electron
density and mean energy. The local mean energy approxima-
tion can be used at low pressures �p�0.1 Torr�, where it
yields results in agreement with the popular nonlocal ap-
proach �15,90–98�, and can be extended to high pressures
�p�1 Torr�, where it becomes equivalent to the local field
approximation �84,99�. This latter approximation assumes
that electrons are in local equilibrium with the applied elec-
tric field, hence that electron parameters can be parameter-
ized as a function of this field, via the solution to the zero-
dimensional �0D� electron Boltzmann equation. The
homogenous EEDF used to implement the electron mean
energy approximation can, in principle, be obtained from the
solution to the homogeneous electron Boltzmann equation
�written under the two-term approximation�, for different
electric field values. However, following the recommenda-
tions of Ref. �69�, we will consider a Maxwellian EEDF, due
to the increased influence of electron-electron collisions �74�
in microwave discharges �i.e., for ���eff� at high ionization
degrees ��5�10−4�.

C. Ion equations

The description of the positive ion radial transport uses
the corresponding continuity and momentum-transfer equa-
tions �100�

1

r

d

dr
�rnpvp� = ne�I, �2a�

npvp = −
1

�p

1

r

d

dr
�rnpvp

2� + np�pEs, �2b�

where np is the ion density, vp is the ion radial drift velocity,
�p is the ion mobility, and �p=e /mp�p is the ion-neutral
momentum-transfer collision frequency �mp is the ion mass�.
Equation �2b� is written in the cold ion approximation, which
comes to neglect the diffusion term in the ion transport equa-
tions. In this approximation, Eqs. �2a� and �2b� present a
singularity �101� at critical position r=rc, where the ion drift
velocity vanishes, i.e., vp�rc�=0. This singularity can be re-
moved by introducing a regularity condition corresponding
to zero space-charge field, i.e., Es�rc�=0. For the simple case
of the �axis-symmetric� cylindrical structure this yields rc

=0, whereas for the coaxial structure the critical position is a
priori unknown, constituting an eigenvalue to the problem.

D. Field equations

The radial distribution of fields is obtained by solving
Poisson’s equation for the electrostatic space-charge field

1

r

d

dr
�rEs� =

e

�0
�np − ne� , �3�

and Maxwell’s equations for the TM00 mode of the SW elec-
tromagnetic fields �24�

d

dr
�B�r� = j

k0
2

�
r�iEz, �4a�

dEz

dr
= j

�

k0
2

k2

r�i
B�r , �4b�

Er = − j
�

k0
2

�

�i
B�. �4c�

In these equations, B� is the azimuthal component of the
magnetic field; Ez and Er are, respectively, the axial and ra-
dial components of the electric field �Ehf��Er

2+Ez
2 /�2�; �i

is the relative permittivity of medium i ��v=1 for air, �d
=3.8 for the dielectric glass, and �i=�p for the plasma�; �
=�+ j� is the propagation constant �with � the SW attenua-
tion constant and � its phase constant�; and k2�k0

2�i+�2,
with k0�� /c.

The description of the wave-plasma energy coupling, in-
cluding the formation of electron-plasma resonances, in-
volves the self-consistent calculation of the plasma relative
permittivity. The latter relates to the electron density radial
profile via the classical dispersion relation �1–9�

�p = 1 +
�p

j��0
� 1 − 	�p

�

2

− j
�eff

�
	�p

�

2

, �5�

where the last member was obtained in the so-called hf limit,
for which ���eff, yielding �p�0 for �p=� �or neres

=7.45
�1010 cm−3 at � /2�=2.45 GHz�. Note that this zero-
permittivity condition is in fact responsible for the develop-
ment of a plasma resonance, as it can be confirmed by ana-
lyzing Eqs. �4b� and �4c�. Further note that, in the coaxial
structure, this condition is fulfilled twice in the radial direc-
tion, near both �dielectric and metal� plasma boundaries,
leading to the formation of two electron-plasma resonances.

E. Boundary conditions and eigenvalues

In the cylindrical structure, boundary conditions for the
transport equations include symmetry conditions at discharge
axis �dne /dr�0�=0, dnp /dr�0�=0, d� /dr�0�=0, and Es�0�
=0�, a zero-current condition at the plasma-dielectric bound-
ary, 
e�R�=np�R�vp�R�, and the imposition of the electron
particle and mean energy fluxes at the same boundary


e�R� = 1
2ne�R��v��R� , �6a�
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��R� = 1
2ne�R��uv��R� , �6b�

where �v� and �uv� represent the mean values of v and uv,
respectively, calculated over the EEDF �u=mev2 /2e is the
electron kinetic energy in eV�. In the coaxial structure, the
set of boundary conditions include flux conditions similar to
�6a� and �6b�, imposed at both �dielectric and metal� bound-
aries limiting the plasma, the zero-current condition at the
plasma-dielectric boundary, and regularity conditions at the
critical position �vp�rc�=0, Es�rc�=0, and a closure relation
for np�rc� �101� obtained from Eqs. �2a�, �2b�, and �3�.

The boundary conditions for Maxwell’s equations impose
the continuity of the B� and Ez components at the interfaces
of two different media, with the following limiting condi-
tions: B��0�=0 and Ez�Rc,out�=0, or Ez�Rc,in�=0 and Ez�R�
=0, for the cylindrical or the coaxial structure, respectively.

Equations �1�–�5�, subject to the previous boundary con-
ditions, are solved for the excitation structures considered,
given the radially averaged electron density n̄e and the gas
density N= p /kBTg, yielding the eigenvalues rc �in the co-
axial case�, Ehf�0� /N or Ehf�Rc,in� /N �in the cylindrical or the
coaxial case, respectively�, and �, together with the radial
profiles of the charged particle densities �ne�r� and np�r��,
fluxes �
e�r�, np�r�vp�r�, and 
��r��, mean energy ��r�, and
fields �Es�r� and Ehf�r��.

F. Simplified model version

The results of the complete model developed here are
compared to those obtained with a simplified model version,
which adopts the approximations usually considered in the
classical description of SW discharges �66–70�. In particular,
the simplified model �i� neglects the sheath region, replacing
the flux boundary condition �6a� by Bohm’s criterion �71�

e�R�=ne�R�vs, with vs��kBTe /mp�1/2 the ion sound speed
and Te the electron kinetic temperature defined as kBTe /e
= �2 /3���0�; �ii� imposes the quasineutral ambipolar condi-
tions np�r�=ne�r� and 
e�r�=np�r�vp�r�, disregarding both
the ion continuity equation �2a� and Poisson’s equation �3�;
�iii� adopts the local field approximation �84,99�, instead of
the local mean energy approximation, neglecting the convec-
tion and space-charge field terms in the electron energy
transport equations �1c� and �1d�. As a result, the radial de-
pendence of the electron mean energy and the ionization fre-
quency �the only EP for which a spatial variation is consid-
ered, in these simplified models� follows that of the applied
SW field, Ehf�r�.

As mentioned, the main goal with this paper is the update
of classical SW discharge models. This is directly related to
the use of assumptions �i�–�iii� in these models and to the
strong impact that they have on simulation results, as will be
shown in Sec. V.

III. RESONANCE DESCRIPTION

The self-consistent solution to the discharge model pre-
sented in Sec. II requires a specific description of resonance
regions, in order to prevent the numerical problems associ-
ated with a rapid variation therein of parameters like the
plasma permittivity or the SW electric field. As an answer to

this problem, the Maxwell’s equations for the B� and Ez field
components are solved using a semianalytical approach,
which starts by obtaining its solution under an integral-
differential form �24�. In particular, Eqs. �4a� and �4b� are
integrated over a region of width � around the position of
each resonance center rres �at which Re��p�rres��=0�, yielding

B��r� = B�
0 −

1

r



r0

r

r��p�r��dr�

r0

r� k2�r��
�p�r��

B��r��dr�,

�7a�

Ez�r� = Ez
0 + j

�

k0
2


r0

r k2�r��
�p�r��

B��r��dr�, �7b�

with r0�rres−� /2. In these equations, B�
0 and Ez

0 are zero-
order expressions for the magnetic and the axial-electric
fields, respectively, given by

B�
0 =

r0

r 	B��r0� +
1

r0
2�p�r0�

d

dr
�rB��r��r0


r0

r

r��p�r��dr�
 ,

�8a�

Ez
0 = − j

�

k0
2

1

r0�p�r0�
d

dr
�rB��r��r0

. �8b�

Equations �8a� and �8b� are used as initial conditions for the
numerical iterative solution to Eqs. �7a� and �7b�. In these
equations, the second terms on the rhs are first-order correc-
tions to the fields, for a resonance width assumed much
smaller than the SW penetration length, i.e., ��k−1.

Strictly, the interval size � is a mathematical quantity,
which does not necessarily correspond to the physical reso-
nance width 
, defined in classical propagation theory
�21,102�. In this framework, the width 
 is obtained from a
condensed expression of Er �corresponding to the most in-
tense component of the SW electric field�, which captures its
main features around rres. At resonance, the behavior of Er is
mainly dependent on the plasma permittivity �5�, whose real
and imaginary parts can be essentially written as

Re��p�r�� � a�r − rres� , �9a�

Im��p�r�� � − s , �9b�

with �for �p�rres����

a � �d�Re��p��
dr

�
rres

� � �dne/dr�rres

ne�rres�
� , �10a�

s �
�eff�rres�

�
. �10b�

Therefore, in resonance region, Eq. �4c� for the radial com-
ponent of the SW electric field becomes �see also Eqs. �7a�
and �8a��
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Er�r� �
AB��rres��rres/r�
a�r − rres� − js

, �11�

where A�−j��� /k0
2�. The resonance width 
 is then defined

as the full width at half-maximum �FWHM� associated to the
square of the electric field amplitude

�Er	rres +



2

�2

=
�Er�rres��2

2
, �12�

which gives �for 
 /rres�1�


 = 2
�eff�rres�

�
� ne�rres�

�dne/dr�rres

� . �13�

Numerically, the interval�s� � is �are� calculated as to pro-
vide a description of resonance�s� �one or two, for the cylin-
drical or the coaxial structure, respectively� that ensures elec-
tron power conservation. In particular, we adopt an iterative
procedure upon the SW attenuation constant �, that changes
both the interval�s� � and the number of grid points used in
the numerical treatment of resonance region. Convergence
searches for a single value of �, obtained either as an eigen-
value to Maxwell’s equations �7a�, �7b�, �8a�, and �8b� or
from the electron power balance equation using
�39,44–46,67�

� =
1

2

dPgain/dz

Pinc
�

1

2

�plasma Re��p�/eEhf
2 2�rdr

�0c2

4e



structure
�ErB�

� + Er
�B��2�rdr

.

�14�

The numerator of Eq. �14�, dPgain /dz, is the total power, per
unit length, absorbed by the plasma �see Eq. �1c��, whereas
its denominator, Pinc, represents the local incident power
upon a discharge cross section �the superscript � accounts
for the conjugate complex�. As an example, Fig. 1 plots � as
a function of � /R, for different numbers of grid points Np,res
within resonance region. Results were obtained for a dis-
charge produced at 100 mTorr pressure and 1012 cm−3 aver-
age electron density, in a cylindrical structure �R=0.8 cm,
Rd=0.95 cm, and Rc,out=5 cm�. As shown, the match be-
tween the calculations of �, using either a wave description
or a plasma description, is ensured only for a correct combi-
nation of � and Np,res values, for example, adopting � /R=8
�10−4 and Np,res=100 in the conditions of Fig. 1. With this
formulation, the SW attenuation constant becomes the key
parameter for the description of the wave-plasma energy
coupling, providing also a way to check the physical coher-
ence of model results.

IV. NUMERICS

The fluid equations �1�–�3� are discretized using a second-
order finite difference representation in a nonuniform grid,
with local grid refinement near the integration boundary�ies�.
Due to the severe gradients in these regions, the flux equa-
tions �1b� and �1d� are discretized following the Scharfetter-
Gummel exponential scheme �103�. The solution to the fluid
equations adopts a leapfrog method, combined with a

Newton-Raphson algorithm to linearize the ion transport
equations �2a� and �2b�. The solution to Maxwell’s equations
�4a�–�4c� adopts a fourth-order Runge-Kutta implicit
method, outside resonance region�s�, shifting to the semiana-
lytic procedure described in Sec. III, for a region of width �
around each resonance center. The interval�s� �, together
with a local grid refinement within resonance region�s�, are
iteratively calculated as to ensure the same value of �, ob-
tained either as an eigenvalue to Maxwell’s equations or
from the electron power balance equation �see Sec. III�. Ei-
genvalues calculation involves a combination of bisection
and Newton-Raphson methods. Figure 2 presents the flow-
chart of the calculation scheme adopted. Notice that the de-
termination of eigenvalue Ehf�0� /N �or Ehf�Rc,in� /N in the
coaxial case� uses a two-step procedure, which involves the
normalization of the electron mean energy profile to some
reference value, for example ��rc� at critical point.

The model is solved in a 103–5�103 points grid, for
minimum relative step sizes between 10−6–10−7. The conver-
gence test is applied to the profiles of all calculated quanti-
ties and to the eigenvalues, checking for relative errors
smaller than 10−8.

V. RESULTS AND DISCUSSION

The model adopts the direct electron cross-sections set
deduced in Ref. �104� and the ion-neutral momentum-
transfer collision frequency of Ref. �105�. As mentioned, we
consider two different excitation structures with the follow-
ing geometrical dimensions: R=0.8 cm, Rd=0.95 cm, and
Rc,out=5 cm �for the cylindrical structure�; Rc,in=0.5 cm, Rv
=1.34 cm, Rd=1.5 cm, and R=7.5 cm �for the coaxial struc-
ture�.

A. Results for the cylindrical structure

The model is applied to the cylindrical structure consid-
ered, in view of a systematic analysis of the main features

10-4 10-3
2.04

2.06

2.08

B

δ / R

α
(1

0-2
cm

-1
)

A

FIG. 1. Surface-wave attenuation constant �, as a function of
� /R, for a cylindrical structure �R=0.8 cm, Rd=0.95 cm, and
Rc,out=5 cm�, at n̄e=1012 cm−3 and p=100 mTorr. Results were ob-
tained by calculating � as an eigenvalue to Maxwell’s equations
�curves A� or from the electron power balance equation �B�, for the
following number of grid points Np,res: 100 �solid curves�, 10
�dashed curves�, and 1000 points �dashed-dotted curves�.
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characterizing both the sheath-resonance region and the dis-
charge power deposition.

1. General characteristics

Figures 3�a� and 3�b� show the profiles of the reduced
electron density ne /ne�0�, calculated using both the complete
model developed here and its simplified version, at n̄e
=1012 cm−3 for p=0.03,0.1,0.5,5 Torr and p=30 mTorr for
n̄e=4�1011, 7�1011, 1012, 3�1012 cm−3, respectively.
From the results in these figures one observes that the elec-
tron density gradient near the dielectric boundary is severely
limited when the sheath region is neglected �as in the sim-
plified model version�, and that this effect is more noticeable
at low pressure regardless of n̄e. Moreover, the electron den-
sity profiles are strongly affected by pressure variations �ex-
hibiting a less homogeneous shape at high p�, whereas they
are much less dependent on n̄e. This behavior is related to a
reduction in the electron flux as the pressure increases, which
can be confirmed from Figs. 4�a� and 4�b� that show the
profiles of 
e /ne�0� for the same conditions as before. An
observation of these figures also reveals that, despite the dif-
ferences in the calculated electron flux profiles obtained with

the complete and the simplified models, both approaches
yield similar results for the boundary value 
e�R� /ne�0� at
low pressures �for all average densities considered here�.

The difference between the results obtained with the com-
plete and the simplified models can also be observed in Figs.
5�a� and 5�b�, which show the profiles of the electron mean
energy for various pressures at n̄e=1012 cm−3 and for various
average electron densities at p=30 mTorr, respectively. The
quasihomogeneous profiles obtained with the complete
model, which accounts for the nonlocal energy transport, are

Local mean energy approximation
EP calculations

(from Boltzmann table)

Change �'(rc)
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, en , R, Rd, Rc,out (or Rc,in , Rv, Rd, R)

FIG. 2. Flowchart of the calculation scheme for the modeling of
SW discharges with cylindrical symmetry. The information in pa-
rentheses refers to calculations in the coaxial structure. The critical
position rc is set equal to zero for calculations in the cylindrical
structure.
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FIG. 3. Radial profiles of the reduced electron density ne /ne�0�,
for the cylindrical structure at different work conditions. Results
were obtained using the model developed here �plain curves� and a
simplified model version that neglects the sheath region �curves
marked with circles�. �a� Results for n̄e=1012 cm−3 and the follow-
ing values of p �in Torr� �corresponding to the following values of
ne�0� �in cm−3�, as calculated with the complete model�: 0.03
�ne�0�=1.4�1012� �solid curves�; 0.1 �1.5�1012� �dashed curves�;
0.5 �1.8�1012� �dotted curves�; 5 �2.2�1012� �dashed-dotted
curves�. �b� Results for p=30 mTorr and the following values of n̄e

�in cm−3� �corresponding to the following values of ne�0� �in cm−3�,
as calculated with the complete model�: 4�1011 �ne�0�=5.8
�1011� �solid curves�; 7�1011 �1.0�1012� �dashed curves�; 1012

�1.4�1012� �dotted curves�; 3�1012 �4.2�1012� �dashed-dotted
curves�.
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in contrast with the radial increase in �, induced by the local
field approximation adopted in the simplified model. These
differences are especially important at low pressures, al-
though they are still very significant at high pressures near
the dielectric wall �see Fig. 5�a��. Moreover, the mean energy
profiles calculated with the complete model are little affected
by variations in the average electron density, contrarily to
those obtained with the simplified model �see Fig. 5�b��. No-
tice that the poor quality of the mean energy profiles calcu-
lated with the simplified model leads to a deficient descrip-
tion of the electron production and transport, as observed in
Figs. 3 and 4. However, as expected, both models yield
higher electron mean energies at low pressures, to compen-
sate for the higher losses of charged particles under these
conditions.

Figure 6�a� shows the radial distribution �across the cylin-
drical structure� of the SW electromagnetic field components
Er, Ez, and H���0c2B� �the latter multiplied by a factor of
103�, normalized to Ez�0�, at n̄e=1012 cm−3 and p
=100 mTorr �corresponding to a calculated incident power
Pinc�180 W�. For the same conditions, Fig. 6�b� plots the
radial profiles �across the plasma� of the total reduced hf field

Ehf /N, and the reduced electron density ne /ne�0�. One notes
the resonance peaks of the applied fields near the dielectric
wall �at r=0.8 cm�, due to the rapid variation of the electron
density �thus, of the plasma permittivity� in this region �see
the inset in Fig. 6�b�, where the horizontal dotted line marks
the value of the electron density neres

�.
Figures 7�a�, 7�b�, 8�a�, and 8�b� present, as a function of

the radial position across the plasma, the SW electric field
components Er and Ez �normalized to Ez�0��, calculated us-
ing both the complete model developed here and its simpli-
fied version, at n̄e=1012 cm−3 for p=0.03, 5 Torr and p
=30 mTorr for n̄e=4�1011, 3�1012 cm−3, respectively. Be-
cause Bohm’s criterion overestimates the boundary value of
the electron density, the condition for resonance formation is
not attained when using the simplified model, as can be ob-
served from the results in these figures �see, in particular, the
insets in Figs. 7�a� and 8�a��. In general, and for the range of
values analyzed here, the amplitude of both electric field
components increases with pressure �at constant n̄e�, but only
that of the axial component increases with the average elec-
tron density �at constant p�. Figures 7 and 8 show also that
the resonance peak becomes wider �and simultaneously less
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FIG. 4. Radial profiles of the reduced electron flux 
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intense� for either an increase in pressure �hence in the
electron-neutral collision frequency� or a decrease in the av-
erage electron density �hence in the electron density gradient
near the wall� �see the insets in Figs. 7�a� and 8�a��, thus
reproducing the behavior predicted by the theoretical expres-
sion of the resonance width �see Eq. �13��. In addition, there
is a perfect agreement between the values of 
, calculated
either analytically from Eq. �13� or numerically by estimat-
ing the FWHM of the resonance peak from simulations,
which confirms the coherence of model results. As an ex-
ample, Fig. 9 plots 
 vs p at n̄e=1012 cm−3, as obtained
using both calculation methods. As mentioned, the resonance
width 
 does not correspond to the interval size �. Simula-
tion results show that the ratio 
 /� can vary from 10−2 at
low pressures up to 10 at high pressures.

The position of the resonance relative to the nearby space-
charge sheath is an important issue, which relates to the spe-
cific features of energy absorption by the plasma, whose
knowledge can aid the construction of detailed kinetic mod-
els describing these structures. For example, it can provide
relevant information for the so-called nonlocal kinetic model
�or nonlocal approach� �90–98�, concerning the turning point
of the different electrons, i.e., the position at which they are
reflected by the space-charge potential. Notice that this non-
local approach applies only to confined electrons, whose to-
tal energy is lower than the wall potential, for which a spatial
averaging procedure can be applied to the isotropic compo-
nent of the corresponding Boltzmann equation, at low pres-
sures �p�0.1 Torr�. Therefore, the knowledge of the relative
sheath-resonance position can be used to define the confine-
ment boundary condition with the nonlocal kinetic model.
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FIG. 6. �a� Radial distribution �across the cylindrical structure�
of the SW electromagnetic field components, normalized to Ez�0�,
at n̄e=1012 cm−3 and p=100 mTorr �corresponding to ne�0�=1.5
�1012 cm−3�: Er �solid curve�; Ez �dashed curve�; H��1000 �dot-
ted curve�. �b� Radial profiles �across the plasma� of the total re-
duced hf field Ehf /N �solid curve�, and the reduced electron density
ne /ne�0� �dashed curve�, for the same conditions of Fig. 6�a�. The
inset is a blowup of this figure, over sheath region, where the hori-
zontal dotted curve is for neres

=7.45�1010 cm−3.
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the cylindrical structure at n̄e=1012 cm−3 and the following values
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version that neglects the sheath region �dashed curves�. The inset in
Fig. 7�a� is a blowup of this figure over sheath region.
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With this respect, Figs. 7 and 8 seem to show that the
resonance position shifts towards the corresponding plasma
boundary whenever the pressure decreases or the electron
density increases. Although this observation holds for n̄e
variations �regardless of p�, it is violated when p varies
within a range below 100 mTorr �probably due to the devel-
opment of extended plasma sheaths at lower pressures�. In
any case, if the location of a resonance is easily identified
with the position rres of its center �where Re��p�=0�, any
attempt to define the exact place where a space-charge sheath
begins �or, alternatively, its thickness with respect to the
nearby boundary� is a subject of controversy. Therefore, the
purpose here is just to work out some criterion allowing to
separate the quasineutral plasma core from its charged pe-
riphery region. We have chosen to base our analysis upon the
modifications �both in intensity and shape� of the space-
charge field radial profiles, due to a variation in the discharge
operating conditions �see Fig. 10, obtained at n̄e=1012 cm−3

for various pressures�. The idea is to produce a contour map
with isointensity curves of Es, along each of which the
space-charge field has a given relative value �. In the par-
ticular case of this cylindrical structure, and for the set of

pressure values considered in Fig. 10, we have defined �
according to

� �
Es�rsh,��

Es�R�p=10 mTorr
, �15�

where rsh,� �which can be interpreted as the sheath edge po-
sition� is the radial position for a � intensity of Es; and the
denominator is a reference value of Es, obtained at the di-
electric wall and for 10 mTorr pressure. Applying Eq. �15� to
the set of profiles plotted in Fig. 10, one obtains different
isointensity contour lines of Es, for different values of �,
representing the evolution with pressure of the sheath edge
rsh,�. The results are shown in Fig. 11, together with the
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resonance position, in terms of distances to the dielectric
wall. By analyzing this figure one concludes that, for pres-
sures around 10 mTorr �at n̄e=1012 cm−3�, the resonance is
unequivocally found inside the space-charge sheath, for all
values of � used in the criterion adopted here. Numerical
simulations show that this result holds for average electron
densities above 1012 cm−3 �hence smaller distances R−rres�,
as Es is less modified by variations in n̄e than in p.

The self-consistent calculation of the attenuation constant
� and the phase constant � is also strongly affected by the
inclusion of the space-charge sheath region in SW discharge
models. Figures 12�a� and 12�b� plot � and �, respectively,
as a function of p for n̄e=7�1011, 3�1012 cm−3, whereas
Figs. 13�a� and 13�b� present the phase curves of � and �,
respectively, as a function of n̄e for p=30 mTorr. As before,
the results depicted in these figures were obtained using the
complete model developed here and its simplified version
that neglects the sheath region �for n̄e values that ensure �p

��, thus disregarding also the electron-plasma resonance
phenomenon�. In general, the values of the attenuation con-
stant obtained with the complete model are above those pre-
dicted by the simplified model. These deviations increase at
low pressures and high electron densities �see Figs. 12�a� and
13�a��, probably due to the enhanced influence of the sheath-
resonance phenomena upon the energy absorption by the
plasma. In particular, notice that the simplified �classical�
model yields a continuous increase in � with p, due to an
enhancement of the collisional energy transfer, in contrast
with the less monotonic evolution predicted by the complete
model. Notice also that both models give similar results
for the behavior of the phase constant with either the pres-
sure or the average electron density, although yielding some

dephasing for the evolution of � with p at low n̄e �see Figs.
12�b� and 13�b��.

2. Energy balance

The results in the preceding section suggest that power
deposition in SW discharges is strongly dependent on reso-
nance features. This can be confirmed by analyzing Figs.
14�a� and 14�b� that plot the fractional local power transfer,
as a function of radial position, at n̄e=1012 cm−3 and p
=10, 100 mTorr �Fig. 14�b� is simply a zoom of Fig. 14�a�,
over the sheath-resonance region�. The values of the power
transferred from/to each channel �A�–�D� were obtained by
calculating the contribution of the different terms of Eq. �1c�,
relative to the total power per unit length absorbed by the
plasma, dPgain /dz �see Eq. �14��. Figure 14 is to be analyzed
simultaneously with Fig. 15 representing, for the same con-
ditions, the reduced electron mean energy flux 
� /ne�0�, as a
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defined using the following values of � ��see Eq. �15��: 1% �dashed
curve�; 10% �dotted curve�; 17% �dashed-dotted curve�; 40%
�dashed-dotted-dotted curve�. Results were obtained for the cylin-
drical structure at n̄e=1012 cm−3.
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function of position. As shown in these figures, the energy
absorbed by the electrons within the plasma resonance is
radially transported in two opposite directions: Towards the
discharge axis �corresponding to 
��0� where it is first used
to build the plasma-sheath edge, after which is dissipated in
collisions; towards the wall �corresponding to 
��0� where
it is mainly used to maintain the space-charge field. In this
sense, the combined action of resonance and convection phe-
nomena promotes the distribution of energy, within �at least�
the discharge cross section, in a way that strongly depends
on pressure. At high pressures, when the resonance peak is
less intense �see Figs. 7 and 9�, the energy transfer is con-
trolled by the classical mechanism of friction due to colli-
sions �see the increased energy loss region associated to
dashed curve D, in Fig. 14�a��. At low pressures, however,
the transfer of energy becomes strongly influenced by ab-
sorption in the resonance region �and subsequent transport
due to convection; see the enhanced energy gain region as-
sociated to solid curve B, in Fig. 14�b��. In this case the

sharper resonance peak enters the charge separation region,
setting up an enhanced sheath-resonance energy transfer.

Simulation results can also provide information about the
energy gained by electrons from the SW field, within reso-
nance region, due to both collisional heating �c

res and noncol-
lisional �transit-time� heating �nc

res, even if the latter is not
considered in the model developed here. An estimation of
these energies can be obtained using �notice that Er�rres�
�Ehf�rres��

�c
res �

Re��p�rres��
ene�rres�

Ehf
2 �rres�	 , �16a�
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function of n̄e, for the cylindrical structure at p=30 mTorr. Results
were obtained using the model developed here �solid curves� and a
simplified model version that neglects the sheath region �dashed
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FIG. 14. �a� Fractional local power transfer, as a function of r,
for the cylindrical structure at n̄e=1012 cm−3 and the following val-
ues of p �in mTorr�: 10 �solid curves�, 100 �dashed curves�. The
different labels correspond to the following power transfer channels
�see Eq. �1c��: Collisional heating from the SW field �A�; convec-
tion flow �B�; collisional cooling in diffusion against the space-
charge field �C�; friction due to elastic and inelastic collisions �D�.
The positive �negative� values indicate a power gained �lost� by the
electrons. Percentages were calculated relative to the total �radially
integrated over a discharge cross section� power, per unit length,
absorbed by the plasma. �b� Zoom of Fig. 14�a� over sheath-
resonance region.
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�nc,max
res �

Ehf�rres�
2


 , �16b�

where 	�max�	dc ,	hf� is the electron transit time through
the resonance due to either dc or hf transport phenomena,
with

	dc �



vedc
�rres�

=




e�rres�/ne�rres�
, �17a�

	hf �



vehf
�rres�

=



Re��p�rres��/�ene�rres��Ehf�rres�
.

�17b�

Notice that �c
res /	=��rres� gives the rhs of Eq. �1c�, per elec-

tron at resonance position, and that �nc,max
res represents the

total potential energy stored in the resonance peak, hence
corresponding to the maximum energy that electrons can
gain by noncollisional transit-time heating.

Table I presents estimations of these quantities at � /2�
=2.45 GHz, for p=0.01,0.1,5 Torr and n̄e=7
�1011,1012,3�1012 cm−3. For comparison purposes we
give also the values of the electron mean energy � and the dc
potential drop across the plasma 
Vs �associated to the
space-charge electrostatic field�, the latter mainly due to the
potential variation within sheath region. The results in this
table confirm that, for the n̄e values considered here, 	hf

�	dc�2� /� at low pressures �as in this case the very thin
resonance is crossed by electrons with a very high drift ve-
locity� and that 2� /��	hf�	dc at high pressures �as in this
case the large resonance is crossed by electrons with a low
drift velocity�. These observations also show that noncolli-
sional transit-time heating can only become a relevant energy
gain mechanism for pressures around hundreds of mTorr �see
Sec. II A�. Moreover, Table I reveals that �c

res��nc,max
res , which

shows the importance of the collisional heating mechanism,
and that �c

res��, which confirms the role of transport in the
discharge energy budget. Notice also that �c

res�
Vs at low
pressures, because in this case the �local� energy gained is
mainly used to build the space-charge sheath, whereas �c

res

�
Vs at high pressures, because in this case electron-neutral
collisions become the main energy loss mechanism.

To complement the study of the discharge energy absorp-
tion, one can also analyze the distribution features of the
total �radially integrated over a discharge cross section�
power transfer, for various operating conditions. Figure 16
represents, as a function of NR, the fraction of total power
lost by electrons, due to the various energy absorption chan-
nels considered: Convection, collisional cooling, and fric-
tion. The curves in this figure were obtained by radial inte-
gration of the different power loss terms with Eq. �1c�,
relative to dPgain /dz. As expected, Fig. 16 shows that an
increase in pressure and/or dimension leads to the classical
local regime of energy absorption, in which the power losses
are exclusively controlled by electron-neutral collisions.
Conversely, decreasing NR leads to higher power losses as-
sociated to the mechanisms of space-charge sheath mainte-
nance. Numerical tests reveal that the power deposition fea-
tures depicted in this figure are almost independent of
variations in the average electron density.
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FIG. 15. Radial profile of the reduced electron mean energy flux

� /ne�0�, for the same conditions of Fig. 14. The inset is a blowup
of this figure over sheath-resonance region.

TABLE I. Typical parameters characterizing the electron heating within resonance region. Results were obtained for the cylindrical
structure.

n̄e �cm−3� p �Torr� 
 �cm� Ehf /N �V cm2� 	dc �s� 	hf �s� �c
res �eV� �nc,max

res �eV� 
Vs �V� � �eV�

7�1011 0.01 7.9�10−5 5.9�10−10 4.0�10−11 4.8�10−12 36.7 4.5 33.3 8.0

0.1 4.9�10−4 5.8�10−12 4.0�10−10 3.5�10−11 32.0 2.7 19.4 4.4

5 7.1�10−2 7.7�10−16 1.2�10−6 4.8�10−8 67.3 2.6 13.3 2.0

1012 0.01 5.7�10−5 8.1�10−10 2.0�10−11 2.5�10−12 35.3 4.5 33.2 7.9

0.1 3.5�10−4 7.6�10−12 2.1�10−10 1.9�10−11 28.0 2.6 19.3 4.4

5 4.9�10−2 1.0�10−15 5.8�10−7 2.5�10−8 56.9 2.4 13.5 2.0

3�1012 0.01 2.4�10−5 2.1�10−9 3.1�10−12 4.1�10−13 36.4 4.9 33.0 7.9

0.1 1.4�10−4 1.8�10−11 2.8�10−11 3.2�10−12 21.3 2.4 19.3 4.4

5 1.3�10−2 2.5�10−15 5.3�10−8 2.7�10−9 30.9 1.6 13.6 2.0
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B. Results for the coaxial structure

The present modeling work is complemented by the study
of a coaxial structure, in which the plasma surrounds the
inner excitation antenna. Essentially, the simulation results
for this structure are similar to those presented before for the
cylindrical structure. The main different features are the de-
velopment of two space-charge sheath regions �leading to
two electron-plasma resonances�, near the dielectric and the
outer conductor.

Figure 17 shows the profiles of the reduced electron den-
sity ne /ne�rc�, at n̄e=1012 cm−3 for p=0.03,0.1,0.5,2 Torr.
These profiles feature a maximum value in the vicinity of the
critical position and very steep gradients in the sheath re-
gions. Notice that neither the left branch of the density dis-
tribution nor the critical position is very much affected by
pressure variations, whereas the right branch exhibits the
pressure dependence already observed for the cylindrical
structure. Figure 18 presents the radial distribution �across
the coaxial structure� of Er, Ez, and H� �the latter multiplied
by a factor of 103�, normalized to Ez�Rc,in�, at n̄e
=1012 cm−3 and p=100 mTorr �corresponding to a calcu-
lated incident power Pinc�1 kW�. The results in this figure
confirm the development of a double resonance phenom-
enon, near each of the plasma boundaries �see the insets
within�.

C. Similarity curve for the power absorbed by the plasma

The results of the total power absorbed by the plasma, for
different discharge structures and for different work condi-
tions, can be correlated by resorting to a universal similarity
curve. The concept of similarity curve was first introduced to
describe the maintenance of the positive column of dc dis-

charges �106,107�. This curve is obtained by representing the
reduced excitation field E /N �or, equivalently, the electron
temperature Te�, as a function of the product of the gas den-
sity by the discharge radius, NR �or, equivalently, the product
of the pressure by the discharge radius, pR�. The fact that this
representation yields practically a single curve, even for dif-
ferent discharge conditions, means that E /N is an almost
unique function of NR, hence independent of the electron
density or the populations of the excited states with the neu-
tral gas. Although this result gives only a simple, approxi-
mate picture of discharge maintenance �108,109�, the fact
remains that experimental studies confirm the concept of a
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FIG. 16. Fraction of total power losses, as a function of NR �and
pR�, for the cylindrical structure at n̄e=1012 cm−3. The different
curves correspond to the following power loss channels �see Eq.
�1c��: Convection flow �solid curve�; collisional cooling in diffusion
against the space-charge field �dashed curve�; friction due to elastic
and inelastic collisions �dotted curve�.
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similarity curve since early measurements of Te vs pR
�106,107�. However, it is known that the evolution of E /N as
a function of pR can exhibit some deviations from a univer-
sal behavior, due to the presence of stepwise ionization pro-
cesses �107�, the influence of recombination mechanisms
�110� �particularly at high pressures or radii�, and the effect
of gas heating �111,112�, especially at high electron densi-
ties. Good revisions on the theory of the positive column,
presenting information related to the behavior of similarity
curves, can be found in Refs. �113–115�.

In microwave discharges, the concept of similarity curve
was first used in the framework of their homogeneous de-
scription �78,116�, and was later extended to hf plasmas sus-
tained by nonuniform fields �68,69�. For these discharges,
similarity curves are usually associated to the plots of the
power required to sustain an electron-ion pair at unit gas
density, � /N �see Eq. �1c��, as a function of NR. In the
present case of a spatially resolved description, we must fur-
ther account for the radial profiles with the different quanti-
ties defining �, even if the fractional power loss plotted in
Fig. 16 is quasi-independent of n̄e. The solution comes to
introduce an average power gained per electron from the SW
field, defined as

�av �
��r�ne�r�

ne�r�
=

1

ne�r��plasma2�rdr

dPgain

dz
, �18�

which can be combined with Eq. �14� to deduce the classical
law for the axial variation of the electron density, in SW-
sustained discharges �39,67�. Moreover, to obtain a similarity
curve, the parameter that multiplies the gas density must be
replaced by an effective discharge length Reff �associated to
the actual size of the plasma�, with Reff=R and Reff=R−Rd
for the one-dimensional description of cylindrical and co-
axial structures, respectively.

Figure 19 plots the similarity curve �av /N vs NReff, cal-
culated with the self-consistent model developed here, for
radially resolved microwave discharges �with both cylindri-
cal and coaxial configurations�, at various pressures, radii,
and average electron densities. This plot ensures the align-
ment, along a single universal curve, of the different operat-
ing points obtained for different work conditions and dis-
charge structures. For comparison, this figure also shows the
results of the power required to sustain the plasma obtained
with the simplified model, which neglects the sheath region.
As observed, this model version underestimates the power
absorbed by the plasma at low pressure �with respect to the
predictions of the complete model�, thus confirming the in-
fluence of the sheath-resonance region upon discharge main-
tenance.

VI. SUMMARY AND OUTLOOK

This paper has studied the radial structure of magnetic-
free surface-wave �SW� discharges, excited in either a cylin-
drical or a coaxial structure, by solving a stationary, one-
dimensional moment model. The model solves the continuity
and the momentum-transfer equations for electrons and posi-
tive ions, as well as the electron mean energy transport equa-

tions, self-consistently coupled to Poisson’s equation for the
electrostatic space-charge field and to Maxwell’s equations
for the TM00 electromagnetic fields of a SW propagation
mode. The discharge power deposition was described by
considering additional terms apart from the classical colli-
sional heating �the power gained by electrons from the SW
field�, and friction �power lost in electron-neutral collisions�.
The extra terms account for collisional cooling �power lost
by electrons in diffusion against the space-charge field�, and
power transport due to convection �including a term of drift
under the action of the space-charge field, and a collisionless
pressure-gradient term�. The description of the wave-plasma
energy coupling �accounting for the SW collisional disper-
sion characteristics, with the formation of electron-plasma
resonances� used the SW attenuation constant � �obtained
either as an eigenvalue to Maxwell’s equations or from the
electron power balance equation� to check for the physical
coherence of model results. A semianalytical approach was
used to integrate Maxwell’s equations over resonance re-
gions, thus preventing numerical problems associated with
the rapid variation of plasma parameters therein. Other fea-
tures with this SW discharge model were the joint descrip-
tion of sheath-resonance regions and the accounting for the
spatial dependence of all electron transport parameters and
rate coefficients, by using the local mean energy approxima-
tion.

The results obtained with the model developed here were
compared to those of a simplified model version, which
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FIG. 19. Similarity curve of �av /N vs NReff �and pReff�, calcu-
lated with the complete model developed here, for spatially re-
solved microwave discharges with cylindrical symmetry. The closed
points are from calculations for cylindrical structures, at p=0.01
−5 Torr; R=0.5−4 cm, and the following values of n̄e �in cm−3�:
5�1011 �circles�; 1012 �squares�; 5�1012 �triangles�. The open
circles are from calculations for the coaxial structure considered
here, at n̄e=1012 cm−3 and p=0.01−2 Torr. The open squares are
from calculations, using a simplified model version that neglects the
sheath region, for the cylindrical structure considered here at n̄e

=1012 cm−3 and p=0.01−5 Torr. The solid curve is a fit to all
points calculated with the complete model.
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adopted the approximations usually considered in the classi-
cal description of SW discharges. These approximations dis-
regard the sheath region �assuming quasineutral ambipolar
conditions and using Bohm’s criterion to define the boundary
flux�, and ignore the spatial dependence of the different elec-
tron parameters �with the exception of the electron mean
energy and ionization frequency, for which they adopt the
local field approximation�. Considerable discrepancies were
found between the results of the complete and the simplified
model. The latter �i� overestimates the profiles of the electron
density, thus preventing the formation of electron-plasma
resonances �as the condition �p�� is never attained�, which
ultimately affects the profiles of the electromagnetic SW
field components; �ii� underestimates the values of the SW
attenuation constant �particularly at low pressures and high
electron densities�, giving a linear variation of � with p, in
contrast with the less monotonic evolution predicted by the
complete model; �iii� predicts an axis-to-wall increase in the
electron mean energy, in opposition to the flat profiles given
by the complete model �which includes nonlocal energy
transport phenomena�; �iv� underestimates the power ab-
sorbed by the plasma at low pressure, which confirms the
influence of the sheath-resonance region upon discharge
maintenance.

Simulations confirmed that resonance peaks become
wider �and simultaneously less intense� for either an increase
in pressure or a decrease in the average electron density
�hence in the electron density gradient at the nearby bound-
ary�. Moreover, for pressures around 10 mTorr and average
electron densities above 1012 cm−3, resonance peaks were
unequivocally found inside the corresponding space-charge
sheath. The calculated fractional power lost by electrons, due
to the various dissipation channels considered, featured a
transition to a local regime of energy absorption �where
power losses are exclusively controlled by electron-neutral
collisions�, as pressure increases. Spatially resolved simula-
tions of microwave discharges �with both cylindrical and co-
axial configurations�, running at various pressures, radii, and
average electron densities, have confirmed that power trans-
fer can be represented by a similarity curve of �av /N vs
NReff. The quantity �av is an average power gained per elec-
tron from the SW field, and its definition accounts for the

radial profiles with the different quantities involved in the
discharge Joule heating term. The parameter Reff is an effec-
tive discharge length, associated to the actual size of the
plasma. Simulations showed that the absorption of energy
from the SW is strongly dependent on resonance features,
particularly at low pressures.

The simulations presented here add a contribution to the
study of the influence of electron-plasma resonances on en-
ergy absorption in SW discharges, whose combined action
with convection phenomenon promotes the nonlocal trans-
port and distribution of energy. The discussion on this issue
is far from closed, particularly in what concerns a detailed
study of noncollisional electron heating mechanisms in reso-
nance regions, such as transit-time heating and resonance
mode conversion. These mechanisms were not accounted for
in the model developed here, but we have shown that the
contribution �if any� of transit-time heating can only occur
for intermediate pressures, around 100 mTorr.

Moreover, our one-dimensional simulations allowed the
analysis of nonlocal energy transport �under the influence of
electron-plasma resonances� in radial direction, but the over-
all picture is most likely multidimensional. Recently, direc-
tional Langmuir planar probes were used to investigate the
presence of high-energy electron fluxes in low-pressure co-
axial SW discharges �12,34,35�. The measured probe charac-
teristics exhibited a significant increase in the electronic cur-
rent over a wide range of probe potentials, with a strong
dependence on the radial position and the direction of obser-
vation. These anisotropic features, which are probably in-
duced by local plasma resonances, put forward cross-linked
radial and axial effects, thus showing that a full description
of the boundary phenomena concerned will only be achieved
in the framework of a self-consistent two-dimensional
model, to be developed still.
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