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Alternative ion-ion pair-potential model applied to molecular dynamics simulations
of hot and dense plasmas: Al and Fe as examples
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A model to calculate the ion-ion pair potentials in hot and dense plasmas is developed based on temperature-
dependent density functional theory. The electronic structures, including the energy level and space distribu-
tions, are calculated using an average-atom model. The calculated electron space number density is divided
into two parts: one is a uniformly distributed electronic sea p(r,) with a density equal to the total electronic
density at the ion sphere boundary, which is redistributed when space overlap occurs between the interacting
ions; the left part of the electronic density p?”d(r) represents the dramatic space variations of the electrons due
to the nuclear attraction and the shell structure of the bound states, which maintains unchanged during the
interactions between the ions. The pair potential is obtained through space integrations for the energy density
functions of electron density. We present molecular dynamics simulations for the ion motion on the basis of the
calculated pair potentials in a wide regime of density and temperature. As an example, hot and dense Al and Fe
plasmas are simulated to give the equation of state and ion-ion pair distribution function. The results are in

agreement with those of other theoretical models.
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I. INTRODUCTION

With the development of laser techniques, it is possible to
produce hot and dense plasmas in the laboratory, and theo-
retical models of the structures of this kind of matter are
necessary to simulate properties such as equations of state,
radiative transfer coefficients, and conduction coefficients.
These kinds of properties are important in inertial confine-
ment fusion (ICF) and astrophysics researches and the elec-
tronic structure of matter determines most of these proper-
ties. Many efforts have been devoted to investigate the
electronic structure. The Thomas-Fermi (TF) [1-3] model is
the simplest statistical model, which treats the electrons as
local quantum free-electron gases with the local density of
the electrons depending on the effective potential of the elec-
trons moving in. The Thomas-Fermi-Dirac (TFD) [4] model
was designed in a relativistic form on the basis of the TF
model. The average-atom (AA) model [5-8] was developed
to describe bound electrons with the well-known one-
electron shell structure model and ionized electrons with the
TF statistical model. These models were used to describe the
electronic structures of hot and dense plasmas in most cases
with the assumption of a single-particle spherically symmet-
ric ionic potential. The density effects were considered by
using an ion sphere with finite sizes. However, in the region
of strongly coupled plasmas, the ion-ion interactions could
break the spherically symmetric ionic potential, and so one
must consider the effects implicitly. The effective interionic
potentials used to describe the nuclear motions in the plasma
cannot be approximated reasonably by most models used in
normal cases, such as the Lennard-Jones potential one usu-
ally employs at room temperature. In particular, when large
ionization of the atoms at high temperature and density hap-
pens, the potentials would have big differences compared
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with the empirical ones obtained in normal conditions. The
ab initio molecular dynamics technique [9] considers the
electronic structures as a function of the internuclear coordi-
nates and does not need to calculate the pair potential be-
tween atoms or ions. However, this kind of ab initio simula-
tion can only be performed at low temperatures [10].
Dharma-wardana and Perrot [11] solved the Kohn-Sham
equation for the electrons in the frame of density-functional
theory (DFT) and treat interionic correlations using the
hypernetted-chain (HNC) approximation, and then Dharma-
wardana and Murillo [12] applied the method to the two-
temperature, two-mass system. Ofer et al. [13] proposed the
TF HNC model in which the Kohn-Sham equation is re-
placed by the TF statistical approximation for electrons and
the HNC approximation for interionic correlations. Fu-
rukawa and Nishihara [14] constructed a model based on the
AA model to calculate the cross sections and the rate coeffi-
cients of atomic processes including ion-ion correlation ef-
fects within the framework of the quantal hypernetted-chain
(QHNC) approximation. Zérah and co-workers [15-18] pro-
posed a Thomas-Fermi molecular dynamics (TFMD)
scheme, in which the electronic kinetic and entropy parts of
the free energy are expressed implicitly in terms of the elec-
tron density through the TF functional and combined with a
molecular dynamics for ions. Salzmann and Fisher [19] pre-
sented an ion ellipsoid model (IEM). In that model, the ion is
confined to an ellipsoidal enclosure, and the statistical distri-
butions of the ellipsoids’ shapes and sizes and the electric
field distributions are described in good agreement with
Monte Carlo results with a plasma coupling constant from 0
to 16. Rozsnyai et al. [20] calculated the Al and Be atoms in
the solid or liquid state using the quantum-mechanical model
at finite temperatures and gave good Hugoniot data com-
pared with the experimental results in the warm dense re-
gime. They all tried to solve the nuclear and electronic dis-
tributions simultaneously.

In the present study, classical molecular dynamics simu-
lations are carried out for the ion motions and a modified AA
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model [8] is solved to describe the electronic distribution.
The ion-ion pair potentials are obtained from the electronic
densities’ overlap of two isolated ions based on a modified
temperature- and density-dependent Gordon and Kim (GK)
[21] theory. The GK theory was originally proposed to cal-
culate the interatomic or intermolecular potential and has
been applied widely to ionic crystal [22] systems and noble-
gas atoms. The results obtained from the theory had been
found to give excellent agreement with the known structures
and binding energies [23,24]. However, these calculations
were based on the electron density distribution of the free
atoms or ions on the ground states, and the pair potentials
obtained were only applied to closed-shell atomic systems
without considering the temperature effect on the electronic
level occupations and density space distributions. In the
present model, the temperature and density effects on the
interionic potentials in hot and dense plasmas are considered
by using a modified AA model [8,25] to include the thermal
electronic excitations and ionizations in a statistical way. The
rearrangement of the nonlocal free electrons, when the inter-
acting ions come together, is also considered by retaining the
total space volume of the interacting system unchanged dur-
ing the interaction.

II. METHOD OF CALCULATION

In the GK [21] theory, the total energy of the system
consists of the direct Coulomb potential energy, the ex-
change Coulomb potential energy, the kinetic energy, and the
correlation energy. The direct Coulomb potential energy is
calculated by integrating the Coulomb potential over the
space distribution of the electron density, while the other
three energies are calculated by using a temperature-
dependent local density functional approximation (LDA);
i.e., the energy calculation needs only approximate energy
density functionals and the electron density space distribu-
tion. The interaction potential is the total energy difference
between the whole system (with space overlap) and the sepa-
rate systems (without space overlap). We obtain the elec-
tronic density by using a modified AA model [8,25] to in-
clude the temperature and density effects on the electronic
distributions in a statistical way. The electronic density is
divided into two parts: the nonlocal uniformly distributed
free-electron sea p(r,) in the whole space with a density
equal to the density of electrons at the ion sphere boundary,
rp, and the local electrons p?"/(r) representing the dramatic
space variation of the electronic distribution around the
nucleus. For each isolated ion, the local electron density is
the total density minus the nonlocal free-electron density and
is assumed to be unchanged during the interaction. As shown
in Fig. 1, the space distribution of the nonlocal free electrons
representing by the region with the closed solid line changes
when two interacting ions come together, but the space vol-
ume of the region retains unchanged, resulting in unchanged
uniformly distributed nonlocal free electrons, while the lo-
calized electrons distributed in the dashed line rounded re-
gion overlap each other, with the density of the total local
electrons being the sum of the separate ions in the overlap
region. When two nuclei come closer the localized electrons
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FIG. 1. (Color online) Space distribution of the nonlocal free-
electron sea p;(r;) (surrounded by the solid line) and the local elec-
trons piz"d(r) (two spherical symmetric distribution around each
nucleus surrounded by the dashed lines) when two ions come to-
gether in a hot and dense plasma.

and the ion sphere radius of each ion shown by the two
dashed line circles in Fig. 1 remain unchanged. In order to
have the density of the nonlocal free-electron sea unchanged,
when the two ions become overlapped, the boundary shown
by the solid line changes in such a way that the truncated
spherical volume surrounded by the solid line equal to the
sum of the two separated ions to keep the electrical neutrality
in the whole interaction region. Thus, the total density is p
:pi"d+ plzg"d+ p(ry). Figure 2 gives the electronic charge dis-
tribution of the two interacting Al atoms calculated in the
present scheme and in the full-potential linearized aug-
mented plane-wave (FLAPW) approach [26]. One can find
that the delocalized electrons are rearranged and occupy the
space between the two atoms; however, the localized elec-
trons do not change when one puts the two atoms together.
The figure supports the treatment that only delocalized elec-
trons are rearranged when the nuclei come closer.

The pair potentials are computed under two main assump-
tions: (i) when two ions come closer, the local electronic
densities around the nuclei obtained by using the AA model
with ion sphere radius determined by the macroscopic
plasma density and temperature are considered not to be re-

FIG. 2. (Color online) The electronic charge distribution of the
two Al atoms calculated with the full-potential linearized aug-
mented plane-wave (FLAPW) model (top) and the present model
(bottom) with two interatomic separations. The curves are the con-
stant curves of the electronic density.
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arranged; and (ii) the potential consists of the static Coulomb
interaction V,,(R), the kinetic Vi (R), the exchange V,(R),
and the correlation V.(R) energies:

V(R) = VC()ul(R) + Vk(R) + Ve(R) + VL(R)’ (l)

where R is the distance between the two nuclei. They are the
functionals of the electronic density p(r). The static Coulomb
potential can be calculated directly from electronic density
according to the GK theory [21-23]. The difference between
the present model and the original GK theory is that the
electronic density of the isolated ion is divided into two
parts: the electronic sea p(r,) and the local electron p?"(r).
The kinetic E;(p), exchange E,(p), and correlation E (p) en-
ergy densities [21,22,24,27,28] have been computed approxi-
mately only based on the electron densities in the spheroidal
coordinate system, \;=(r;+r,)/R, \,=(r;—r,)/R. Consider-
ing the effect of the temperature, the energy densities are
expressed as

\2

&2
Edp) = 772_ f expl(e— w)/T] + 1d6’ @

where the chemical potential u is obtained using the require-
N 12 . .

menF p=;2 f exp[(;Wde at a space pplnt with total' elec-

tronic density p and therefore the nonlinear changes in the

occupancies and kinetic energy with the electron density are

considered:

E,(p)=—0.6109r;"

1+2.834312-0.215127 + 5.27586¢"
1 +3.943097 + 7.91379¢*

tanh(r™")
(3)
and

E.(p)=-0.61097;"2

= 0.0081 + 1.1274* + 3.756¢*
1+ 1.2917 + 3.593¢

tanh(r"?), (4)

where the 7,=0.620 347 4p~'/3 and t=0.543r§T; T is the tem-
perature. The total energy of the interaction system reverts
back to the sum of the component energies automatically
when the separation is greater than the sum of the two ion
sphere radii. Therefore, the potential energy is defined as the
total energy minus those of the separate atoms or ions, so
when the two atoms or ions do not overlap, the interaction
potential goes to zero:

Vk(R) = Wf f d)\ld)\zrlrz

X{pE(p) = paEi(pa) — psEi(pp)}, (5)
Ve(R)ZWJJd)\]d)\2rlr2
X{PE(p) = paE.(p4) = pgE.(pp)}, (6)
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VL(R) = 7Tf f d)\ld)\zrlrz

X{PEL(P) - pAEc(pA) - pBEc(pB)}v (7)

where p(r) are equal to pi”d(r)+p§”d(r)+p(rb) with A and B

labeling the two nuclei, respectively. The integrations over
N\, and N\, are carried out using the Gaussian-Legendre nu-
merical quadratures.

The separate electron densities are calculated in a full
relativistic self-consistent field AA model, which is one of
the statistical approximations applied to calculations of the
electronic structure of atoms and ions in hot and dense plas-
mas based on the statistical average over the details of the
populations of ions and occupations of the electronic energy
levels [5-8]. The influence of the environment on the atom is
assumed to have spherical symmetry on average. The move-
ment of an electron under the interactions of the nucleus and
other electrons is approximated by a central field, which is
determined with the self-consistent calculation. However, in
the region of strongly coupled plasmas, ion-ion pair interac-
tions will break the spherically symmetric ionic potential and
affect the electronic distributions. Considering these effects,
we have treated the bound energy levels in the AA model as
the energy bands with a Gaussian distribution of the density
of states, which is normalized to ensure that the integration
of the density of states over one band is equal to the statis-
tical weight of the corresponding atomic level. The results
affect greatly the ionization and equation of state [25,29].
The free electrons are considered more simply with an as-
sumption of the temperature-dependent TF [1-3] treatment.

According to the computation of electron density using
the modified AA model, we conclude that the nonlocal free-
electron density depends only on the local potential, tem-
perature, and chemical potential, as the local potentials at the
ion sphere boundary in plasma should be a continuum, even
in mixtures [8]. So the average nonlocal free-electron density
at the ion sphere boundary should be the same in the equi-
librium plasma. In fact, the electron density across the ion
sphere boundary varies smoothly and only near the nucleus
changes sharply. Therefore, it is reasonable that we divided
the electron distribution into two parts: the uniformly distrib-
uted nonlocal free-electronic sea in the whole space with a
density equal to the total electron density at the ion sphere
boundary and the localized electrons around each nucleus,
whose distribution is the total density minus the density of
the nonlocal free-electronic sea and does not change when
two interacting ions come together. On the basis of the pair
potentials obtained above, the ion distribution is simulated
using the classical molecular dynamics (MD) scheme. As an
example, Fe and Al equations of state and ion distribution are
given at a wide region of density and temperature. The AA
model is, in particular, suitable for a description of the elec-
tron distribution in hot and dense matters. Therefore, the
present approach can be applied to the temperature and den-
sity regions where the ab initio molecular dynamics tech-
nique [9] is difficult to apply due to the numerical difficul-
ties.

III. RESULT AND DISCUSSION

In plasmas, the pair potentials are calculated according to
the temperature- and density-dependent electron densities
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FIG. 3. (Color online) The ion-ion pair potentials in Al plasmas:
(a) at T=10 eV and densities 0.01, 0.1, 1, 10, and 100 g/cm® and
(b) at density 5 g/cm’® and T=1 eV (solid line), 10 eV (dashed
line), and 100 eV (dot-dashed line).

around the nucleus. First, we give the results of Al at the
temperature of 10 eV and a few different densities of plasma
in Fig. 3(a), from which one can find that the pair potential
becomes zero when the distance of two ions is larger than the
sum of their radii as the polarization and dispersion effects
are not included in the present model. In order to consider
the density effects, an AA model for electrons confined
within a limited average size ion sphere is employed [8,25].
Within each ion sphere, the charge neutrality is retained by
having the total electron (nonlocal plus local) number equal
to the nuclear charge. Therefore, the direct Coulomb interac-
tion potential will be zero due to the screening of electrons,
and the exchange, kinetic, and correlation potentials calcu-
lated with the LDA will also be zero without density overlap
between the ions. So the present model would be more ad-
equate to describe the short-range pair repulsive potentials
between ions in hot and dense matter. One can also find the
apparent density effects on the pair potentials: the higher the
density is, the weaker the repulsion of the pair potential
when the two ions begin to overlap in space. Except for the
0.01 and 0.1 g/cm3 cases, the ionizations of the electrons in
1, 10, and 100 g/cm? plasmas are mainly caused by the pres-
sure ionization; i.e., the higher the material density is, the
more the electrons are ionized. The repulsion between the
ions is mainly from the increase of the kinetic energy due to
the Pauli principle, which depends on the overlap of the elec-
tron density between the interacting ions, and the Coulomb
repulsion between the nuclei, which depends on the screen-
ing of the electrons. With more nonlocal ionized electrons,
the significance of both the density overlap and screening
would be reduced, resulting in a weaker repulsion between
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FIG. 4. (Color online) The radial distributions of the electron
densities: (a) at T=10eV and densities 0.01, 0.1, 1, 10, and
100 g/cm® and (b) at density 5 g/cm?® and T=1 eV (solid line),
10 eV (dashed line), and 100 eV (dot-dashed line).

the ions. The radial electron density distribution with differ-
ent densities of plasma is shown in Fig. 4(a); one can find
that the nonlocal ionized electron density at the ion sphere
boundary gets the highest value for 100 g/cm? plasma. The
pair potentials in Fig. 3(a) become almost the same when the
two ions come closer because the nuclear repulsion domi-
nates the interaction at very small distances. In addition, the
pair potentials of 100 g/cm? are almost the same as the hard-
sphere potential because the plasma density is very high and
the free space for the ion motion is very small, and when two
ions come closer, the interaction will be increasing rapidly.
One can see that the potentials at the densities of 0.01 and
0.1 g/cm? have a shallow well to show that at these densities
the gas has negative cold pressure. Second, in Fig. 3(b) the
Al pair potentials of 5 g/cm? at temperatures of 1, 10, and
100 eV are given. From the figure, it can be seen that the
potentials at temperatures of 1 and 10 eV have little differ-
ence; however, a greater difference appears at 100 eV. The
reason is similar to that accounting for the differences shown
in Fig. 3(a)—i.e., the differences in the density of the nonlo-
cal free electrons. With the density 5 g/cm?, at 1 and 10 eV
only the 3s and 3p electrons are ionized and the distribution
of the local electron densities around the nuclei changes little
from 1 eV to 10 eV. At 100 eV, most 2p electrons have
been ionized thermally and the distributions of local and
nonlocal electrons have considerable differences with those
of 1 eV and 10 eV. The radial distributions of the electron
densities at 1, 10, and 100 eV are shown in Fig. 4(b), which
give a clear correlation between the temperature dependence
of the pair potentials and the electron distributions. When
two ions come closer than about 2 a.u., compared to 1 and
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FIG. 5. (Color online) The calculated equations of state at T
=5 and 30 eV and densities 0.1<p<1.5 g/cm? compared with the
results of TF, QEOS, SESA, and NPA given in Ref. [31].

10 eV, the influence of the reduced electronic screening on
the Coulomb interaction between the two nuclei exceeds the
influence of the reduced Pauli exclusion principle on the ki-
netic energy; the repulsive interaction at 100 eV is stronger
than those at 1 eV and 10 eV.

As an example, classical MD simulations are made at
temperatures of 5 eV and 30 eV and densities of 0.1<p
< 1.5 g/cm? on the basis of the above pair-potential calcula-
tions. A number of 4000 ions are included to make the MD
simulations with the NVT (constant N, number of particles;
V, volume; and 7, temperature) ensemble and the periodic
boundary conditions being applied [30]. Each MD simula-
tion consists of two stages: the equilibration stage and the
productive stage. At the productive stage, the physical prop-
erties of the matter are obtained by averaging over the time
period of the stage. The results of MD simulations in the
NVT ensemble depend on the number of time steps, n;; size
of the time step, #; number of ions, N; and the cutoff r.,,. It
is found that correct results can be obtained with n,
=200 000, reyop=2r,, where the average sphere volume
equal to nl=§7rri,s and n; is the ion number density of the
plasma. ¢ is determined by the plasma temperature and den-
sity. The initial configurations of the ions are set as the ideal
fcc crystal structure. We extract the thermodynamic param-
eters from the simulations by using the classical virial ex-
pressions, such as PV=NKpT+ %(Eixi%i). The electronic
pressure is calculated from the modified AA model [25,29].
We first make comparisons of the calculated equations of
state (EOS) of Al with the results given by Perrot ef al. [31]
in Fig. 5. Their results were obtained with the TF model [3],
the quotidian equations of states (QEOS) model [32], the
SESAME (SESA) databases [33], and the neutral pseudoatom
(NPA) model [31], respectively. The behaviors at 30 eV and
5 eV are very similar with the EOS of the TF, QEOS, SESA,
and NPA models in Ref. [31]. Especially, our results agree
well with those of NPA and SESA at 30 eV, for which the
electrons in the NPA model are described in the framework
of DFT and the ion correlations are described by using the
HNC method, and the SESA EOS is an interpolation among
the results of several theories valid in adjacent domains. The
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FIG. 6. (Color online) The principal Hugoniot of iron. The line
is the SESAME EOS No. 2140, diamonds are present results,
squares are the QMD results, and circles are the TFMD results.

results at 5 eV and high densities are larger due to the pres-
sure ionization of 3s electrons.

In order to examine the present model over a large range
of temperature and density, we calculate the iron equation of
state and the ionic structure. Molecular dynamics simulations
are performed as above. In Fig. 6, we first give the Fe prin-
cipal Hugoniot curve and make comparisons between our
results and the SESAME EOS No. 2140 data, quantum mo-
lecular dynamics (QMD) result, and TFMD results given in
Ref. [17]. At a high temperature, our results are in good
agreement with that of SESAME EOS No. 2140 and TFMD.
When the temperatures are smaller than 10 eV, our results
are smaller than the TFMD ones because our model includes
the electronic exchange energy parts [34] and electronic shell
structures and larger than those of the SESAME EOS No.
2140 and the QMD because of the larger electronic pressure
in the present model.

In Fig. 7, we show the ion-ion pair distribution functions
(PDFs) at 10 eV, 100 eV, 1000 eV, and 5000 eV and make
comparisons with those of TFMD and the one-component
plasma (OCP) [17]. The PDFs show that our nearest-
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FIG. 7. (Color online) The Fe ion-ion pair distribution functions
at the temperatures and densities of (10 eV, 22.5 g/cm?), (100 eV,
345 g/em®), (1000 eV,  39.65 g/cm’), and (5000 eV,
34.37 g/cm?). The dashed lines are the present results, the circles
are the TFMD results, and the solid lines are the OCP results.
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neighbor distances are slightly larger than those of TFMD
and OCP; in particular, the discrepancy becomes notable at
10 eV. In fact, for our model at low temperature very few
electrons are thermally ionized and most of them are local-
ized around the nuclei, and when two nuclei come together,
they will have more electronic clouds overlapped and we
will obtain a stronger repulsive interaction. So at low tem-
peratures we should consider the electronic relaxations dur-
ing the interaction and obtain more reasonable pair potentials
or apply first-principles QMD methods.

IV. CONCLUSION

An alternative molecular dynamics simulation scheme,
which can be applied to hot and dense plasmas over a wide

PHYSICAL REVIEW E 79, 016402 (2009)

range of temperature and density, is proposed by combining
the AA model for electron description and a modified GK
model for interionic pair potentials. As numerical examples,
the EOS of Al and Fe and the ion-ion pair distribution func-
tion are calculated by carrying out molecular dynamics simu-
lations based on the calculated pair potentials. It is shown
that the results are in reasonable agreement with other theo-
retical models and, in particular, with the SESAME database.
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