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Probability distribution of power fluctuations in turbulence
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We study local power fluctuations in numerical simulations of stationary, homogeneous, isotropic turbulence
in two and three dimensions with Gaussian forcing. Due to the near-Gaussianity of the one-point velocity
distribution, the probability distribution function (pdf) of the local power is well modeled by the pdf of the
product of two joint normally distributed variables. In appropriate units, this distribution is parametrized only
by the mean dissipation rate, €. The large deviation function for this distribution is calculated exactly and
shown to satisfy a fluctuation relation (FR) with a coefficient which depends on e. This FR is entirely statistical
in origin. The deviations from the model pdf are most pronounced for positive fluctuations of the power and
can be traced to a slightly faster than Gaussian decay of the tails of the one-point velocity pdf. The resulting
deviations from the FR are consistent with several recent experimental studies.
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We study the pdf of local power fluctuations in two-
dimensional (2D) and three-dimensional (3D) turbulence,
important practical examples of strongly nonequilibrium sta-
tionary states. Stationary turbulence requires external forcing
to counter viscous dissipation producing a balance of the
average rates of energy injection (power) and dissipation.
The power is locally a scalar product of the force and veloc-
ity. The latter always has intrinsic stochasticity. The power
thus has nontrivial statistics of its own. Interest in the statis-
tics of the power comes from two principal directions. From
an engineering perspective, the average power relates di-
rectly to the drag on a body in a turbulent flow. From a
theoretical perspective, interest focuses primarily on the
power fluctuations. Such nonequilibrium fluctuations get to
the heart of the differences between equilibrium and non-
equilibrium statistical mechanics as they relate directly to the
lack of detailed balance in turbulence.

Experimental studies of the input power in turbulence ini-
tially focused on the mean and its scaling with Reynolds
number [1]. The subsequent realization that certain types of
non-equilibrium fluctuations exhibit an exact symmetry
known as a fluctuation relation (FR) (see [2] and the refer-
ences therein) has focused attention on fluctuations about the
mean in nonequilibrium systems. [3]. Turbulence has been
harnessed as a source of such fluctuations in various contexts
[4]. Specific studies of the power pdf have recently been
undertaken for wave turbulence [5] and 2D turbulence [6]. It
was shown that the pdf of power fluctuations in different
turbulent systems can be qualitatively modeled by the pdf of
the product of two joint normally distributed variables, v and
f, the velocity and force, respectively.

In this paper, we consider the statistics of the power in 2D
and 3D turbulence with Gaussian external forcing. We show
that a product of normal variables captures the qualitative
features of the pdf in both cases. We calculate the large de-
viation function (Kramer function) and find an exact FR with
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a rate depending on p, the correlation coefficient of the two
variables. For turbulence, p is proportional to the mean dis-
sipation rate. This is entirely a consequence of statistics and
has no relation to the dynamical arguments underlying some
theoretical results. This may partially explain the ubiquity of
experimental FRs in the literature and the lack of agreement
on the value or meaning of the measured rate (see [7] and the
references therein for discussion of FR experiments). Ap-
plied to turbulence, this model, while qualitatively appealing,
does not correctly capture the far positive tail of the power
pdf. This is traced to slightly faster than Gaussian decay of
the one-point velocity distribution. This is in accordance
with theoretical expectations and results in a deviation of the
FR from the linear scaling which is consistent with the re-
sults of several experiments [5,7].

We solve the 2D and 3D incompressible Navier-Stokes
equations for the velocity, v(x,¢), with a time-independent
force, f(x) and bulk drag term, av,

v+ (v-V)v==Vp+vAv-av+f,

V-v=0. (1)

Stationarity requires finite « for 2D flows where dissipation
of energy transferred to large scales by the inverse cascade is
needed. @=0 for 3D flows since there is no inverse cascade.
Our simulations were done in biperiodic domains using stan-
dard pseudospectral methods. For numerical details, see [6]
(2D) and [8] (3D). The forcing is central in what follows so
let us clarify the detail. Unlike the temporally decorrelated
forcing often used to drive simulations of isotropic turbu-
lence, our forcing has no time dependence. It does have spa-
tial disorder. It is generated by selecting modes in a shell,
k, <|k|<k,, in the space of wave vectors, k. These are as-
signed an ampitude, A(|k|) and a random phase uniformly
distributed on [0,27). We took A(|k|) to be the indicator
function on [k;,k,]. We project out the nonsolenoidal com-
ponent to assure incompressibilty. An inverse Fourier trans-
form then produces a spatially random forcing field. In the
2D simulations, f has a single component, f,5(x)=[0,f>(x)].
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FIG. 1. (Color online) The pdfs of the 2D power normalized by
0,0y for the inverse (O) and direct (%) cascades in the Lagrangian
frame and the inverse cascade in the Eulerian frame (CJ). The solid
line is Eq. (3). The insets show the corresponding pdfs of f (A) and
v (B) normalized by their standard deviations.

The current was applied in the x direction and the magnetic
field is perpendicular to the fluid layer so that the Lorentz
force acts purely in the y direction (see [6]). This simplifies
things but is not an essential point. Indeed, in the 3D simu-
lations, all three components of the force were present,
f3p(x)=[/1(x).f2(x), f3(x)].

The rationale for this forcing is twofold. First, our 2D
forcing exactly mimics that used to generate turbulence in
electromagnetically driven fluid layers [9,10]. It is thus of
direct relevance to 2D experiments. Second, since we are
interested in power fluctuations, it is attractive to limit the
sources of stochasticity to the intrinsic randomness of the
turbulent fluctuations. By the central limit theorem, our forc-
ing protocol produces a Gaussian distribution for the single-
point pdf of f provided that enough modes participate. This is
shown in the inset of Fig. 1. for the 2D case and of Fig. 3 for
the 3D case. We should be clear that we are not attempting to
make any universal statements. Although Gaussian forcing is
often used in numerical simulations and has experimental
relevance, it has no a priori justification.

Turning to the velocity, v, its single point pdf is known to
be close to Gaussian for homogeneous, isotropic turbulence
since the early days of turbulence theory [11]. On the other
hand, the Navier-Stokes equation, Eq. (1) is nonlinear. Even
with Gaussian forcing, there is no reason to expect that the
pdf of v should be exactly Gaussian and indeed it is not.
While most investigations have focused on the relatively
large non-Gaussianity of velocity differences, careful mea-
surements show that the single-point pdf of v decays slightly
faster than Gaussian in both the 2D [12] and 3D [13] cases.

We now consider the local power, denoted by p. The 2D
power is a simple product, p;p)y=v,f,. The 3D power has
three contributions: p(3D)=Ei3= ifi. Ignoring for now any
sub-Gaussian tails of the pdf of v, it is clear that modeling p
using products of Gaussian force and velocity components
should capture the qualitative features of the single point pdf.
This has already been proposed in a Lagrangian setting in 2D
turbulence [6] and in the context of wave turbulence [5] and
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FIG. 2. (Color online) Comparison of the pdf of the v,f, contri-
bution to the 3D power with Eq. (3). Insets show the pdfs of f; (A)
and v, (B) normalized by o, and oy.

shown to work very well. In the present paper, we extend the
description to 3D flows, calculate the large deviation proper-
ties of the model, and address the meaning of the FR for
turbulent power fluctuations

We need some results on products of normal variables. If
x; and x, are two Jomt normally distributed random variables
with mean zero, variances o2 and 02 and correlation coeffi-
cient p, then their joint pdf is

]P(xl ,.Xz)
_ ! o [1120-pDT(/07)-2p(x xy/ 0y 7)1+ (53 03)]
2o oo\l —p

2)

x; and x, should be thought of as components of v and f,
respectively. The pdf of the product, z=xx,, is

Lpz/(1-pP) )]
e Z
P(z) = , K, ( d ) ) (3)

0
moyo\1 = p? (1-pHoo,

where K,(z) is the modified Bessel function of the second
kind of order zero. We take (---) to denote averaging with
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FIG. 3. (Color online) Comparison of the pdf of the local 3D
power with e’ Inset shows the Kramer function, I(x), given by
Eq. (9), for p=0.35.
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respect to the pdf, Eq. (3). The moment generating function,
x(6)={e®) can be calculated explicitly,

1
6) = ’
X(0) V1 =2pa,a,0— (1 - pY)otos 6

(4)

1 1 . .
where 0 e (— oroa(1p) ’_0'10'2(1+p))' It is then easy to obtain mo-
ments. The mean, variance and skewness are

<Z>=P‘7102’ &)

()= (2)*= (1 + p)ojos, (6)

() =3 +2(2)°  2p(3+p?) -
(<Z2> _ <Z>2)3/2 - (1 + p2)3/2'

Normalizing v and f by their standard deviations, o, and oy,
the mean of the pdf Eq. (3) gives the correlation coeffient, p.
For stationary turbulence, this relates p to the average dissi-
pation rate, €. Only a single component of f contributes to
the 2D power so e=p. All components contribute to the 3D
power so e=3p. Equations (5)—(7) thus link the statistics of p
to the dissipation rate.

The value of p can be measured. A comparison between
Eq. (3) for the measured value of p and the contribution of a
single component of the force to the power (normalized by
the product of o, and o) is shown for the 2D power in Fig.
1 and for the 3D power in Fig. 2. 2D results are presented for
both direct and inverse cascade regimes with nominal (inte-
gral scale) Reynolds numbers of 1100 and 7000, respec-

(p? = Doy, = 2px + 4 + (1 - p?) 2003 - 2(1 = pY)ory o ln<
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tively. The p values are 0.11 and 0.13. The (Taylor micro-
scale) Reynolds number of the 3D simulation was 35 and p
was 0.35. As expected, the agreement is good. In detail, the
3D simulations show a systematic deviation for large posi-
tive fluctuations. We will return to this later.

We now calculate the large deviation properties of the
model pdf, Eq. (3). Let us briefly explain what this means
and why it is useful. Suppose we take n independent samples
from the distribution Eq. (3), denoting them by z;, i
=1...,n. The large deviation principle for Eq. (3) concerns
the pdf of their average, anflEf':lz,«. It states that there ex-
ists a function, I(x), the rate function or Kramer function,
such that

P(M,, > x)=e™™. (8)

This is useful for several reasons. First, the 3D power is a
sum of three random variables with distribution Eq. (3) so
Eq. (8) provides partial information about the tails of the
distribution of the total power in 3D. Second, experiments
often measure global—or at least coarse-grained—power
rather than local power. Equation (8) provides a link between
the local and global power which may be more accessible
experimentally. Finally, a FR expresses a particular symme-
try of the rate function for a stochastic process, so knowing
I(x) allows us to address the question of a FR for Eq. (3)
directly. In this case, it is possible to obtain I(x) in closed
form from the Chernoff formula [14], I(x)=maxg{6x
—1In x(6)}. Lengthy but straightforward calculations yield

2x? )
a10o(p? = Dayoy + V4x> + (1 - p) 200

I(x) =

This unwieldy expression is plotted in the inset of Fig. 3
for p=0.35 and oy =0,=1. The main part of Fig. 3 illustrates
how the asymptotic expression Eq. (8) captures the essential
features of the pdf of the 3D power. One cannot expect exact
correspondence for several reasons. First, we have seen that
Eq. (3) overestimates the probability of large positive values
of each individual contribution to the total 3D power, an
effect which remains evident when these contributions are
summed. Second, the components v are not strictly indepen-
dent owing to the incompressibility condition. Finally, one
should remember that Eq. (8) is an asymptotic statement.
These objections notwithstanding, the correspondence is
good.

We now turn to the question of a FR for turbulent power
fluctuations. A FR is a symmetry of the pdf of a quantity, X,
derived from the entropy production or energy dissipation in
a nonequilibrium system. X_ is obtained by averaging a
physical quantity, x(z), typically the entropy produced or en-
ergy dissipated over a time interval [f,t+7], X,
=71 [""7x(t")dt'. X, is positive on average but, may fluctuate

20105(1-p?)

)

sufficiently that negative fluctuations are observable. A FR
quantifies the relative probability of a negative fluctuation
over a time interval compared to the probability of a positive
fluctuation of the same magnitude. The ratio of probabilities
takes the form

H(XT) _ 21X,
H(_ X’T) ¢ ' (10)

where 3 is a constant, independent of the averaging interval,
7. Clearly this equates to the rate function of the pdf of x(z)
asymptotically possessing the symmetry,

I(x) = I(-x)=—2x. (11)

It is easy to show that Eq. (9), satisfies this symmetry exactly
with a rate, 2, given by
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FIG. 4. (Color online) Asymmetry of the pdfs of local power in
2D and 3D. Solid lines indicate the prediction of Eq. (12). Inset
shows the decrease of the correlation coefficient for the 2D case, p,
as the notional Reynolds number increases. We expect a similar
trend in 3D.

2
(1-p)ojo,

3 (12)

From this, we conclude that when it is reasonable to model
nonequilibrium fluctuations using a product of correlated
normal variables a FR will result. The value of the entropy
rate, 2, depends on the dissipation rate. This observation
may partially explain the proliferation of empirical fluctua-
tion relations in the literature and the lack of consensus on
the value and meaning of the entropy rate measured for dif-
ferent experimental situations. This result is entirely statisti-
cal and does not require any restrictions on the microscopic
dynamics such as time reversibility. Indeed it tells us very
little about the physics of the system under study.

Let us now reconsider the specific case of turbulent power
fluctuations. Figure 4 shows the degree to which our numeri-
cal data satisfies the symmetry of Eq. (11) with the appropri-
ate values of 3 from Eq. (12). As in many cases in the
literature, a good agreement is found for relatively small
fluctuations but a systematic deviation appears for very large
fluctuations. Unusually, we understand completely the ob-
served values of 2. It is determined solely from the the cor-
relation coefficient, p, which is not known a priori. The inset
of Fig. 4 shows numerical measurements of how p varies as
the notional Reynolds number, Re, is increased. In 2D, in the
presence of an inverse cascade, the usual definition of Re is
of questionable usefulness, since the principal energy bal-
ance is between nonlinearity and large scale dissipation.
Nonetheless, it is widely used so we adopt it here to param-
etrize our simulations. We observe that p decreases as Re
increases so that the pdf of the power becomes more sym-
metric as the flow becomes more turbulent. This makes
physical sense as the greater the turbulent fluctuations, the
less the velocity can correlate with the forcing. As the pdf of
the power becomes more symmetric, Eq. (5) demonstrates
that the decrease in the correlation must be compensated for
by an increase in the variance of the velocity field if one is to
maintain a fixed mean rate of energy injection. There are
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FIG. 5. (Color online) Fluctuation relation for the Lagrangian
power averaged over time (7) intervals in multiples of the correla-
tion time (7,) of the power signal for 7/ 7.=n=0, 5, 10, 15, and 20.
The solid line is the theoretical prediction from Eq. (12).

clearly some important questions to address here in under-
standing the relationship between p and Re as well as inves-
tigating the corresponding issues in 3D. These are, however,
beyond the scope of the present work.

We have already discussed how the Kramer function, Eq.
(9), encodes information about the behavior of sums of
samples from the pdf. If we think of local averaging as such
a summation procedure, the fact that the Kramer function
exhibits a FR with a rate given by Eq. (12), means that we
might expect the coarse-grained power to satisfy this FR pro-
vided that we coarse grain the data over intervals longer than
the correlation length. This latter condition is important since
the Kramer function describes the asymptotics of sums of
independent samples. This provides a way to link our discus-
sion of local power fluctuations to “global” fluctuations (in
the sense of fluctuations at scales of many correlation
lengths). This coarse graining could be done either in space
or in time. In our numerical simulations, the spatial correla-
tion length was too long to allow us to perform the coarse
graining convincingly and will require further effort. This is
unfortunate, this being most relevant to experiments. The
Lagrangian correlation time is relatively much shorter.
Therefore we can illustrate the point by coarse graining tem-
porally using data gathered from measurements of the force
and velocity in the Lagrangian frame. Full details of the La-
grangian measurements are already available in [6]. We de-
fine a temporally coarse-grained power, P,(f), again normal-
ized by the standard deviations of the force and velocity,

+nt

P,(1)= L P(t")dt'. (13)

U'U(Tfl’lT '

Here 7 is the Lagrangian correlation time (7=0.1 in our
simulations compared with a large eddy turnover time of
about 10) and P(r) is the local power in the Lagrangian
frame. The results for the pdfs of P, are shown in Fig. 5 for
coarse-graining times ranging from 5 to 20 correlation
lengths. It is clear that the symmetry of the Kramer function
demonstrated in Eq. (11) produces a FR for the coarse-
grained power.
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It has been rightly argued [4,5] that the deviations from
Eq. (11) evident in Fig. 4 are typical. Here we understand
that these deviations do not follow from the statistical model
proposed in [6,5] but rather are a signature of some underly-
ing dynamics. For the specific case of turbulence, the work
of [15] identified specific flow configurations (“instantons”)
which are responsible for the faster-than-Gaussian decay of
the single point velocity distribution in forced turbulence.
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This theory may provide a starting point for analysis of the
deviations from the FR observed in our data but given the
nonuniversal nature of the force, it seems unlikely that there
is anything universal about these deviations.
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