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An experimental study of the transition to turbulence in a confined quasi-two-dimensional magnetohydro-
dynamic flow is presented. A pair of counterrotating vortice is electrically driven in the center of a thin
horizontal liquid metal layer, enclosed in a cylindrical container and subject to a homogeneous vertical mag-
netic field. When the forcing is increased, the pair is displaced away from the center. Boundary layer separa-
tions from the circular wall appear that trigger a sequence of supercritical bifurcations. These are singled out
in numerical calculations based on our previously developed shallow water model as well as in the experiment,
and these bifurcations are shown to resemble those observed in flows past a cylindrical obstacle. For the
highest forcing, the flow then ends up in a turbulent regime where the dissipation increases drastically, which
we could relate to a possible transition from a laminar to a turbulent Hartmann boundary layer. Finally we
show the first experimental evidence of a transition to three-dimensionality in liquid metal magnetohydrody-
namics �MHD� by comparing velocity measurements on either horizontal sides of the layer as we find that
columnar vortice wobble for a high enough forcing.
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I. INTRODUCTION

We are interested in the transition to turbulence induced
by the presence of a wall in quasi-two-dimensional flows. In
applications, boundaries are often responsible for the devel-
opment of turbulence. Their role is, for example, crucial in
the dynamics of wings or flying objects where boundary
layer separations initiate vortex shedding and subsequent tur-
bulent patterns that, in turn, determine lift and drag forces.
The complexity of theses flows makes them difficult to in-
vestigate experimentally and very costly to tackle numeri-
cally. In this regard, quasi-two-dimensional flows in simpler
configurations allow us to easily reproduce some elementary
properties of the transitions phenomena that occur in real
configurations and to understand the two-dimensional part of
their dynamics. This is why a large number of studies have
been dedicated to the very generic quasi-two-dimensional
separated flow past a circular cylinder �see Refs. �1–3� for a
review of numerical work on boundary-generated two-
dimensional turbulence�. These flows are, to a large extent,
determined by how single vortice or vortex pairs interact
with walls so it is essential to understand the dynamics of
such a reduced system. There has been number of studies
around this theme and one can cite two that are closest to our
purpose: Ref. �4� demonstrated some elegant visualization of
the vortex-wall interaction in liquid metal magnetohydrody-
namic �MHD� flows and Ref. �3� recently performed numeri-
cal simulations of a forced vortex at the center of a square
box. They exhibit a transition to turbulence through a se-
quence of supercritical bifurcations that leads to a chaotic,
then turbulent state, as in the case of the cylinder wake. In

the present work, we aim at reproducing such a boundary
induced transition to turbulence experimentally and analyze
it, by studying a forced vortex pair confined in a circular
domain.

Since a purely two-dimensional flow cannot be achieved
experimentally, we wish to put a particular emphasis on the
measure of residual three-dimensional effects and their con-
sequences on the quasi-two-dimensional flow. To this end,
we study a flow in a thin layer of liquid metal under an
externally imposed, transverse magnetic field, as in Ref. �4�.
This offers a simple way of reproducing a flow with two-
dimensional dynamics. In such a laboratory scale configura-
tion, the feedback action of the flow onto the magnetic field
is neglected in the frame of the quasi-static approximation
�Ref. �5��. The main effect of the Lorentz force is then to
damp velocity variations along the magnetic field lines. If
this transverse magnetic field is strong enough, the resulting
flow is quasi-two-dimensionality in the sense that physical
quantities do not vary across the layer except in the vicinity
of the walls that confine it, where so-called Hartmann bound-
ary layers develop because of the nonslip condition �see, for
instance, Ref. �6��. Because of this particular flow structure,
several small but important laboratory MDH experiments
have been built where a layer of liquid metal held between
two parallel planes is used to obtain an experimental realisa-
tion of quasi-two-dimensional flows. Among them, Ref. �7�
has provided an experimental evidence of the two-
dimensional inverse energy cascade that characterizes two-
dimensional turbulence. References �8,9� experimentally and
Ref. �10� numerically have studied the quasi-two-
dimensional wake of a circular cylinder and identified the
usual regimes found in the hydrodynamic case. In none of
these studies, however, was the actual limit of the quasi-two-
dimensionality assumption examined, although more general
studies have proposed theoretical scenarios for the transition
between quasi-two-dimensional and three-dimensional flows
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�see Refs. �11,12��. This question is crucial in order to quan-
tify the relevance of MDH flows in thin layers to two-
dimensional flows. We shall therefore address it by calculat-
ing the correlations between velocities measured on either
side of the fluid layer, just outside of the Hartmann layers as
in Ref. �13� where the progressive elongation of a single
pulsed vortex subject to a magnetic field was measured. This
will allow us to determine whether the observed flow prop-
erties are influenced by three-dimensional effects or not.

Our experiment features an horizontal shallow fluid layer
enclosed in a cylindrical container in a vertical magnetic
field imposed by permanent magnets. A pair of counterrotat-
ing vortice is generated by injecting constant electric current
through two point electrodes embedded in one of the hori-
zontal, electrically insulating walls as in Refs. �7,4�. The
flow characteristics are identified for different values of mag-
netic field B and injected current I. This is done using both
numerical simulations from the shallow water model of Ref.
�14� and local measurements of electric potential to deter-
mine the velocity just outside of the Hartmann layers �e.g.,
Ref. �15��. We first present numerical calculations and the
main flow patterns in Sec. II. In Sec. III A, we describe the
experimental setup and the measurement techniques. The ex-
perimentally observed flow regimes are presented in Sec.
III C and compared to the regimes found numerically in Sec.
II. In Sec. III E, we characterize the bifurcations observed at
the transition between these flow regimes. Finally we discuss
the presence of three-dimensional effects in all observed flow
regimes in Secs. III F and III G.

II. THEORY

A. Basic equations

The configuration of interest is that of a liquid metal �vis-
cosity �, density �, and electric conductivity �� in a cylin-

drical container of height a=5 mm and radius R̃=20 mm
plunged in a steady homogeneous magnetic field B directed
along the cylinder axis so that B=Bzêz. The walls of the
container are electrically insulating and the flow is driven by
connecting the two poles of a current generator to two me-
tallic electrodes �diameter de=1 mm� embedded in the bot-
tom plate at locations �0,d ,0� and �0,−d ,0� �see Fig. 6�,
where the origin is taken at the center of the bottom plate of
the container. It is known from Ref. �11� that when the mag-
netic field is strong enough, the flow is invariant along the
magnetic field lines, except near the wall orthogonal to the
field where Hartmann layers with an exponential velocity
profile develop. The Lorentz force then acts indirectly on the
flow by shaping those layers, which in turn exert a linear
friction on the resulting quasi-two-dimensional flow. The
flow is now well described by two-dimensional motion equa-
tions obtained by averaging the full three-dimensional equa-
tions along the magnetic field lines, as in Ref. �11�. This
model will thereafter be referred to as SM82. In the present
cylindrical geometry, the high curvature of the streamlines,
however, induces some strong inertial effects that disturb this
simplified picture: Ref. �14� has indeed shown that strong
rotation triggers a local Ekman pumping that leads to impor-

tant velocities along the magnetic field lines. Although quasi-
two-dimensionality may still be achieved in the sense that
the horizontal velocities in the core flow are still invariant
along the magnetic field lines, these secondary flows lead to
a significant redistribution of the flow’s momentum that can
drastically change the global dissipation. Reference �14� has
further proposed a refinement of the SM82 model, denoted
PSM, that accounts locally for these secondary flows through
higher order nonlinear terms, and that we shall apply to our
problem. In nondimensional variables, the PSM equations
that govern the evolution of quantities averaged spatially
along êz between the two Hartmann walls located at z=0 and
z=a yield

�� · u� = 0, �1�

��t + u� · ���u� + ��p −
N

Ha2��
2 u�

= − 2
N

Ha
u� +

2

Ha N
� 7

36
Du�

+
1

8
�t�u� · ��u� + f ,

�2�

where the operator Du�
is defined as

Du�
:F � Du�

F = �u� · ���F + �F · ���u�. �3�

Quantities averaged along êz are by definition dependent
only on x and y. The corresponding Nabla operator �� is
two-dimensional and carries the subscript � ��. Similarly, the
same subscript on a vector indicates components perpendicu-
lar to the magnetic field only. All quantities have been further
normalized using the dimensional quantities U0 and a as ref-
erence velocity and distance. Furthermore, the superscript on
observed quantities such as velocities, velocity fluctuations,
and distances, thereafter presented in the experimental part

Sec. III denotes a dimensional quantity �e.g., R= R̃ /a as the

dimensionless counterpart of R̃�. The square of the Hartmann
number Ha=aBz

�� / ���� and the interaction parameter N
=�Bz

2a / ��U0� represent the ratio of the Lorentz forces to
viscous and inertial forces, respectively, so both are required
to be larger than unity for the PSM model to be valid.

Out of the two additional terms that appear in the right-
hand side of Eq. �2�, the first one is linear and results from
the friction induced by the Hartmann layer on the two-
dimensional flow. The associated dimensional Hartmann
damping time tH= �1 /2��a2 /���1 /Ha� strongly decreases
with Bz, indicating the nature of the magnetohydrodynamic
�MHD� effect: when the magnetic field increases, the Hart-
mann layer becomes thinner thus inducing a stronger friction
on the flow. The other additional terms are nonlinear and
result from the redistribution of momentum due to local Ek-
man pumping. The model also provides the expression of the
dimensionless velocity uz along the field lines just outside
the Hartmann layer �for a mathematically rigorous definition
of this concept, see Refs. �16,17��:
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uz�z = 0� = −
5

6

a2

R̃2

1

Ha Nv
�� · ��u� · ���u�� , �4�

where Nv=NR̃ /a�1 is the interaction parameter based on
the horizontal scale. The ratio uz / �u�� gives a good indica-
tion as to where Ekman pumping is important. uz�0
�uz�0� indicates that fluid is expelled from �injected in� the
Hartmann layers to �from� the core flow. Some detailed ac-
counts of this effect are presented in Refs. �14,18,19�.

The forcing f results from the interaction of the electric
current injected at the electrodes with the external magnetic
field, which, by virtue of the Hartmann layer theory is
equivalent to imposing a vorticity along êz, proportional to
the injected current. Following Refs. �7,14�, the forcing im-
posed on the flow by an electric current I injected through an
electrode of diameter de, with the center located at re ex-
presses dimensionally as

f�r� =
�

tH

H��r − re� −
de

2
�

�r − re�
ê	

e , �5�

where �= I / �2
����� is the total circulation induced by the
current injection at one electrode and H is the Heaviside step
function. ê	

e denotes the azimuthal direction with respect to
the center of the electrode. Since the nondimensional forcing
f that appears in Eq. �2� is induced by the two electrodes with
opposite polarities, respectively, located at re

+=dêy and
re

−=−dêy, it can be written in nondimensional form as

f�r� =
R̃

a

N

Ha
	H��r − re

+� −
de

2
�

�r − re
+�

ê	
+ −

H��r − re
−� −

de

2
�

�r − re
−�

ê	
−
 ,

�6�

where ê	
+ �ê	

−� again points in the azimuthal direction with
respect to the electrode located at re

+ �re
−�. This suggests

U0=2� /d as a reference velocity a priori with the corre-

sponding Reynolds number Re0=U0R̃ /� and underlines the
fact that the ratio of two-dimensional inertial effects to the

Lorentz force is measured by �R̃ /a��N /Ha�, rather than the
interaction parameter N. Similarly, since U0 is derived from
the forcing only, and ignores all types of dissipation present
in the flow �viscous, Hartmann layer friction, effect of three-
dimensional �3D� recirculations�, it is clearly larger than the
true flow velocity, albeit of the same order of magnitude. A
more realistic Reynolds number ReM based on the maximum

velocity along êx and therefore calculated a posteriori is
therefore given alongside Re0 in Table I that can be used as
an a priori control parameter.

Finally, a nonslip boundary condition is applied at the
impermeable wall located at �r�=R. Note that Eq. �2� implies
that this wall is electrically insulating.

Before proceeding with the numerical resolution of the
PSM equation presented in this section, it is worth recalling
that this model is a shallow water approximation �such as
those widely used in geophysical flows �see Ref. �20���, ob-
tained by integration of the full Navier-Stokes equations
along the magnetic field. This integration is performed by
approximating the velocity profile in the z direction at order
2 for the small parameters Ha−1 and N�

−1. At this order, the
Hartmann layer is assumed laminar and the three-
dimensional velocity field uHa�x ,y ,z , t� within the Hartmann
layer expresses as

uHa�x,y,z,t� = ucore�x,y,t�f�z� , �7�

where f�z� represents both the two-dimensional flow in the
core with the velocity field ucore�x ,y , t� and the classical ex-
ponential velocity profile in the laminar Hartmann layer. In
the PSM model, however, this profile is modified to account
for inertial effects of order N�

−1 �see Ref. �6��, while the hori-
zontal velocity outside these layers is invariant in the z di-
rection. Since f�z� is obtained from assumptions in the limit
of small Ha−1 and N�

−1, the model is free from artificial mod-
elling but also implies that it becomes imprecise when either
of the parameters Ha−1 or N�

−1 becomes of order 1. Reference
�21� has shown that for N�1, the secondary flows due to
local Ekman pumping are overestimated �note that values of
N� for our simulations are given in Table I�.

The validity of the model of Ref. �14� is further affected
depending on whether the Hartmann layer is laminar or tur-
bulent. From the form of Eq. �7�, three important cases can
be distinguished.

�a� If the velocity field ucore�x ,y , t� becomes turbulent
while f�z� remains unaffected, the flow is in a quasi-two-
dimensional turbulent state, but still with a laminar Hart-
mann layer and the PSM model from Ref. �14� remains
valid.

�b� If the Hartmann layer becomes turbulent, the function
f�z� takes a different form although the core flow outside the
layer may still be two-dimensional, as observed by Ref. �22�.
In this case the PSM model breaks down as it cannot account
for a turbulent Hartmann layer profile nor for the transition
between a laminar and a turbulent Hartmann layer. This tran-
sition happens at the critical Reynolds number R�=ReM /Ha

TABLE I. Nondimensional parameters and related time step in cases calculated numerically.

regime I II III IV

Re0 216 2164 4328 6494 7576 8116 8658 9740 10822 11904 12986 15152 17316 21644 28138

ReM 89.8 846 1567 2250 2580 2740 2898 3245 3573 3894 4188 4768 5281 6122 7174

R�
num 0.5 4.9 9.1 13.1 15 15.9 16.9 18.9 20.8 22.6 24.4 27.7 30.7 25.6 41.7

Nv 137.2 13.7 6.9 4.6 3.9 3.7 3.4 3.0 2.7 2.5 2.3 2.0 1.7 1.4 1.1

�t 0.05 0.01 0.005 0.01 /3 0.01 /3 0.01 /3 0.0025 0.0025 0.002 0.002 0.002 0.002 0.002 0.001 0.001
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in the case of a channel flow �see Ref. �23��. In the present
simulations, however, R�

num remains an oder of magnitude
below this critical value �see Table I�.

�c� If the flow is in a state of full three-dimensional tur-
bulence, the velocity field may not take the form of Eq. �7�
anymore. In spite of the above limitations, the PSM model is
better suited to our goal of finding the main flow patterns
than three-dimensional direct numerical simulations for sev-
eral distinct reasons: on the top of its simplicity and natural
precision at high Ha and N�, PSM removes the necessity of
meshing the very thin Hartmann layers and also eliminates

the coupling between velocity and electric potential that is
inherent to the 3D MHD equations. The resolution of these
coupled equations demands special care indeed, in order to
be accurately resolved �see Refs. �24,25��.

B. Numerical model

We shall now solve the system �2� numerically, in order to
visualise the different flow states when the electric current is
increased. Velocity profiles recorded along diameter y=0
will then be compared to the measurements from the experi-
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FIG. 1. �Color online� Snapshots of equilibrium and quasi-equilibrium states in all flow regimes for Ha=43 obtained from numerical
simulations. Contours of vorticity normalized by U0 /a �left column�, streamlines �center column�, contours of vertical velocity as given by
Eq. �4�, normalized by U0 �right column�. �a� Regime I, �b� regime II, �c� regime III, �d� regime IV.
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ment in Sec. III in order to help identify the regimes found
experimentally, as no global flow visualization is possible in
our setup. The comparison can, however, only remain quali-
tative as wall roughness present in the experiment is not
modeled in the numerical simulation. The latter is expected
to stabilize the flow and to shift the transitions between
quasi-two-dimensional flow regimes identified in this section
further. Since the initial problem has been reduced to a two-
dimensional one thanks to the PSM model, we are now left
with the task of solving the unsteady equations �2� on a disk
of radius R. To this end, we use the numerical method and
mesh described and tested in Ref. �19�, where a numerically
similar problem to ours is considered, but with a different
forcing. Also, compared to theirs, our numerical system now
uses a third instead of a second order spatial discretization,
which slightly improves precision, especially on the unstruc-
tured part of the mesh. All computations are performed for
Ha=43 with the fluid initially at rest and with the injected
current I �hence Re0� set to a constant value. The calculation
runs until the total energy of the flow is stable over a time
much longer than tH or than all remaining oscillations. Aver-
aged quantities reported thereafter are then computed over a
time interval of several times tH. Table I summarizes the
different cases we have simulated.

C. General aspect of the flow

When the forcing is increased from I=0, the final flow
state goes through a sequence of bifurcations that can be seen
from the contours of vorticity and streamlines represented on
Fig. 1. We shall now describe these globally, whereas local
quantities such as velocity profiles are reported together with
experimental results in Sec. III.

At very low forcing, i.e., at low Re0, the flow essentially
consists of two steady counterrotating vortice, antisymmetric
about the êx axis and centred slightly to the right of the
electrode axis �Fig. 1�a��. The distance between the axis of
their centers and that of the electrodes results from the bal-
ance between their mutual influence that tends to imprint a
motion toward x�0, and the influence of the circular wall.
Each of these vortice presents a sharp vorticity maximum
located away from the vortex centre that corresponds to a
free shear layer in the shape of a ring. This first steady re-
gime will be denoted “I” thereafter and the corresponding
Re0 are displayed in Table I.

For slightly higher values of Re0, the flow remains steady
but the boundary layers located along the cylinder wall or
side layers separate in two symmetric locations behind the
vortice so a small counterrotating recirculation appears be-
hind each of the initial vortice �Fig. 1�b��. These two anti-
symmetric recirculation regions are analogous to those in
duct flows past a cylindrical obstacle with an homogeneous
magnetic field oriented along the cylinder axis, as studied by
Ref. �10�. Unlike these, however, those from the present
problem remain apart from each other as the main flow reat-
taches to the cylinder wall. The length of the recirculation
region along the wall, however, increases with Re0. By anal-
ogy with Ref. �10�, we will call this second steady flow re-
gime “regime II” �see Table I�.

For higher Re0 a new regime �regime III, see Table I�
appears where the separated boundary layers at the back of
the vortice destabilize. Vortice form there and grow along the
layer until they are released in the stream between the two
electrodes, resulting in the appearance of a low frequency f1
in the oscillations of the velocity field see �Figs. 1�c� and
2�a��. This shedding process is reminiscent of that in the Von
Kàrmàn street behind a cylindrical obstacle �see Refs.
�1,10��, but differs from it in two ways: first, at the forcing
for which this phenomenon first appears, vortice are released
almost simultaneously and not in turn. This synchronization
is, however, lost at slightly higher forcing. Second, two very
weak additional vortice are released along the centerline in
the direction x�0. The frequency spectrum of �ux

2�0, t�
+uy

2�0, t�� that characterizes this regime exhibits strong peaks
for the fundamental frequency f1 of vortex shedding as well
as for the higher harmonic 2f1 �Fig. 2�a��.

A further flow regime, called regime IV �see Table I� is
found when a lower base frequency f2 appears in the fre-
quency spectrum �see Fig. 2�b��. In this regime, the central
vorticity rings are strongly disrupted and exhibit both short
and long wave instabilities. Also, vortice that shed in the
direction x�0 become stronger so the global picture is that
of a strongly chaotic flow. Interestingly, Ref. �10� also
pointed out the appearance of a lower frequency in the re-
gime he calls IV, where the Von Kàrmàn street is disrupted
by vortice generated due to boundary layer separation at the
duct side walls. The periodic Von Kàrmàn street regime they
find, however, spans a much larger interval of Re0. The rea-
son is that in our case, the vortex shedding process is imme-
diately disturbed by the reinjection of shed vortice in the
main stream, whereas the flow around the cylinder has to
reach much higher velocities for shed vortice to produce
some boundary layer separation at the duct walls.

Further regime changes at higher forcing are much more
difficult to detect as the flow becomes fully turbulent. At
Re0=21644, the spectrum exhibits the �ux

2�0, t�+uy
2�0, t� �

� f−2.3 power law in the mid range �see Fig. 2�c��. A spatial
energy spectrum can be deducted from these frequency spec-
tra by defining the wave number sequence as k= f �u�0, t��.
Since at this location, the flow is dominated by a strong jet in
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FIG. 2. Power density spectra obtained from u�0, t� for Ha=43.
Energy and frequencies are normalized by U0

2 /2 and tH
−1, respec-

tively. �a� Re0=8658, regime III. �b� Re0=10 822, regime IV. �c�
Re0=21 644, regime IV. Note that for Re0=8658 the flow is nearly
in regime IV, however, the amplitude of the corresponding oscilla-
tion with frequency f2 remains small.
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the direction êx, kx� f � 
u�0, t���, where 
u�0, t�� is the time
average from u�0, t�. This implies that �ux

2�0, t�+uy
2�0, t� �

�kx
−2.3. For Re0=21 644 and Re0=28 138 �Table I� which are

the highest in our numerical simulations, however, one can
expect the secondary flows to be slightly overestimated as N�

comes close to unity �see Ref. �21��.

D. Similarities with the flow around a cylinder

To further investigate the similarity between the present
flow and the duct flow past a cylinder under axial magnetic
field studied by �10�, we define the base pressure coefficient
Cpb� = �pA− pC� / ���ũx

M�2� where ũx
M is a dimensional quantity

and denotes the maximum velocity of ũx along the diameter
ỹ=0 �pA as well as pC refer to the pressure at stagnation
points A and C, respectively, as displayed in Fig. 3�. Its

variation as a function of ReM = ũx
MR̃ /� �see Table I for val-

ues of ReM� and Re for fixed Ha is shown in Fig. 4�a� for a

flow within the cylinder and for a flow past the cylinder in
Fig. 4�b� �found by Ref. �10��, respectively. For the latter, the
Reynolds number Re is built on average velocity at the duct
inlet. Although only high Hartmann results are available
from Ref. �10�, the evolution of Cpb� is similar between both
problems throughout regimes I to III �see Figs. 4�a� and
4�b��. In particular, Cpb� decreases in the steady regime and
increases in the unsteady regime. Evolutions of Cpb� for flows
that are well in regime III and thereafter in regime IV differ
but this might be due to the effect of three-dimensional re-
circulations which become dominant since Nv approaches
unity in the cases calculated here. These recirculations are
known to significantly increase the dissipation in concave
parallel layers �see Refs. �14,19�� and can therefore be ex-
pected to influence Cpb� strongly. They are, however, sup-
pressed at such high values of Nv such as those from Ref.
�10�.

E. Effect of the Ekman recirculations

The third column from Fig. 1 shows the contours of
uz�x ,y� calculated from Eq. �4�. This equation implies that
this quantity is larger where horizontal velocity gradients are
more important as strong fluid sources and sinks appear in
the core flow. The associated horizontal transport of angular
momentum can drastically increase the viscous dissipation,
in particular where boundary layers are involved, as shown
in Ref. �19�.

A further effect is that vortice are surrounded by regions
where the fluid plunges into the Hartman layers, as also
shown by the three-dimensional numerical simulations of
Ref. �26� in the non-MHD case. This can be understood by
considering an axisymmetric clockwise vortex, centered at
the origin, with typical profile shown on Fig. 5. Then, Eq. �4�
implies that uz�r��1 /r�ru	

2. Near the vortex center, the ve-
locity must be zero so u	�r
 with 
�0 and uz�r�
�2
r2
−1. This means that a strong Ekman pumping is
present there with uz�0. Further out, the velocity is high but
decreases as u	�r
, with 
�0 this time, so a surrounding
region with strong vertical velocities toward the Hartmann
layers must exist just outside the vortex core.
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and S2 are separation points.
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III. EXPERIMENT

A. Experimental setup and measurement techniques

The main experimental apparatus �Fig. 6� is made of a

closed cylindrical container with radius R̃=20 mm
and height a=5 mm, where all walls are electrically insulat-
ing. The cavity is hermetically filled with GaInSn, a metal
alloy liquid at room temperature �electric conductivity
�=2.3�106 S /m, density �=6440 kg /m3, viscosity
�=4�10−7 m2 /s�. The top and bottom plates of thickness
1.5 mm are made of fiber-reinforced epoxy FR4, which is a
standard material for electronic boards.

Once filled, the apparatus is centered inside the gap be-
tween two sets of identical permanent magnets �surface
120�100 mm�. Magnetic fields of Bz=0.09 T, Bz=0.12 T,
Bz=0.19 T, and Bz=0.24 T with maximum inhomogeneity
of 10% along êy, 4% along êx, and 1% along êz over the fluid
domain, are achieved by adjusting the gap width.

The flow is forced by injecting constant electric current I
through two copper electrodes �diameter de=1 mm� fitted
flush to the bottom wall at �0,d ,0� and �0,−d ,0� and with
d=8 mm. Both electrodes are connected to a regulated DC

power supply, providing electric currents in the range
I� �0−20A� with a maximum ripple 0.5�10−3 A.

Electric potential � is measured locally thanks to two
symmetric sets of 56 potential probes �diameter �dpr
=0.25 mm� embedded in the top and bottom wall, respec-
tively, at locations sketched on Fig. 6. The two sets are
aligned exactly opposite each other along the êz axis. The
measured signals are typically of the order of 10 �V and
must therefore be amplified by a high precision, low-noise
system. We use a 112 multichannel single ended amplifier-
system with gain 111 and integrated 24 bit A /D converter for
every channel, that measures each electric potential with re-
spect to one electric potential probe �reference probe�, lo-
cated near the box center �see Fig. 6�. All signals are simul-
taneously recorded at a sampling rate of 128 Hz, for which
the peak to peak noise is about 2 �V.

As, e.g., noticed by Refs. �15,7�, the electric current den-
sity in the core flow �jcore� is small in quasi-two-dimensional
and even weakly three-dimensional flows so Ohm’s law in
the core flow can be approximated by −��core+ucore�B
�0, to a precision of the order of �jcore�

� . Since the variation of
electric potential across the boundary layer is O�� /a�, with
�= a

Ha as the Hartmann layer thickness, the electric potential
field in the core is nearly that measured at the Hartmann
wall, to this same precision. Combining these two arguments
leads to −��wall+ucore�B�O�max� �

a , �jcore�
�ucore�B� ��. As long as

�
a �1 and �jcore�

�ucore�B� �1, the velocity just outside the Hartmann
layer can be deduced from probes embedded in the wall and,
respectively, distant by �x̃ and �ỹ from one another by
Fig. 6:

ũx = −
1

Bz
� �̃wall�x̃, ỹ + �ỹ� − �̃wall�x̃, ỹ�

�ỹ
� ,

ũy =
1

Bz
� �̃wall�x̃ + �x̃, ỹ� − �̃wall�x̃, ỹ�

�x̃
� . �8�

In order to take advantage of Eq. �8�, the probes have been
placed so as to obtain profiles of velocities ũx and ũy along
the diameter ỹ=0 �Fig. 6�. Velocity profiles ũ	�r̃ ,	 , t� near
the side walls at r̃=19.7 mm for 	� �45.6° ,134.4° � �see
Fig. 6� are measured in the same way, however using
�r̃=0.6 mm as radial spacing between probes. Finally it is
important to notice that even if the Hartmann layer becomes
turbulent, its thickness � remains very thin �see Ref. �27�� so
the assumption �

a �1 is still valid. Furthermore, the core flow
above a turbulent Hartmann layer also remain two-

TABLE II. Characteristic Hartmann friction time tH and Hart-
mann number Ha.

B �T� 0.09 0.12 0.19 0.24

tH=
a2

2�

1

Ha
�s� 3.3 1.75 1.1 0.85

Ha=aB� �

��
13.5 18 28.5 36

FIG. 6. Experimental apparatus. Top: cross section of the cylin-
drical container, bottom: top view of the bottom plate. �1� Electric
board, �2� electric current injection electrodes �diameter de=1 mm�,
�3� electric potential probes, �4� inlet and outlet to fill cavity with
GaInSn, �5� reference probe for electric potential measurements, �6�
plexiglas hollow cylinder. �x̃=2.5 mm, �ỹ=1.75 mm, and
�r̃=0.6 mm are the distances between the potential probes.
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dimensional, provided the turn-over time l� /u of turbulent
vortice, of size l� and spinning velocity u, remains large
compared to the time of two-dimensionalization �

�B2
a2

l�
2 �see

Refs. �11,22��. This suggests that Eq. �8� remains valid, even
when the Hartmann layer becomes turbulent. Finally, in or-
der for three-dimensionality to spoil the validity of Eq. �8�,
the current in the core would have to be O�ucore�B�. This
only occurs in strongly three-dimensional flows so the
method presented here also applies to weakly three-
dimensional flows, albeit with a larger error than in quasi-
two-dimensional flows.

Electric potentials, measured on potential probes aligned
exactly opposite each other along the êz axis, allow us to
derive the velocity correlations between points located just
outside the Hartmann layer on either wall. A velocity corre-
lation coefficient lower then one indicates that the flow is
three-dimensional in the sense that the velocity varies along
the magnetic field lines outside the Hartmann layer.

B. Experimental procedure

Starting at I=0A, the electric current is first increased in
steps of 0.1A up to the maximum value of I=10A. If a bifur-
cation is found at critical electric current Ic, the step size is
reduced to 0.01A within the range Ic�0.05A. Once Ic
+0.05A is reached, a possible hysteresis around Ic is sought
by decreasing the current in the same steps. The electric
current I is expressed under nondimensional form through
the Reynolds number Re0 that measures the forcing �see Sec.
II A�. For each forcing we wait several times the Hartmann
friction time tH until the flow is fully developed and start
then recording time dependent electric potentials over at
least 10tH �Table II�. Quantities averaged in time in the es-
tablished flow regime are denoted 
¯� thereafter.

This procedure is repeated for four different values of
magnetic field strength Bz, which correspond to nondimen-
sional Hartmann numbers Ha presented in Table II. Ha as
well as Re0 are then the two control parameters in this ex-
periment. Thus, critical values ReIII

0 , ReIV
0 , ReV

0 , and Re3D
0

mentioned thereafter, are in fact functions of the Hartmann
number as shown in Fig. 7.

C. Flow regimes identified from velocity profiles

For weak forcing, such that Re0�ReII
0 , the flow is steady

and the corresponding profile of ux �marked by “I” in Fig.
8�a�� along the diameter y=0 is almost symmetric about x
=0, with ux�0 everywhere. In this regime, the point of
maximum velocity ux

M is, however, located at xM �0, xM be-
ing small and increasing with Re0 �Fig. 9�a��. Velocities
u	�r=0.985R ,	 , t�, measured near the cylinder wall, are an-
ticlockwise orientated and almost azimuthal, without any
sign reversal �Fig. 10�. In the numerical simulations �Sec.
II C� this type of profile is typical from regime I �Fig. 11�a��,
and the location of the maximum velocity ux

M along the di-
ameter y=0 corresponds to the position of the initial vortex
pair.

For Re0�ReII
0 , the flow changes to a second steady state

�regime II�, where the velocity profile u	�r=0.985R ,	 , t� first

exhibits a change of sign at angle 	s� �Fig. 10�, that corre-
sponds to the separated boundary layer found in Sec. II C.
When the forcing is further increased, the flow still remains
steady and 	s� is displaced along the wall in clockwise direc-
tion �Fig. 9�c��. This displacement also coincides with the
increase of xM, which indicates that it is a consequence of the
displacement of the initial vortex pair in the x�0 direction.
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FIG. 7. Critical Reynolds numbers vs Hartmann number. ReIII
0 :

transition from the steady flow regime to the periodic flow regime.
ReIV

0 : transition from the periodic flow regime to the flow regime
with two base frequencies. ReV

0 : transition to the flow regime where
the profile of ux almost becomes symmetric again. Re3D

0 : transition
to three-dimensionality �see Sec. III F�.
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The zone of positive azimuthal velocity for 	�	s� in Fig. 10
therefore characterizes the antisymmetric counterrotating re-
circulation regions that appear behind each of the two initial
vortice because of the separated boundary layer �see Sec.
II C�.

The unsteady flow regime sets in at Re0=ReIII
0 �“III” in

Fig. 8�a��. It results in a periodic oscillation in ��x ,y , t� and
is characterized by strong peaks with base frequency f1 and
further harmonics 2f1 and 3f1 in the frequency spectrum.
Corresponding spectra, recorded from measurements on the
top plate at x=−0.4375R and y=−0.04375R are shown on
Fig. 12�a� �power spectra taken from potential measurements
at other locations yield qualitatively similar results�. Accord-
ingly, xM and 	s� are time-dependent and when the forcing is
intensified, 
xM� and the standard deviation ��xM�
= 
�xM�x ,0 , t�− 
xM�x ,0���2�1/2 increase. Also, 
	s�� is dis-
placed along the circular wall in the 	�0 direction �see Fig.
9�c��. The good qualitative agreement between numerical
and experimental mean velocity profiles, as well as the r.m.s.
of velocity fluctuations u��x ,0 , t�, with ux�x ,0 , t��
=ux�x ,0 , t�− 
ux�x ,0�� and uy�x ,0 , t��=uy�x ,0 , t�− 
uy�x ,0��,
proves that these measurements characterize the vortex shed-
ding regime found in numerical simulations �Figs. 11�a� and
11�b� and Figs. 8�a� and 8�c�, respectively�. This also ex-
plains the presence of maxima at x�0 in the profiles III of

ux��x ,0 , t�2�1/2 and 
uy��x ,0 , t�2�1/2 plotted along the diameter
y=0, as they correspond to the location where the shed vor-
tice impact onto the centerline �see Figs. 11�b� and 8�c��.

For Re0=ReIV
0 , a second base oscillation f2, with f2� f1,

appears in the frequency spectrum of ��x ,y , t�. The spectrum

is then seen to be extended as further frequency peaks occur
for Re0 slightly higher than ReIV

0 �Fig. 12�b�� and exihibts a
A� f−2.3 power low for Re0�ReIV

0 �Fig. 12�c��. This equates
to regime IV identified in the numerical simulations as here
again, the time averaged profiles of velocity as well as r.m.s.
profiles of velocity fluctuations, obtained numerically and
experimentally are in good qualitative agreement �see Figs.
11�a� and 11�b� and Figs. 8�a� and 8�c�, respectively�. In this
regime, a clear maximum in the profiles of 
uy��x ,0 , t�2�1/2

appears in the region x�0 at xf
M �Fig. 8�c��, roughly at the

location xM where ux=ux
M �Fig. 8�a��. It is due to the two

initial vortice starting to oscillate and periodically crossing
the centerline y=0. Furthermore, the vorticity carried by
shed vortice induces a flow of negative mean velocity in the
x�0 region on the centerline and the width of this region

�xr�= 
xr

�1�−xr
�2�� increases with the forcing as the associated

return flow intensifies �see Figs. 8�a� and 8�b��. Once sucked
into the stream between the two oscillating vortice located at
x�0, these shed vortice are strongly squeezed and stretched
along êx. This points to the minimum in the profile

ux��x ,0 , t�2�1/2 at xf

m �see Fig. 8�c��. Since this stretching is
directly induced by the two initial vortice, the evolution of
xf

m follows that of xf
M with increasing forcing, until these two

points clearly separate, which marks the end of regime IV.
A last change of flow regime has been detected at Re0

=ReV
0 , where all quantities are brutally altered. 
�xr� drasti-

cally shrinks �Fig. 8�b�� and negative velocity components
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vanish completely along the diameter y=0, resulting in a
profile of 
ux� that is almost symmetric about x=0 �Fig.
8�a��. Accordingly, the average 
xM� rapidly drops to the vi-
cinity of x=0 at first, increases again and then slightly de-
creases for higher forcing. Also, the averaged point of sign
reversal along the circular wall 
	s�� is displaced in anti-
clockwise direction, thus following the displacement of 
xM�.
For Re0�ReV

0 , very strong velocity fluctuations make the
detection of 	s� in the profile u	�r=0.985R ,	 , t� impossible.

Figures 12�c� and 12�d� show that the amplitude of all
measured frequencies raises significantly above that from
previous regimes. According to Ref. �3� this indicates a tran-
sition to a spectrum with a broad continuous component,
thus implying that the flow in regime V is turbulent. This
regime is also characterised by the emergence of a new peak
frequency much lower than f2, as well as a A� f−5/3 inertial
range.

D. Scaling laws based on Rh

The critical values ReIII
0 ,ReIV

0 ,ReV
0 that correspond to the

transitions between the regimes identified in the previous
section are shown on Fig. 7. With the exception of the case
Ha=13.5, all critical Reynolds numbers scale as Ha, indicat-
ing that they may be governed by a single parameter Rh
=Re0 /Ha. In order to further check this property, all Re0

dependent quantities have been plotted against Rh instead of
Re0 �see Figs. 8�b�, 9�a�, and 9�c��. It clearly appears that any
set of curve describing a topological quantity �
xM�, 
	s��,

�xr�� can be merged into a single one, provided they are,
respectively, scaled as


xM�
Ha3/5 � f�Re0/Ha�, 
	s��Ha1/5 � g�Re0/Ha� ,


�xr� � h�Re0/Ha� . �9�

The fact that the lower values of Ha �Ha=13.5 and less no-
ticeably Ha=18� match these scalings imperfectly certainly

indicates that these are valid in the limit of large Ha and
breakdown at lower Ha, where three-dimensional effects are
present, as will be seen in Sec. III F. The relevance of Rh as
governing parameter in quasi-two-dimensional MHD flows
has been pointed out long ago �see Refs. �4,7�� in flows
dominated by Hartmann friction. It is, however, remarkable
that this parameter keeps its relevance in the present case
where strong three-dimensional recirculations due to some
local Ekman pumping are present. This certainly indicates
that the extra global dissipation induced by these remains
small compared to the Hartmann friction and that they essen-
tially alter the local shape of individual vortice. Velocity pro-
files across any of them �which are not available in the ex-
periment� may indeed not follow an universal law expressed
in terms of Rh only, as in the case of Sommeria’s isolated
vortice in Ref. �4�, where local recirculations affect the vor-
tex core only.

E. Nature of the bifurcations at Re0=ReIII
0 and Re0=ReIV

0

We have analyzed the nature of the bifurcation at Re0

=ReIII
0 by plotting the amplitude A1 of mode 1 with funda-

mental frequency f1 versus the critical parameter r1
=Re0 /ReIII

0 −1 on Fig. 13�a�. It is found to follow a square
root function. This, together with the fact that no hysteresis
at transition to regime III was observed, indicates a super-
critical bifurcation. The corresponding coefficients from the
Landau theory �see Refs. �28,29�� can be extracted by inter-
polating A1�r1� as

�A1� ��2k1r1

l1
=�2�1

l1
, �10�

where �1 is the exponential growth rate, k1=const and l1
measures the nonlinear saturation in the perturbation growth.
For 0�r1�0.15, the interpolation of A1�r1� with a square
root function yields k1 / l1�3�10−4 for all values of Ha, but
Ha=13.5 �see Fig. 13�a��. Here again, the case Ha=13.5 de-
parts from the asymptotic curve and exhibits stronger satu-
ration. Also, the related base frequency f1 increases linearly
for small r1 as a function of Re0 and seems to saturate for
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higher r1 as the flow approaches regime IV �Fig. 13�b��.
Furthermore, the frequency f1 at the onset of regime III in-
creases monotonically with Ha. The second bifurcation at
Re0=ReIV

0 results in a spectrum with two base frequencies f1
and f2 and subsequent linear combinations �Fig. 12�b�� of the
form m1f1+m2f2 with �m1 ,m2�� �−2,−1,0 ,1 ,2�2 as in Refs.
�30,3�. As for mode 1, the fundamental frequency f2 of mode
2 increases linearly with the critical parameter r2
=Re0 /ReIV

0 −1, but the slope seems to depend weakly on Ha
�Fig. 13�d��. No saturation was detected for 0�r2�1.5 but it
may well occur for higher forcing. As A1�r1�, A2�r2� follows
a square root function without any measurable hysteresis. An
interpolation of A2�r2� for 0�r1�0.15 yields also k2 / l2
�3�10−4 �Fig. 13�c��, and one can conclude to the super-
critical nature of the bifurcation to regime IV as well.

F. Measure of three-dimensionality

The three-dimensionality of the flow is measured by the
correlation between values of quantity VT�t� and VB�t�, taken
at the same location �x ,y� at top and bottom plate, respec-
tively. Two different types of correlation functions are used:

C1 =

�
i=0

n

VB�t�VT�t�

��
i=0

n

VB
2�t��

i=0

n

VT
2�t�

and C2 =

�
i=0

n

VB�t�VT�t�

�
i=0

n

VB
2�t�

,

�11�

where n is the number of samples over which C1 and C2 are
calculated. C1 quantifies how much phase and frequency are
correlated, regardless of signal amplitudes. C2 is the more
usual correlation function, that incorporates the signal ampli-
tude. Correlations based on the velocity component ux�x ,0 , t�
are denoted C2 thereafter.

Correlations built on velocity fluctuations ux��x ,0 , t�
=ux�x ,0 , t�− 
ux�x ,0�� are denoted by C1� and C2�. At this
point, it should be stressed that the correlation factor can be
influenced by the presence of �2 �V peak to peak noise,
especially in regimes I and II where the signals are weak, and
the ratio rS/N between the amplitude of the signal and that of
the noise, respectively, is small. For example, rS/N�5 for
Re0=5170 and Ha=36. This induces an error of �10% in the
correlation factor C2. This deviation from C2�1, however,
quickly decreases for higher values of Re0, as rS/N becomes
much larger. Consequently, this error is already as small as
�0.25% and hence negligbile when the flow changes to re-
gime III.

The variations of Ci and Ci� with Re0 are depicted on Figs.
14�a�, 14�c�, and 14�d� for several values of Ha. When Ha
=36 and Ha=28.5, the velocity correlation C2 is nearly unity
for all investigated regimes and one can conclude that the
flow is very close to quasi-two-dimensionality. For Ha=18,
C2 seems to be slightly below unity even for very high rS/N’s,
indicating some small three-dimensionality. For Ha=13.5,
this effect is more substantial, and one sees that three-
dimensionality is always present. This certainly explains why
the case Ha=13.5 departs from all the others in the scaling

laws found in the previous section. The picture turns out to
be a little more refined when inspecting the correlations
based on the velocity fluctuations �Figs. 14�c� and 14�d��.
Both C1� and C2� are weak near the onset of unsteadiness as
fluctuations and hence the rS/N is small. They eventually in-
crease to a value of about unity and remain almost constant
for Re0�Re3D

0 . Here again, the small deviation is due to the
presence of noise. However, correlations close to unity at all
locations �x ,y� along the centerline �Fig. 14�b�� indicate
quasi-two-dimensionality in this flow regime. Furthermore,
the fact that C1��C2� tells us that the velocity fluctuations are
strongly correlated in phase, frequency and amplitude.

This behavior changes drastically at the critical value
Re0=Re3D

0 �values for Re3D
0 are given on Fig. 7�. Both C1� and

C2� linearly decrease for Re0�Re3D
0 while C2 remains almost

constant �see Figs. 14�a�, 14�c�, and 14�d��. This indicates
the presence of three-dimensional vortice even though the
mean flow remains quasi-two-dimensional. It can be seen
from the profiles of velocity correlations in Fig. 14�b� that
these three-dimensional structures are mostly located in the
region x�0 where vortice are strongly accelerated by the
mean flow. Furthermore, since C2� declines more strongly
than C1�, one can conclude to a smaller amplitude of the
velocity fluctuations on the top plate. The decrease in C2� also
tells us that the flow in these structures is not only slower on
the top plate than on the bottom plate, but also shifted in
phase and frequency. In other words, the quasi-two-
dimensional columnar vortice start wobbling.

It is noteworthy that for Ha�28.5, Re3D
0 is much larger

than ReV
0 so three-dimensionality appears well into turbulent

flow regime V, whereas regimes I, II, III, IV are strictly
quasi-two-dimensional. Also, Re3D

0 scales approximately as
Ha8/5, except for the lower values of Ha, Ha=18 and 13.5. In
these cases, the region of influence of the noise is extended
as signals are weaker, so one can not tell whether the plateau
C1��C2��1 is reached for Re0�Re3D

0 . On the other hand, for
these low values of Ha, higher values of Re0 /Ha8/5 could be
reached and a new regime appears at Re0=Rep

0, where both
C1� and C2� stop decreasing and stay constant for all Re0

�Rep
0 �see Fig. 14�c� and 14�d��. This behavior can be due to

residual viscous friction and local Ekman pumping at the
scale of each vortex, that transports momentum along êz.
Furthermore, since the electric current is injected at the bot-
tom plate, the motion near the top plate is mostly be induced
by the motion near the bottom so they cannot be totally
uncorrelated.

G. Hartmann layer friction

Our experimental setup does not allow for measurements
made directly within the Hartmann layer nor for a global
measurement of the dissipation as obtained in the experiment
of Ref. �23�. We can, however, obtain a rough measure of the
fraction of the injected energy that is passed on to the quasi-
two-dimensional flow in the jet along the diameter y=0 by
monitoring the evolution of 
2D= �ũx

M /U0�2 vs R� (we recall
that ũx

M is the maximum velocity in the time averaged veloc-
ity profile �see Fig. 8�a��). In this regard 
2D is analogous to
the friction factor F defined in Ref. �23� in the sense that it
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represents a ratio between a velocity built on the forcing and
a measured velocity �here ũx

M�. Also, as in Ref. �23� R� rep-
resents the Reynolds number based on the Hartmann layer
thickness as well as on a velocity derived from measure-
ments of electric potentials, and it controls the transition
from a laminar to a turbulent Hartmann layer. Reference
�23�, however, measure their voltage across the whole chan-
nel, which gives them an average flow velocity whereas our
measurement corresponds to the maximum velocity in the
driving jet along êx. In this sense both R�’s reflect the same
physics, except that ours is local while that in Ref. �23� is
global.

The energy not transmitted to �ũx
M�2 is either dissipated or

transmitted to the three-dimensional part of the flow so a
change in the Hartmann friction should reflect on the evolu-
tion of 
2D.

Figure 15 presents the evolution of 
2D vs R�. For Ha
=28.5 and 36, and R� lower than the critical value for the
transition to regime V �R�

V�120�, 
2D decreases almost lin-
early with R�. Since the flow is close to quasi-two-
dimensionality in this regime �see Figs. 7 and 14�, this es-

sentially reflects joule dissipation in the Hartmann layers �or
Hartmann friction�. For R��R�

V, 
2D suddenly drops �see
Fig. 15�. Here, the flow is still quite close to quasi-two-
dimensionality as Re0�Re3D �see Fig. 14�. This suggests
that the extra dissipation might come from a brutal change in
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FIG. 14. Correlations averaged along the diameter y=0 for x� �−0.8125R ,0.8125R� and vs Re0 /Ha8/5. �a� C2. �b� Profile of C1� along the
diameter y=0. �c� C1�. �d� C2�.
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M��lam /�� for all Ha. Note that
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M and therefore R� drops strongly at the onset of regime V for
Ha=18, 28.5, and 36, and increases again within regime V.
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the Hartmann layer friction, triggered by a transition from a
laminar to a turbulent Hartmann layer. It may certainly be
objected that the critical value R��120 is well below R�

�380 found in recent experimental �see Ref. �23�� and nu-
merical �see Ref. �22�� studies on rectangular duct flows.
This, however, might be related to the fact that our forcing
mechanism is not the same as in Ref. �23� and therefore
triggers a different flow. While the flow in the experiment of
Ref. �23� is expected to be steady when the Hartmann layer
destabilizes, the flow in the present work, although still close
to quasi-two-dimensionality, is already strongly turbulent,
because of instabilities initialised in the side layers. The pres-
ence of a complex turbulent flow in the vicinity of the mea-
surement points introduces uncontrolled perturbations that
are absent in the idealized configurations cited above. On the
top of this several other factors such as wall roughness �see
Ref. �23�� as well as a large number of potential probes on
the Hartmann walls could generate additional disturbances
and also lead to a destabilization of the Hartmann layer for
lower R� than in Ref. �23�.

For R��R�
V, 
2D decreases almost linearly with R� again

for all Ha but with a gentler slope than at low R� �see Fig.
15�. For these values of R�, Re0�Re3D

0 so three-dimensional
perturbations are also present that generate some additional
Joule dissipation in the core flow on the top of the dissipation
in the turbulent Hartmann layer.

IV. CONCLUSION

We have performed an experiment where a vortex pair
confined by a circular wall was created by injecting electric
current into a thin layer of liquid metal perpendicular to an
homogeneous magnetic field. Such a flow is known to be
almost quasi-two-dimensional as physical quantities hardly
vary along the field lines, except in the fine Hartmann bound-
ary layers at the top and bottom plates �see Refs. �11,14��.
This allowed us to perform numerical simulations based on
the shallow water model of Ref. �14�, that accounts for mod-
erate Ekman pumping locally. In the experiment, electric po-
tential measurements have been used to determine part of the
two-dimensional velocity field. Both methods were cross
checked in order to identify the different regimes spanned by
the system when the electric current is increased. It was
shown that the system undergoes a transition to turbulence
through a sequence of supercritical bifurcations that are very
similar to those observed in the wake of a circular cylinder
�see Ref. �10��. First, two recirculating bubbles appear be-
hind the initial vortex pair as the boundary layer on the cir-
cular wall separates in two symmetric points �regime II�.
Secondly the separated boundary layer becomes unstable and

vortice shed and are sucked in the jet between these initial
vortice �regime III�. Unlike a cylinder wake where shed vor-
tice are released downstream, vortice are reinjected into the
main flow making it more unstable, so the flow quickly be-
comes chaotic as the forcing is increased �regime IV�. Fur-
ther insight into the analogy between these two systems
could be obtained by investigating their properties as dy-
namical systems. Such a task was undertaken by Ref. �3�
who has identified a clear scenario for the transition to tur-
bulence of a single vortex in a square box from two-
dimensional direct numerical simulation. It is worth men-
tioning that the frequency spectra found in the present study
strongly resembles that found in theirs.

At higher injected electric current, we have identified an-
other transition in the quasi-two-dimensional flow patterns
where the velocity profile along the center diameter becomes
almost symmetric �regime V�. This regime was beyond the
validity range of our numerical model so the exact flow pat-
terns remain unclear. We noticed, however, a drastic drop at
Re0=Re0

V exactly, in the slope of 
2D= �ũx
M /U0�2 vs R�, the

Reynolds number based on the thickness of the Hartmann
layer, that points to a likely transition to turbulence in this
region.

Finally, we have checked the two-dimensionality of the
system by calculating correlations between velocities mea-
sured on the same magnetic field line, on the top and bottom
walls enclosing the fluid layer. It turns out that for Ha
�28.5 the flow is very close to quasi-two-dimensionality in
all investigated regimes as correlations are nearly unity.
When these correlations are based on the velocity fluctua-
tions only, a sudden decrease appears well into regime V
which we could show is due to columnar vortice not only
having different rotation rates at the top and bottom plates,
but also wobbling. This provides the first evidence of a tran-
sition between quasi-two-dimensional and three-dimensional
turbulence in forced liquid metal MHD flows. Since this
transition occurs well into regime V for Ha�28.5, this also
allows us to be certain that regime I, II, III, and IV are
strictly quasi-two-dimensional and reflect two-dimensional
dynamics. Clearly though, further experiments in a larger
box are needed, where a higher number of measurement
points as well as a measurements in the bulk of the flow
should help determine the mechanisms of this transition to
three-dimensionality.
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