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Chaotic transport in deterministic sine-Gordon soliton ratchets
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We investigate homogeneous and inhomogeneous sine-Gordon ratchet systems in which a temporal sym-
metry and the spatial symmetry, respectively, are broken. We demonstrate that in the inhomogeneous systems
with ac driving the soliton dynamics is chaotic in certain parameter regions, although the soliton motion is
unidirectional. This is qualitatively explained by a one-collective-coordinate theory which yields an equation of
motion for the soliton that is identical to the equation of motion for a single particle ratchet which is known to
exhibit chaotic transport in its underdamped regime. For a quantitative comparison with our simulations we use
a two-collective-coordinate (2CC) theory. In contrast to this, homogeneous sine-Gordon ratchets with bihar-
monic driving, which breaks a temporal shift symmetry, do not exhibit chaos. This is explained by a 2CC
theory which yields two ODEs: one is linear, the other one describes a parametrically driven oscillator which
does not exhibit chaos. The latter ODE can be solved by a perturbation theory which yields a hierarchy of
linear equations that can be solved exactly order by order. The results agree very well with the simulations.
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I. INTRODUCTION

In the simplest particle ratchet models a pointlike particle
is considered in a periodic potential U(X) that is driven by a
periodic force f(¢) with zero time average. Under certain
conditions related to the breaking of symmetries, unidirec-
tional motion of the particle can take place [1-5].

The dynamics of the particle usually depends strongly on
the damping. For strong damping, when the inertial term can
be neglected compared to the damping term, the dynamics is
rather simple: e.g., in the case of an asymmetric periodic

potential U(X) the average velocity (v)=(X(¢)) of the particle
as a function of the driving amplitude exhibits a “quantized”
structure

<U>=§vstep (1)

with integers i,/ and the step height vy.,=L/T, where L and
T are the periods of the potential and the driving force, re-
spectively. This means that the particle motion is locked to
the driver; the particle covers a distance of i periods of the
potential during j driving periods [4].

For underdamped particle ratchets the dynamics is much
more complicated. In the case of an asymmetric periodic
potential and sinusoidal driving f(r)=A sin(wt) the following
additional effects show up [6-8]: (1) strong dependence on
the initial conditions, (2) appearance of bifurcations and cha-
otic regimes in plots of (v) vs the control parameter A, (3)
current reversals, i.e., changes of the sign of (v) as A is
varied, (4) hysteresis effects in (v) varying A.
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In the last few years the particle ratchet systems have
been generalized to spatially extended nonlinear systems, in
which solitons play a similar role as the above point particles
[9-15]. In particular, solitons in nonlinear Klein-Gordon sys-
tems have been shown to move on the average in one direc-
tion, although the driving force has zero time average, if
either temporal or spatial symmetry is broken. Both types of
ratchet systems can be defined by the equation

b+ Beb— b+ Z—Z[l £V = 0. 2)

Here ¢(x,1) is a scalar field and ¢, and ¢, are partial deriva-
tives with respect to space and time. We will consider here

the sine-Gordon model for which U(¢)=1—-cos ¢. The ex-
ternal driving force f(r) has the period T and zero time av-
erage.

For V(x)=0 the system is spatially homogeneous. The
temporal shift symmetry f(r)=—f(t+7/2) can be broken for
instance by using a biharmonic force [16-19]

f(t) = €; sin(wt + &;) + € sin(mwt + &), (3)

where m>1 is an even integer. Here the mechanism of the
ratchet effect has been clarified in detail by a collective co-
ordinate (CC) theory [18,19], which uses the soliton position
X(r) and width [(r). Due to the coupling between the transla-
tional and internal degrees of freedom, energy is pumped
inhomogeneously into the system, generating a unidirec-
tional motion. The breaking of the time shift symmetry gives
rise to a resonance mechanism that takes place whenever the
width /() oscillates with at least one frequency of the exter-
nal ac force. This ratchet effect has been confirmed by ex-
periments with annular Josephson junctions [20] which can
be modeled by sine-Gordon systems; here flux quanta (flux-
ons) play the role of the solitons. Biharmonic microwaves
have been used as the external periodic force.
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The second way to obtain a soliton ratchet consists in
breaking the spatial symmetry of the system. This has been
demonstrated very recently by the introduction of strongly
localized inhomogeneities g;(x), which were modeled by &
functions [21,22] or narrow and high box functions [23]. In
the case of long Josephson junctions “strongly localized”
means that the spatial extent of the inhomogeneities is much
smaller than the characteristic length for the system, the Jo-
sephson penetration length.

In order to produce a ratchet effect, V(x) in Eq. (2) must
consist of periodically repeated cells of length L, where each
cell n contains an asymmetric array of inhomogeneities
which are placed at positions x; within the cell, i.e.,

V() =2 X g(x—x;=nL). )

In most studies a single ac force
(1) = A sin(wt + &) (5)

has been used [21-23]. The case of two ac forces with dif-
ferent frequencies [24] will not be considered here. The aim
of this paper is to explain why the above two types of sys-
tems, homogeneous and inhomogeneous, exhibit a soliton
dynamics that qualitatively differs very much in at least two
important aspects.

(1) The homogeneous systems are very robust against
chaos: In Ref. [19] very small damping coefficients (0.01
< =<0.5) were chosen and the driving frequency o was
rather large (0.1 or 0.25), nevertheless no chaos showed up.
The same holds for even larger frequencies (Sec. V). In con-
trast to this, the inhomogeneous sine-Gordon ratchets exhibit
chaos if the driving frequency w is high enough and if both
the damping S and the driving amplitude A are relatively
small (Sec. II). Moreover, chaotic transport is possible unex-
pectedly in certain small parameter regions; e.g., for rela-
tively large damping (8=0.8—0.9) plus strong driving [A
=0(1)]. This will be discussed in detail in Sec. II.

(2) In the homogeneous systems the average soliton ve-
locity (v) is a smooth and differentiable function of the pa-
rameters of the model, e.g., amplitudes, frequencies, and
phases in the biharmonic driving force (3). In contrast to this,
in the inhomogeneous systems (v) exhibits a staircase struc-
ture.

We will first investigate the inhomogeneous sine-Gordon
ratchets. In Sec. II we present a set of typical soliton trajec-
tories X(¢) which exhibit regular or chaotic transport; then we
show in which parameter regions chaotic transport occurs. In
Sec. IIT a 1CC theory demonstrates that the soliton motion
can be described as the motion of a pointlike particle in an
effective potential which is periodic and asymmetric. For
such a particle ratchet model chaotic transport is well known
[6-8]. For a detailed comparison with the simulations we use
a 2CC theory in which the soliton width /(z) is the second
collective coordinate.

The ratchet mechanism in homogeneous sine-Gordon
models with biharmonic driving cannot be explained by a
1CC theory. In Ref. [17] it was argued that the observed
rectification arises from the excitation of internal kink modes
and their interaction with the translational kink motion. This
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conjecture was confirmed by a 2CC theory [18,19] which
reveals a resonance phenomenon, see below Eq. (3). More-
over, this theory suggests that no chaos occurs in these sys-
tems (Secs. IV and V): The two ODEs for the soliton posi-
tion X(7) and width /() can be decoupled by the introduction
of the soliton momentum P() which obeys a linear equation.
The remaining ODE for [(¢) represents a nonlinear oscillator
which is driven parametrically by the harmonics contained in
P%(t) and does not exhibit chaos. The comparison with the
simulation results is made in Sec. V, and the conclusions are
presented in Sec. VL.

II. INHOMOGENEOUS RATCHETS: SIMULATIONS

Strongly localized inhomogeneities, the g; in Eq. (4), have
been modeled by & functions [21,22] or by narrow and high
box functions [23]. We choose here the boxes because they
are more realistic and can be implemented more easily in our
simulation program. Moreover, the number, shape and posi-
tions x; of the boxes within the periodically repeated cells
have been optimized in Ref. [23], in the sense that the aver-
age soliton velocity (v) and thus the current is as high as
possible. For strong damping (8=1) and low driving fre-
quency (w=0.015 or 0.05) the optimal array consists of two
boxes with equal halfwidth (b=0.1) and equal height, but
with opposite signs (h;=25, h,=—h;). The positions x; and
X, are chosen such that the boxes touch each other, but do not
overlap, i.e., x,—x;=2b. The array length is L=4, 6, or 8 and
in this range L has little influence on (v).

We remark that the above two types of inhomogeneities,
having a positive or a negative sign, have already been used
in experiments with long Josephson junctions: so-called “mi-
croresistors” (critical current J, decreased) and ‘“‘mi-
croshorts” (J, increased) [25]. Plots of (v) vs the driving
amplitude A exhibit a staircase structure similar to the case
of particle ratchets: j=1 in Eq. (1) and with increasing am-
plitude i first increases (i=1,2,3,...,im.), then decreases.
But before i=0 can be reached the system enters a regime in
which kink-antikink pairs appear spontaneously and spoil the
ratchet effect. For the above parameters the maximum of (v)
is on the order of 0.15 (in units of the critical velocity v,
=1 of the unperturbed sine-Gordon model). The value 0.15 is
quite high, bearing in mind that (v) is an average which
includes soliton velocities v(z) not far from the critical ve-
locity.

The above results were obtained for strong damping (8
=1) and low driving frequency. In this paper we are inter-
ested in chaotic transport and therefore we reduce the damp-
ing and increase the driving frequency but do not change the
parameters of the inhomogeneities. We numerically solve Eq.
(2) by using a fourth-order Runge-Kutta scheme with step
sizes Ar=0.01 and Ax=0.05.

In Fig. 1 we present some examples from a typical set of
soliton trajectories X(r) with 8=0.4 and a relatively high
driving frequency (w=0.38), varying the driving amplitude
A. For A<A_;,=0.49 there is no ratchet effect, for 0.49
<A,in=0.57 we get unidirectional transport with n-periodic
solutions, where n decreases as A increases (n=22,5,3,2 for
A=0.49,0.5,0.52,0.57, respectively). Here the average ve-
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FIG. 1. (Color online) (a), (b) Simulation results for a ratchet
with box inhomogeneities of period L=4 (see text), for damping
B=0.4. The soliton position X(z) is plotted vs time in units of the
period T=2m/w of ac driving with frequency ®=0.38. (a)
n-periodic regular trajectories with n=5, 3, and 1. (b) Chaotic, five-
periodic, and chaotic trajectories for A=0.71, 0.72, and 0.7725, re-
spectively. (c) Some special trajectories on a larger time scale, see
text.

locity (v) increases according to Eq. (1) with i=1 and j=n.
Then a broad A interval [0.58,0.7] with one-periodic solu-
tions appears in which (v) has its maximum value L/T.
Above this interval there is an irregular sequence of chaotic
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and n-periodic trajectories [Fig. 1(b)]. The intermittency in
the chaotic soliton trajectories is not strongly pronounced,
compared to particle ratchet models where long times with
regular behavior are interrupted by short bursts with irregular
behavior [7].

Figure 2(a) summarizes which types of soliton trajectories
(no transport, regular or chaotic transport) occur in the region
0.02=B=<1, 0sA=<1. We distinguish between the different
types of trajectories by using dynamical systems methods
from “symbolic dynamics” (Appendix). For small damping
and strong driving (dark gray regions in Fig. 2) no definite
trajectories can be determined, because the soliton is strongly
deformed such that its position is no longer defined (Appen-
dix ). The soliton can also develop into a complicated struc-
ture with additional kink-antikink pairs.

As expected, the transport is nearly always chaotic for
small damping (e.g., 8=0.1), while it is nearly always regu-
lar for large damping (e.g., 8=0.7). However, somewhat sur-
prising is the fact that chaos also occurs in a small stripe with
large damping (B=0.8-0.9) and strong driving (A
=0.9-1.0). A typical trajectory from this stripe is shown in
Fig. 1(c), together with an example for the opposite case:
small damping (8=0.15) and weak driving (A=0.305).

Figure 2(c) displays the average soliton velocities for the
same parameter region as in Fig. 2(a). The average is taken
over 30 periods 7, after having waited a sufficently long time
(ten periods) until transients have elapsed. The sharp lines
between the different gray-scale-values appear due to the
“quantization” of the velocity according to Eq. (1). This
equation only holds for regular transport, therefore there are
no sharp lines at the boundaries to regions with chaotic trans-
port.

An interesting detail in Fig. 2(c) (8=0.25, A=0.625) are
the small black regions in which (v) is negative (current
reversal). Figure 1(c) displays three trajectories from a scan
for 8=0.25 through the largest black region. We mention that
current reversals were already observed in a sine-Gordon
system with asymmetric field potential, for similar values of
driving amplitude and damping [26]. The phenomenon was
attributed to the influence of phonon modes, because a CC
theory cannot describe it. In fact, the situation is quite similar
for our inhomogeneous sine-Gordon system, because the
CC-theory in Sec. III also does not yield current reversals,
see Fig. 5(b). When the driving frequency is reduced, starting
from w=0.38, the white chaotic regions in Fig. 2(a) shrink
more and more and eventually vanish.

In Fig. 3 we present (v) as a function of w, for fixed A and
B. Here (v) is averaged over 30 single, successive driving
periods, i.e., up to 30 different points can be seen for each w.
For small w we observe unidirectional transport with one-
periodic solutions. For larger w there are either n-periodic or
chaotic trajectories. In the hatched regions for even larger w
there are no definite trajectories [see the dark gray regions in
Figs. 2(a) and 2(b)]. And above that region there is no uni-
directional transport.

Finally we demonstrate in Fig. 4 that bifurcations, regions
with n-periodic solutions and chaotic regions, appear in a
Poincaré plot with the control parameter A. Here the soliton

velocity X(1) is plotted for 30 successive time values t,7
+7,t+2T, etc.
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FIG. 2. Simulation results for
the same inhomogeneous ratchet
as in Fig. 1, with driving fre-
quency w=0.38. (a) Type of trans-
port as a function of driving am-
plitude A and damping f; black:
no transport, light gray: regular
transport, white: chaotic transport,
dark gray: no definite trajectories
(see text). (c) Mean soliton veloc-
ity (v), in units of vy, =L/T. In
the black regions (v) is negative
(current reversal). White region:
No definite trajectories [dark gray
regions in (a)]. (b) The same as in
(a) but now with additional weak
subharmonic driving (Ay,;,=0.02,
Wap=w/2).
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FIG. 3. Soliton velocity averaged over 30 single successive pe-
riods (after having waited for 20 periods), as a function of the
driving frequency w, for fixed driving amplitude A=0.5 and damp-
ing B=0.15. The different regions are discussed in the text.

Another interesting point is the stabilization of the soliton
dynamics by weak periodic signals. For particle ratchets it is
well known that chaos can be suppressed applying weak sub-
harmonic signals [27]. To check whether this also holds for
the soliton ratchet studied here, we have run simulations with
an additional weak subharmonic driving force f(r)
— A sin(wt+ &) + Ay, sin(wg,pt). Figure 2(b) shows the re-
sult for wg,=w/2=0.19, A;,=0.02, and §,=0.0. As one can
see, some chaotic (white) regions disappear. The stabilizing
effect of weak subharmonic signals as shown in Ref. [27] for
particle ratchets hence also works for soliton ratchets.

III. INHOMOGENEOUS RATCHETS: THEORY

First we demonstrate that a simple theory with only one
collective coordinate (1CC theory) is sufficient to understand
why and roughly when chaos appears in the inhomogeneous

0.5 ‘

025~

dX/dt

-0.75

FIG. 4. Soliton velocity for 30 successive time values ¢, t+7,
t+2T,..., (after having waited for 20 periods), varying the driving
amplitude A. The figure shows simulation results for the same in-
homogeneous ratchet as in Fig. 1. Model parameters are w=0.38
and B8=0.25.
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systems, in contrast to the homogeneous systems for which a
1CC theory does not work [17,18,28]. In a second step we
shortly review the 2CC theory [21-23] which will then be
used to make a quantitive comparison with the simulation
results of Sec. II.

The one-soliton solution of the unperturbed sine-Gordon
equation is used to make the following ansatz:

x—X(t)}

0

d(x,t)=4 arctan[ y (6)

with the soliton position X(r), y=1/ V1-X? and the soliton
rest width [y=1.

Using a procedure first proposed in Ref. [29] the follow-
ing equation of motion for the soliton is obtained [22]:

.. . au
Y MoX + BYMoX == gf (1) - — (7)
Here M,=8 is the soliton rest mass, y°M,, is the so-called
longitudinal relativistic mass, g=2r is the topological charge
of the soliton, f(r)=A sin(wt), and —dU/ X is a force due to
an effective potential

U= f ’ dx2 sech’[ y(x = X)]V(x). (8)

—o0

As V(x) consists of periods of length L, where each period
contains an asymmetric array of the inhomogeneities g; [Eq.
(4)], the effective potential U(X) is also periodic with period
L and is asymmetric.

The integral in Eq. (8) can be evaluated analytically for &
functions or box inhomogeneities [22,23]. But here we do
not need the results, because for this paper the only impor-
tant fact is that Eq. (7) has the same form as the deterministic
equation of motion for a periodically driven pointlike par-
ticle in an asymmetric periodic potential, as discussed at the
beginning of the Introduction. (However, in most of the lit-
erature on particle ratchets the nonrelativistic limit was con-
sidered.)

Thus we can conclude that in the overdamped regime
(B> w), when the inertial term can be neglected compared to
the damping term, the solitons always have regular trajecto-
ries and plots of (v) vs A exhibit the staircase structure of Eq.
(1). This is confirmed by our simulations.

If B is on the same order as w or even much smaller
(underdamped regime), we expect the four additional effects
listed in Sec. I for particle ratchets. In particular we are in-
terested in chaotic transport and current reversals when 3 is
reduced and o is increased (compared to the parameters in
Refs. [21-23]: B=1, =0.015,0.05,0.1).

However, for larger o the 1CC theory does not agree so
well with the simulations. For example, for w=0.1 it pre-
dicted two so-called “windows” (regions of A in which (v)
#0) while the simulation yielded only one window [21].

Therefore we need to improve the 1CC theory by intro-
ducing a second collective coordinate, namely, the soliton
width I(z). We use the so-called Rice ansatz [30] which was
originally made in order to calculate approximately the inter-
nal mode of solitons in nonlinear Klein-Gordon models.
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Later the Rice ansatz was used to predict an unexpected reso-
nance in the ac-driven ¢* model [31,32] and recently it was
applied to nonlinear Klein-Gordon ratchets [18,19,21,22].
For the sine-Gordon model the ansatz reads

d(x,1) =4 arctan{exp(x _l()t()(t) ) } 9)

and in the case of inhomogeneous ratchet systems the 2CC
theory yields the two coupled ODEs [22]

X X XI -
M0107+BM0107—M0101_2=FaC+Fm N (10)

. . »
aMl£+,8aMlg+Ml£=Ki“‘+Ki"h (11)
001 ool 0012 >

where a=72/12, M=8, and [y=1 is the soliton rest width

Fﬂ°=f a0 2% = () (12)

with the topological charge g=2 is an effective driving
force and

. oE
Kmt=_ — 13
=l (13)

is a force which arises from the soliton energy
1 1l L1 Iy 1
——MX*+ ——aMyl* + =M, <—+—>,
g MoXi g7 aMolm+ oMo 5+
(14)

including internal energy due to width oscillations. There are
two forces that appear due to the potential V(x) in Eq. (2):

. U coU au
F‘"h=—f dx——(f)V(x)=—f dx—V(x) = - —,
O X ). 4 X
(15)
4 o oUo zoU au
Kinh— _ f dx——qbV(x) =- f dx—V(x) =——.
—  d¢ dl ol al
(16)
with the effective potential
U(X,l) = J dxU(¢)V(x). (17)

U(¢p)=1—-cos ¢ can be evaluated for the ansatz (9) which
yields [23]

-X
UX,))= | dx2sech? xTV(x), (18)

—

where V(x) consists of strongly localized inhomogeneities g;
as defined in Eq. (4).
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In the following we use box functions as inhomogeneities,
because for this choice the integral 18 can be evaluated ana-
lytically [23],

2b, Z Z_
U(X,l)= >, >, 2h;l sinh 7 sech 7* sech I (19)

n 1

with Z.=X-x;—nL = b;. Here h; and b; are the height and
half width of the box i at position x; within cell n. All cells
have length L and are repeated periodically. We use the same
array of two adjacent boxes with opposite signs as in our
simulations in Sec. II: b;=b,=0.1, h=25, hy=—h,, X,—Xx,
=0.2.

The two ODEs [Egs. (10) and (11)] can easily be solved
numerically.

Figure 5(a), which displays the different types of transport
for the A-f plane, agrees quite well with the corresponding
simulation results in Fig. 2(a). There are, however, some
quantitative differences. The most important one is that for
A=0.3 the roughly diagonal line which separates the black
no-ratchet regime from the light gray (regular) and white
(chaotic) ratchet regimes is tilted to the right in the simula-
tions, compared to the theory. This means that the slope of
the line is smaller than the theory predicts. The explanation
is that in the sine-Gordon equation there are many more de-
grees of freedom than in 2CC theory. They represent a kind
of noise bath which means that the damping is effectively
increased. For example, the point 8=0.57, A=0.7 on the di-
agonal line is shifted to the right to 8=0.63, A=0.7 in the
simulations. This effect is stronger the higher the amplitude
A. Another important difference is that in the simulations the
white chaotic regions are considerably smaller than in the
theory. At first glance this is surprising because one would
expect less chaos in the two ODEs of the theory than in the
sine-Gordon equation which is a PDE. But we are dealing
here only with chaotic transport of solitons, not with chaos in
general, and solitons are nonlinear coherent excitations
which are very robust, both in an environment with deter-
ministic chaos [33] and in the presence of thermal noise [34].

The distribution of the mean soliton velocities (v) in the
A-B plane is seen in Fig. 5(b) and has to be compared with
Fig. 2(c). As there are much larger chaotic regions in the
theory than in the simulations, the “quantization” of (v) is
much less pronounced here. Another important difference is
that there are no regions with current reversals, in contrast to
the appearance of the small black regions in Fig. 2(c).

IV. HOMOGENEOUS RATCHETS: THEORY

We consider the sine-Gordon Eq. (2) with V(x)=0 and
the biharmonic driving force in Eq. (3), which breaks a tem-
poral symmetry. In this case a 2CC theory is needed, as has
already been explained below Eq. (3). The resulting ODEs
(see Refs. [18,19]) for the soliton position X(z) and width /(r)
are a special case of Egs. (10) and (11) in which the inho-
mogeneous forces F™ and K™ in Egs. (15) and (16) now
vanish identically. Thereby the character of the equations is
changed completely: The introduction of the soliton momen-
tum
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P(1) = MoloX/1 (20)

allows transformation of the ODE for X(r) into a linear equa-
tion for P(r) which is decoupled from the ODE for I(r)

P+ BP=-qf(1). (21)

Thus P(¢) cannot exhibit chaos. Possibly this holds only for
the theory, not for the simulations, since the Rice ansatz (9)
is an approximation. However, Eq. (21) can be shown to be
exact [35], by using the field-theoretic definition of the mo-
mentum

P(1) =- jm dx b (22)

The solution of Eq. (21), after transients have elapsed and
become negligible (r>1/ ), has a similar biharmonic struc-
ture as the driving force (3). Both harmonic terms in P(z)
have an additional phase shift and the amplitudes are func-
tions of the parameters B, €, €, w, and m.

FIG. 5. Results from 2CC
theory for inhomogeneous ratch-
ets, to be compared with the simu-
lation results in Fig 2. (a) Type of
transport. (b) Mean soliton veloc-
ity in units of vye,=L/T.

1

The ODE for I(¢) reads, after the substitution (20),

Zz—zzl—zglz':n,%lz(1 +P—2) —l, (23)
M(Z) o

where Qg=1/ (\s’Zlo) is the Rice frequency [18,19]. This
equation describes a parametrically driven oscillator which
does not exhibit chaos. Due to the term with P, [(f) is para-
metrically driven by harmonic terms with frequencies 2w,
2mw and (m* 1) .

Equation (23) can be solved analytically by a perturbation
theory that yields a hierarchy of linear equations which can
be solved exactly order by order [19]. For m=2 the first
order suffices; here I(¢) contains harmonics with the frequen-
cies w, 2w, 3w, and 4w. The average soliton velocity is, due
to Eq. (20),
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T
=)= f pan
0 00

which is nonzero because /(¢) contains harmonics which also
appear in P(f). In contrast to this, for m=3 there are only
even harmonics in /() which cannot resonate with the odd
harmonics in P(z). Therefore (v) vanishes, in agreement with
the fact that the temporal shift symmetry is not broken for
m=3 in Eq. (3).

Both P(¢) and I(z) are continuous functions of the system
parameters. Therefore (v) is continnuous, too; there cannot
be jumps, in contrast to the inhomogeneous ratchets with the
“quantized” structure in Eq. (1).

dt, (24)

V. HOMOGENEOUS RATCHETS: SIMULATIONS

Very recent simulations for sine-Gordon and ¢* ratchets
with biharmonic driving [19] demonstrated that the soliton
dynamics is always regular, even for very small damping
(8=0.01) and rather high driving frequencies (w=0.1 or o
=0.25). In this paper we want to check whether this holds for
even larger w and for larger driving amplitudes. Moreover,
we want to see to what extend the 2CC theory is still valid;
this is an adiabatic theory which assumes that the driving
force is weak and varies slowly such that the soliton is not
deformed in a way which cannot be described approximately
by the ansatz in Eq. (9).

We now use

Aharm

fly= It

[sin(wt + O,) + a, sin(mwt + O,)  (25)

r

as biharmonic driving force. Unlike Eq. (3), the above driv-
ing force can in some ways be directly compared to the har-
monic driving force (5): If Ap,m in Eq. (25) is chosen to be
equal to A in Eq. (5), the total area enclosed between the
time axis and the particular driving force is the same for both
functions. Moreover, the maximum values of both functions
are equal if Ay ., and A are chosen as described above.

In the following we restrict ourselves to m=2, 0,=0,
=0 and a,=1. Furthermore, we use the quantity Ap,., to
characterize the strength of the driving. Or, in terms of Eq.
(3), €= €2=Aharm/2 and 51 = 52=0.

In Fig. 6(a) we see that for the biharmonic driving fre-
quencies w=0.38, mw=0.76 and rather large driving ampli-
tudes (A},;m=0.3) the 2CC theory still agrees with the simu-
lations, if 8=0.45. Below this value, with decreasing S, the
agreement becomes worse and worse, but the trajectories re-
main regular, both in the theory and in the simulations (see
inset). For even stronger driving (Ay,,,=0.6) the soliton po-
sition can no longer be definitely determined for very small
B [hatched region in Fig. 6(b)].

Finally we note that the above results only hold for con-
tinuous systems. The discrete sine-Gordon system with
damping and biharmonic driving shows both regular and
chaotic transport [36]. Moreover, (v) vs the driving ampli-
tude exhibits a staircase structure as described in Eq. (1).
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FIG. 6. (Color online) Mean soliton velocity (v) (average taken
over 30 driving periods 27/ w after having waited for 30 periods) vs
the damping coefficient 8. The model parameters are w=0.38, m
=2, ©,=0,=0, and A,,;,=0.3 (a) and 0.6 (b). The insets in both
figures in each case show the soliton trajectories X(z) for the small-
est damping that was considered.

VI. CONCLUSIONS

We have demonstrated that sine-Gordon ratchets with
strongly localized inhomogeneities, modeled by narrow high
box functions, exhibit chaotic transport in certain regions of
the parameter space. The reason is that the solitons behave as
periodically driven particles in an effective, periodic, asym-
metric potential; for such particle ratchet models chaotic
transport is well known.

As a test for our prediction of chaotic transport, we sug-
gest experiments on long Josephson junctions with strongly
localized inhomogeneities. There are two types of such inho-
mogeneities, microshorts, and microresistors, which both
have already been used in experiments. Our simulations, and
also our CC theory, predict chaotic transport by solitons not
only for very small damping, but also for certain other pa-
rameter regions [Fig. 2(a)]. Therefore there are good chances
to find regions for which experiments can be performed.

In contrast to the inhomogeneous ratchets, homogeneous
sine-Gordon ratchets with biharmonic driving, which breaks
a time-shift symmetry, do not exhibit chaos. This can be
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explained by a 2CC theory which eventually yields a decou-
pled linear ODE for the soliton momentum and a nonlinear
ODE for the soliton width which can be understood as a
parametically driven oscillator. In fact, experiments with an-
nular Josephson junctions, using biharmonic microwave
driving, did not exhibit chaos.

The above 2-CC theory also explains that the mean soli-
ton velocity is a smooth function of all the parameters of the
model. In contrast to this, the mean soliton velocity in the
inhomogeneous ratchets changes discontinuously as a func-
tion of the model parameters, which is well known for par-
ticle ratchet models.
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APPENDIX

For the propagation of the solution ¢(x,7) of Eq. (2) we
use an explicit finite difference algorithm: After a spatial
semidiscretization with stepsize Ax=0.05, the remaining
coupled ODEs are solved using a fourth-order Runge-Kutta
scheme with stepsize Ar=0.01. We use periodic boundary
conditions. First of all we need the position of the soliton for
every time step, that is, the soliton trajectories.

d(x,,0) = 2m+ 1),

L)< Q2m+1)m,
X()=x, with Hon1,0) < Qm+ 1

([p(xjt) > 2m+ Dar] A{lx;

If a perturbed sine-Gordon kink ¢(x,#) does not fullfill Eq.
(A3) for a certain time step, it is no longer possible to define
meaningfully the position of its center X(). In this case there
is no definite soliton trajectory X(7) [white regions in Figs. 2
and 5, dark gray regions in Figs. 2(a), 2(b), and 5(a), hatched
regions in Figs. 3, 4, and 6(b)].

2. Computation of the soliton velocity

Computing the soliton velocity X(r) using the discrete
soliton positions

X(t, =t + nAf)

may lead to severe discretization errors. Therefore we use a
different approach: The area A= xma"qﬁ[x X(),t]dx between
the x axis and the kink ¢(x,7= const) depends linearly on the
current soliton position X(7) and vice versa:

([(xj1) < 2m+ D] A{b(x;
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1. Computation of the soliton position

For each time step

¢n(t) = ¢(xn = Xmin T nAx,t)

represents a perturbed sine-Gordon kink [Eq. (6)]. In case of
free boundary conditions the position of the kink center X(z)
of an unperturbed sine-Gordon kink would be defined by

d(x,,t) =,

o) < . (A1)

X(r)=x, with {
In case of periodic boundary conditions, a phase shift of 27
(soliton moves in the —x direction) or =27 (soliton moves
along the +x direction) occurs every time the soliton
switches from one side of the simulation region to the other.
Hence the above definition has to be modified to

P(x,,t) = 2m + 1),

d)(-xn_],[) < (2m + 1)77’ (AZ)

X(r)=x, with {
where m=0,1,..., is an integer.

In the presence of (strong) perturbations, the above defi-
nitions are no longer sufficient. Consider for example a sine-
Gordon kink with peaklike perturbations of height *4,,. If &,
is sufficiently large, a single kink ¢(x,7=const) may fullfill
Eq. (A2) for different values of n and/or m at one and the
same time. That is, one cannot specify a definite position of
the kink center. Hence definition (A2) has to be modified
again:

H>2m=-1)+ 17 Vji<(n-1), (A3)
D <[2m+1)+1]7}) Vj>n.
|
X[N(D)] = mA + a. (A4)

For X(#)=xX. N is approximately zero, for X(f)=xpi,, N\ is
approximately 27(X.x—Xmin). Inserting these approxima-
tions in Eq. (A4) results in a set of coupled equations for m
and «a. Solving this set and reinserting the results into Eq.
(A4) yields

XTA(1)] = X~ ﬁ“f) =t HEXO.x
(A5)
and, thus,
X(=- J m%f(”t] (A6)

Xmin
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where [ ﬁm?XM%de is directly accesible during the com-
“'min
putation.

3. Evaluation of soliton trajectories

To determine whether a soliton trajectory displays regular
(n-periodic) or chaotic behavior [see Figs. 1(a) and 1(b), re-
spectively], we apply methods of “symbolic dynamics.” The
(possibly) complicated structure of the soliton trajectory X(r)
is translated into a sequence of simple symbols. This is done
in a way that all needed information is conserved. On the
other hand, all dispensable details are disregarded. The main
problem is to find a “translation formula” satisfying the
above claims.

Here we proceed as follows. The trajectory is examined
on subsequent intervals

Ij: [tw+jT;tw+ (j+ 1)T]’

with j=0,1,2,...,m (¢, is a waiting time to exclude tran-
sients, T:zf is the period of the driving force). On each of
these intervals X(z) is translated in one of the two symbols
{1,0}. For sinusoidal driving, the trajectory on every I; is an
oscillating function in time. We compute the distance

PHYSICAL REVIEW E 79, 016207 (2009)

d;=max; [X(¢)] - min; [X(7)]
J j J
between the maximum and the minimum of X(#) on /;. If
dj+1 - d] = A,
X(t) on I; receives for example the symbol “1.” For
di —d; <A.

X(t) on I; is “translated” into “0.” The parameter A deter-
mines the “sensitivity” of the translation process. Good re-
sults are achieved by choosing A small compared to d. We
always used A=1/8.

In the resulting sequence of symbols (length m), we
search for repetitive structures. If a subsequence of symbols
with length n e [1;lm/2]] (-] denotes the floor function)
is repeated again and again, the corresponding trajectory
shows regular, n-periodic behavior [light gray regions in
Figs. 2(a) and 5(a)]. For n>|m/2], the corresponding trajec-
tory displays chaotic soliton motion on the timescale given
by the observation period (m+1)T [white regions in Figs.
2(a) and 5(a)].
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