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We present microwave measurements for the density and spatial correlation of current critical points in an
open billiard system and compare them with new and previous predictions of the random-wave model �RWM�.
In particular, due to an improvement of the experimental setup, we determine experimentally the spatial
correlation of saddle points of the current field. An asymptotic expression for the vortex-saddle and saddle-
saddle correlation functions based on the RWM is derived, with experiment and theory agreeing well. We also
derive an expression for the density of saddle points in the presence of a straight boundary with general mixed
boundary conditions in the RWM and compare with experimental measurements of the vortex and saddle
density in the vicinity of a straight wall satisfying Dirichlet conditions.

DOI: 10.1103/PhysRevE.79.016203 PACS number�s�: 05.45.Mt, 42.25.Bs

I. INTRODUCTION

The use of Gaussian random functions to describe the
spatial structure of complex physical systems has had suc-
cess in a wide range of physical applications, originating
from Rice’s description of the random currents of shot noise
�1� and Longuet-Higgins’ description of random water waves
�2,3�, and more recently in such diverse fields as sound
waves and acoustics �4,5�, turbulence �6�, optical speckle
patterns �7�, and cosmic microwave background fluctuations
�8�.

In the realm of quantum-wave physics, the same univer-
sality of the amplitude fluctuations has been conjectured in
the spatial patterns of eigenfunctions in systems with classi-
cal �ray� chaotic dynamics �9�. The analogy between the
equations of a noninteracting two-dimensional electron gas
and the electromagnetic modes of a microwave cavity
�10–14� �see Refs. �15,16� for reviews� allows a unified treat-
ment in the language of quantum billiards: namely, as solu-
tions of the two-dimensional Helmholtz equation

− ��x
2 + �y

2���r�� = k2��r�� , �1�

with wave number k and energy k2, where r�= �x ,y�. We
therefore may study the properties of electron wave func-
tions, which are otherwise difficult to access experimentally,
by means of measurements using our microwave experimen-
tal setup. Previously, insights from this analogy have had a
strong impact on the theoretical study of coherent effects on
electronic systems in the mesoscopic regime, where the spa-
tial correlations of the electronic wave function are, besides
the fluctuations of the energy spectra, the source of mesos-
copic reproducible fluctuations �see Refs. �17–19� for recent
examples�.

Concerning fundamental questions, the measurements of
complicated statistical measures �namely, averages over the

experimentally constructed eigenfunctions of complicated
functionals� are very stringent probes for the statistical as-
sumptions upon which theoretical models of chaotic wave
functions are based. The primary such model is the so-called
random-wave model �RWM�, proposed by Berry �9�, based
on the isotropic two-dimensional random waves studied by
Longuet-Higgins �3�. The RWM we consider here is a statis-
tically stationary isotropic solution of the two-dimensional
Helmholtz equation �time-independent Schrödinger equa-
tion�, statistically invariant to translation and rotation.

The RWM predicts that the spatial fluctuations of eigen-
functions are Gaussian distributed, and this gives rise to
characteristic morphological features �e.g., Refs. �20,21��. So
far, and largely due to the experimental possibility given by
the microwave measurements, the assumption of Gaussian
statistics has successfully passed very demanding tests. To
mention just two examples where very complicated function-
als of the measured eigenfunctions are required and the
RWM provide excellent results, we have the distribution of
current �22�, the intensity distribution in the transition from
closed to open billiards �23�, and the distribution of quantum
stress tensor �24� �see Ref. �16� for a recent review�.

In this paper we address a different type of functional,
based on the nodal properties of complex chaotic wave func-
tions, and show again how the assumption of Gaussian sta-
tistics is strongly supported by the experimental results.

The features of the random eigenfunctions, we study here
are the critical points of the current density �hereafter cur-
rent� associated with the complex wave �. The current is
defined by

j��r�� � Im ��r��* � ��r�� . �2�

In quantum-mechanical systems, j��r�� represents the probabil-
ity current density at position r�. In quasi-two-dimensional

PHYSICAL REVIEW E 79, 016203 �2009�

1539-3755/2009/79�1�/016203�12� ©2009 The American Physical Society016203-1

http://dx.doi.org/10.1103/PhysRevE.79.016203


electromagnetic microwave billiards, there is a one-to-one
correspondence of j��r�� to the Poynting vector �22�.

Since � is assumed to satisfy the two-dimensional Helm-
holtz equation, the points where j�=0� are of two types: vor-
tices of the flow �also known as circulations, wave disloca-
tions, nodal points, and phase singularities �16,22,25–27��,
where �=0 and about which the current swirls in a counter-
clockwise ��� or clockwise ��� sense, and saddle points
�stagnation points�, which are also saddle points of the phase
arg � and hyperbolic points in the current flow. �The exis-
tence of phase extrema—maxima or minima—is prohibited
by the Helmholtz equation �27�.� The topological Poincaré
index of these types of points, describing the number of turns
of j� in a small circuit of the critical point, is +1 for vortices
�regardless of the sense of circulation� and −1 for saddle
points. General arguments based on statistical isotropy dem-
onstrate that there can be no net accumulation of topological
charge, either in the sign of the vortices or in the Poincaré
index. Therefore, the densities of positive and negative vor-
tices must be equal, and the bulk vortex density must equal
the bulk saddle density; calculations based on the RWM
�25–27� give this vortex density as k2 /4�. Knowledge of the
positions of the critical points of the current vector field pro-
vides a skeleton on which the rest of the flow field is based.

An important deviation to the bulk RWM is caused by the
presence of boundaries. The interplay between spatial con-
finement and Gaussian fluctuations is by no means trivial,
and it has even been claimed that in confined systems Gauss-
ian fluctuations are valid only over very short distances �28�.
Substantial progress has been made recently in modifying
the basic RWM to include boundary effects �29–35�, sup-
ported by numerical evidence �36�, and there appears to be
no reason to believe that the Gaussian assumption fails in the
vicinity of a system’s boundary. Here, we present experimen-
tal measurements demonstrating the validity of boundary-
adapted RWMs, based on Dirichlet conditions on an infinite
straight wall.

The intensity distributions in a two-dimensional chaotic
microwave cavity, as shown in Fig. 1, are well understood
�23�, although the distribution of current critical points has
not previously been studied in detail. In addition to the den-
sity fluctuations of vortices and saddle points against a Di-
richlet boundary, we measure the vortex-vortex correlation
function �including the case signed by circulation� and the
vortex-saddle and saddle-saddle correlation functions, com-
paring against predictions of the RWM.

Although some of the theoretical predictions we compare
with have been derived before �such as the vortex-vortex
correlation functions �25,26� and vortex density fluctuations
against a straight wall �29,30��, others are new. In particular,
we derive the density fluctuations of saddle points in the
presence of an infinite straight boundary on which the wave
satisfies mixed �Robin� boundary conditions, and although
we were unable to derive exact saddle correlation functions
analytically, we have found large-r asymptotic approxima-
tions to these functions.

The paper is organized as follows. In Sec. II we explain
the experimental setup and techniques used to locate the
critical points in the microwave cavity. General definitions

and properties of critical points of the current associated with
the Helmholtz equation, as well as the expressions for den-
sities and correlations, are described in Sec. III. This is fol-
lowed by Sec. IV, which describes our RWM calculations:
the model is introduced in Sec. IV A, and details follow for
bulk correlation functions �Sec. IV B� and densities near a
straight boundary satisfying Robin conditions �Sec. IV C�.
The experimental results are compared with the theoretical
predictions in Sec. V.

II. EXPERIMENTAL SETUP

We here report on the measurement of correlations func-
tions of saddle and vortex points in an open billiard system
including effects of the boundaries. The basic principles of
the experiment can be found in Ref. �37�. We used a rounded
rectangular cavity �21 cm�16 cm� coupled to two
waveguides of width 3 cm with a cutoff frequency at �T
=5 GHz. To break the symmetry and to block direct trans-
port, two triangular obstacles with a length of 12 cm and a
height of 1 cm were placed in the resonator. Absorbers were
placed at the end of the leads to avoid reflection. We scanned

FIG. 1. �Color online� Morphology of typical complex wave
function � in the open quantum billiard of our experiments: �a�
modulus �intensity� ���2, �b� current flow Im �*��, and �c� blowup
of �b�, demonstrating the critical points we study. Counterclockwise
vortices are marked by triangles �red�, clockwise ones by squares
�green�. The saddle points are marked by crosses �orange�. Our
points of measurement are the crossing points in the background
grid.

HÖHMANN et al. PHYSICAL REVIEW E 79, 016203 �2009�

016203-2



this billiard on a square grid of 2.5 mm with a movable
antenna A1 and measured transmission S12 in the range of
4–18 GHz from a fixed antenna A2 in the end of the right
lead. The fixed antenna had a metallic core of diameter
1 mm and a Teflon coating, while the probe antenna A1 was
a thin wire of diameter 0.2 mm to minimize the leakage cur-
rent. The lengths of antennas A1 and A2 were 4 and 5 mm,
respectively.

For microwave frequencies ��c /2d=18.75 GHz, where
c is the velocity of light and d is the resonator height, the
billiard is quasi-two-dimensional. In this regime there is an
exact correspondence between electrodynamics and quantum
mechanics, where the component of the electric field perpen-
dicular to the plane of the microwave billiard, Ez, corre-
sponds to the quantum-mechanical wave function �. Figure 1
shows typical intensity and current patterns thus obtained.
Additionally a close-up of the flow pattern is shown to visu-
alize the structure and shows the different types of critical
points in the flow. The flow pattern shown in Fig. 1 displays
some nonuniformity, but notwithstanding this fact, the distri-
bution of intensities is described perfectly well in terms of
the RMW.

We previously have reported results on vortex pair corre-
lation functions and nearest-neighbor distance distributions
�38,39� for vortex points. Through improvements in data
analysis, we have been able to study the saddle points of the
current in addition to the vortices and significantly reduce the
effects of noise in our measured correlation functions. These
improvements are sketched in the following. We have in-
creased the spatial resolution by a factor of 2 compared to
our previous measurements before, and we now use addition-
ally a bilinear interpolation method for the individual com-
ponents of the flow. Using the bilinear interpolation, we es-
timate the nodal lines of the individual flow components,
enabling us to get the exact position for vortex and saddle
points within this approximation. The extraction of critical
point locations is now fully automatic, allowing large
samples of data to be analyzed. One can see the effect of
these improvements in the better results for the pair correla-
tion functions �good agreements also for small kr� and the
charge correlation function which we can present here.

For k�r�1, where �r is the grid length, holding in the
whole frequency range studied, the spatial accuracy of the
bilinear interpolation amounts to some percent of the grid
size. The technique encounters its limits whenever there are
three critical points within one grid element at the same time.
These events are too rare to spoil the measured distribution
and correlation functions.

III. CURRENT CRITICAL-POINT DENSITIES

In this section and following, we assume that the complex
wave function ��r��=	�r��+i
�r�� has no particular symme-
tries or properties, beyond satisfying Eq. �1�. The current j�,
from Eq. �2�, can therefore be written

j� = �	
x − 
	x,	
y − 
	y� , �3�

where here and hereafter, subscripts after scalars denote par-
tial derivatives—e.g., 
x=�x
. The current is zero at vorti-

ces, where �=	=
=0, and at saddle points, where 	 /

=	x /
x=	y /
y �if 
=0, there is equality between the recip-
rocals of these terms�.

The quantity which distinguishes vortices from saddles is
the Jacobian

J = �xjx�yjy − �yjx�xjy , �4�

which is positive at vortices and negative at saddles. Since �
satisfies Eq. �1�, J separates into two contributions �27�:

J = Jv − Js, �5�

where

Jv � �	x
y − 	y
x�2, �6�

Js �
1

2
�	
xx − 
	xx�2 +

1

2
�	
yy − 
	yy�2 + �	
xy − 
	xy�2.

�7�

Obviously, Jv=0 at saddle points and Js=0 at vortices. This
fact, combined with positive-definiteness of the two parts of
the Jacobian, implies that �J�=Jv at vortices and �J�=Js at
saddle points.

These quantities can be used to define functions which
find critical points �vortices or saddles� at position r�. The
density of critical points, with a unit � function at each zero
point of j�, is given by

Dcrit�r�� � �
�r�:j��r��=0	

�2�r�� = �2
„j��r��…�J�r��� . �8�

By the separation of J above, this gives the saddle density
�27�

Ds�r�� � �2
„j��r��…Js�r�� �9�

and the vortex density �25–27�

Dv�r�� � �2
„j��r��…Jv�r�� = ��	���
��	x
y − 	y
x� . �10�

The vortex sign �sense of circulation� is given by

S � sgn�	x
y − 	y
x� , �11�

so removing modulus signs gives the signed vortex density.
The number and location of critical points for a given

field must be found by explicitly solving the set of equations
j��r��=0. This of course requires precise knowledge of the
spatial dependence of the particular solution ��r�� in which
we are interested. The task of solving the Helmholtz equation
in cases where the geometry of the confinement �transversal
section of the waveguide� is such that Eq. �1� is not separable
is usually very demanding. This makes the function-by-
function study of current morphology almost impossible.

A suitable way to overcome this complication is to use a
statistical approach. This idea is based on the strong unifor-
mity of the solutions of the Helmholtz equation with nonin-
tegrable geometries �see, for example, Fig. 1�, indicating that
their main properties actually depend on far fewer param-
eters than the full solution itself. We therefore consider, in-
stead of a given set of solutions of the Helmholtz equation,
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an ensemble of fields. This ensemble will be constructed in
such a way that the most general and basic properties of the
exact solutions are respected, in the hope that these general
properties suffice to fix the morphology fluctuations. The en-
semble we choose is the usual RWM discussed in the Intro-
duction or the boundary-adapted model of Refs. �29,30�.

Delaying on giving the appropriate definition of the RWM
until the next section, we merely write the average over the
ensemble 
¯�. In this paper, we compare theoretical RWM
predictions and experimental measurements of the average
density fluctuations

�
�r�� =
4�

k2 
D
�r��� �12�

and two-point correlations

g
��r�2,r�1� = �4�

k2 
2


D
�r�2�D��r�1�� , �13�

where 
 ,� are v,s. These expressions have been normalized
against the bulk average vortex density �and saddle density�
k2 /4� �25–27�. Statistical symmetries in the RWMs will
mean that the densities � and correlations g have simpler
functional dependence. Two-point correlation functions can
also be considered which take topological signs into account,
such as the vortex topological charge correlation function

gQ�r�1,r�2� =

Dv�r�1�S�r�1�Dv�r�2�S�r�2��

�k2/4��2 , �14�

where the effect of the signum S functions of Eq. �11� is to
negate the modulus signs in Dv; the vortices are signed by
their sense of circulation. Current critical-point correlation
functions can be written down in terms of the correlation
functions g
�. If the two-point critical-point correlation func-
tion is denoted gcrit and gI the function signed by the
Poincaré index �positive for vortices, negative for saddles�,
we have

gcrit�r�1,r�2� =
1

4
�gvv�r�1,r�2� + gss�r�1,r�2� + 2gvs�r�1,r�2�� ,

�15�

gI�r�1,r�2� =
1

4
�gvv�r�1,r�2� + gss�r�1,r�2� − 2gvs�r�1,r�2�� . �16�

IV. AVERAGE DENSITIES AND CORRELATIONS OF
CRITICAL POINTS WITHIN THE RANDOM

WAVE MODEL

A. RWM: Basic definition and field correlations

Wave functions in cavities with nonintegrable geometries
have two independent and remarkable properties, both thor-
oughly checked numerically and experimentally. First, their
spatial fluctuations are very well described by Gaussian sta-
tistics and, second, the spatial two-point correlation function
�which uniquely characterizes any Gaussian distribution� is
independent of the particular geometry, being a universal

function of the position and energy. These two properties are
strictly satisfied if one assumes that the wave field, satisfying
the Helmholtz equation �1�, is a superposition of infinitely
many complex plane waves with equal wave number k and
uniformly random directions and phases. Explicitly, this is
the limit as N→� of the random superpositions

�RWM�x,y� =� 2

N
�
n=1

N

exp�ik�x cos �n + y sin �n� + i�n� ,

�17�

where �n and �n are independent and uniformly distributed
between 0 and 2�. �RWM is normalized so 
	2�= 

2�=1. The
real and imaginary parts are statistically independent. These
assumptions are appropriate to our experimental open bil-
liards �16�. The RWM is ergodic in the bulk—spatial aver-
ages are equivalent to ensemble averages. We will describe
the boundary-adapted random wave model at the end of this
subsection.

The central-limit theorem ensures that, in the limit of in-
finitely many superposed plane waves, the probability den-
sity function of the value of the wave at each point has a
complex circular Gaussian distribution �7,25�. Furthermore,
all derivatives of the field are also Gaussian random vari-
ables, which may have nonvanishing correlations with each
other and the original field.

The assumption that the field and its derivatives possess
multivariate Gaussian statistics implies that, for a functional
F�u��, depending on the field and its derivatives at possibly
different points, we have


F� =
1

��2��n det M
�

−�

�

F�u��e−�1/2�u� ·M−1·u�dnu� , �18�

where u� is an n-dimensional vector consisting of the relevant
Gaussian random fields 	�r�1�, �y
�r�2�, etc., appearing in F,
and M is the n�n matrix of correlations with entries Mi,j:

Mi,j = 
uiuj� . �19�

Calculating the densities of morphological features in the
RWM is therefore reduced to a Gaussian integral, whose
difficulty depends on the complexity of the functional F. For
instance, the average density of vortices or saddles in the
bulk isotropic random waves can be calculated with F=Dv
or Ds from Eqs. �9� and �10�; as discussed previously, these
are known to be equal constants, with value k2 /4� �27�. In
this paper, we concentrate on two specific types of function-
als F.

In Sec. IV B, we consider two-point correlations g
� in
the bulk isotropic random wave model, where F is given by
D
�r�1�D��r�2�, with 
 ,�=v,s. These expressions are the av-
erage densities of vortices or saddles at two points, depend-
ing only on the scaled distance

R � k�r�2 − r�1� , �20�

by isotropy. These critical point correlation functions depend
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only on the two-point field correlation function, given by

C�R� =
1

2

��r�1��*�r�2�� = 
	�r�1�	�r�2�� = 

�r�1�
�r�2�� .

�21�

All two-point correlation functions of derivatives of the field
can be expressed in terms of derivatives of C�R�. It is well
known �9� that the field correlation function of the two-
dimensional isotropic RWM is given by the Bessel function

C�R� = J0�R� . �22�

Much of our argument will be based on asymptotic approxi-
mations for large R, in which, to leading order,

C�R� �
R�1� 2

�R
cos�R − �/4� . �23�

The second type of functional we consider is based on the
vortex and saddle densities Dv and Ds in the so-called
boundary-adapted �RWM�. In this model, the wave with y
�0 is assumed to satisfy a homogeneous boundary condition
along the infinite straight line y=0. As above, we will use
dimensionless Cartesian coordinates

X � kx, Y � ky . �24�

Although our experimental data are for Dirichlet conditions
only ���X ,0�=0�, our discussion will be framed in terms of
the most general boundary conditions: namely, mixed
�Robin� conditions

��X,0�cos a + �Y��X,0�sin a = 0, �25�

where a is a constant with 0�a��. Dirichlet conditions
correspond to a=0 and Neumann to a=� /2.

Berry and Ishio �30� constructed a natural RWM satisfy-
ing Eq. �25�. It is similar in form to the RWM of Eq. �17�,
although has a weighting factor on each random wave:

�RWM�X,Y ;a� =� 2

N
�
n=1

N

exp�iX cos �n + i�n�

�
sin�Y sin �n� − � sin �n cos�Y sin �n�

�1 + �2 sin2 �n

,

�26�

with �=tan a �cf. Ref. �30�, Eq. �2��. This was used to cal-
culate the vortex density as a function of distance Y from the
boundary, and general a, generalizing previous work �29� for
Dirichlet and Neumann conditions. We will calculate the cor-
responding Y-dependent saddle-point density in Sec. IV C.
The critical-point density calculations depend on the
Y-dependent, one-point quadratic field correlation

B�Y ;a� � 
	�X,Y�2� = 

�X,Y�2� . �27�

For general a, the function B�Y ;a� for the mixed-boundary-
condition RWM of Ref. �30� cannot be expressed in terms of
elementary functions, although it has a straightforward inte-
gral representation

B�Y ;a� = 1 −
2

�
�

0

�/2

d�
�1 − �2 sin2 ��cos�2Y sin �� + 2� sin � sin�2Y sin ��

1 + �2 sin2 �
. �28�

FIG. 2. �Color online� The normalized mean field intensity
B�Y ;a�, plotted against Y for various choices of Robin parameter a:
a=0—i.e., Dirichlet conditions �solid, black line�; a=� /4 �dotted,
blue line�; a=� /2—i.e., Neumann conditions �dashed, black line�;
a=−� /4 �dashed-dotted, red line�. The horizontal black line at
B�Y ;a�=1 corresponds to the asymptotic limit for Y →�.

FIG. 3. �Color online� Analytic two-point correlation functions
gvv�R� �blue line, top� and gQ�R� �red line, bottom�, plotted against
R. The black line is the asymptotic value of 1 for gvv�R� as R→�.
The analytic functions compare well with their asymptotic approxi-
mations �dashed line� for R�4.
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For Dirichlet and Neumann conditions, B can be expressed
in terms of the Bessel function J0:

B�Y ;
0

�/2 
 = 1 � J0�2Y� . �29�

It is straightforward to find an asymptotic approximation for
B�Y ;a�,

B�Y ;a� �
Y�1

1 −
1

��Y
cos�2Y − 2a − �/4� , �30�

consistent with Eq. �29�. The field intensity fluctuation
B�Y ;a� is plotted as a function of Y for various choices of a
in Fig. 2. Equation �30� may also be found from the semi-
classical approximation for the two-point correlation func-
tion in the presence of Robin boundaries. In this case, a
enters through the semiclassical phase �35�.

B. Spatial correlations of current vortices and saddles: Bulk
results

Correlations of vortices and related objects have been the
subject of much study in the isotropic RWM. In particular,
the signed vortex-vortex correlation function gQ�R�, defined
in Eq. �14�, is known to have a remarkably simple form
�25,40–45�

gQ�R� =
4

R

d

dR
�d arcsin�J0�R��

dR
�2

. �31�

This equation �with J0 replaced by a suitable two-point func-
tion� holds for general isotropic Gaussian random fields, not
just the random solutions of the Helmholtz equation studied
here. On account of the isotropy of the distribution in the
phase of the field �, gQ satisfies the “topological charge
screening relation” �ignoring the self-interaction at R=0�
�25,40–45�

1

2
�

0

�

dR RgQ�R� = − 1. �32�

For R�1, gQ�R��8 cos�2R� /�R2. The oscillation period of
gQ�R� is twice that of the correlation function C�R� since
there are two nodes per oscillation of J0.

However, unsigned correlation functions, such as those
involving saddle points, do not have such a simple form. The
vortex-vortex correlation function gvv�R� was found exactly
as a complicated single integral in Refs. �25,26� and is given
here for completeness in Appendix A. It is also written down
in Ref. �46�, Eqs. �32�–�35� �also see Ref. �47�, p. 83�, in a
very complicated expression involving various elliptic inte-
grals. Using similar techniques involving computer algebra,
our attempts to extract gvs�R� and gss�R� analytically were
unsuccessful.

Instead of exact forms, we therefore found asymptotic
expressions for these correlation functions. To do this, we
developed a scheme based on an asymptotic expansion of the
correlation matrix through the asymptotic expansion of the
Bessel function. This scheme was also used to find an
asymptotic expression for gvv�R�. The details of this scheme
are given in Appendix B. Our asymptotic argument is similar
to the asymptotic two-point correlation function derived for
gradient saddles the real RWM �48�, based on functional
differentiation.

The asymptotic expansion is in inverse powers of �R and
clearly fails for small R �comparison with the experimental
results suggests that the approximation is good for R�3�.
Explicitly, the relevant asymptotic approximations to order
O�R−1� of the RWM vortex-vortex, vortex-saddle, and
saddle-saddle pair correlations are

gvv�R� � 1 +
4 sin 2R

�R
, �33�

FIG. 4. �Color online� Density
oscillations of critical points as a
function of distance Y from a
straight wall satisfying mixed
Robin conditions: �a� �v�Y ;a� and
�b� �s�Y ;a�. Line styles and colors
represent the same choices of a as
in Fig. 2; the black line is at 1 �the
asymptotic limit for Y →��; the
two densities are clearly out of
phase for Y �4. �c� Peak in the
densities for a=� /10: �v �left
peak, blue line� and �s �right peak,
red line�. The dashed lines corre-
spond to the small-a forms, as in
Eqs. �42� and �43�.
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gvs�R� � 1 −
4 sin 2R

�R
, �34�

gss�R� � 1 +
4 sin 2R

�R
. �35�

Figure 3 is a plot of gvv�R�, computed analytically �46� and
from the asymptotic form �33�. The two-point correlation
functions for vortices of the same sign, g++�R�=g−−�R�
� 1

2 �gvv�R�+gQ�R��, and opposite sign, g+−�R�� 1
2 �gvv�R�

−gQ�R�� oscillate in phase �21� since gQ�O�R−2� decays
more swiftly than gvv�R�. These equations demonstrate that
critical points—that is, vortices �whose Poincaré index is +1�
and saddles �with index −1�—oscillate out of phase.

Equations �33�–�35� can be used to estimate asymptoti-
cally the critical-point two-point functions gcrit�R� and its
Poincaré index-signed analog gI�R�, defined in Eqs. �15� and
�16�:

gcrit�R� � 1 + O�R−2� , �36�

gI�R� � 4 sin�2R�/�R . �37�

gI�R� decays rather slowly, in contrast to the long-range cor-
relations of topological charges of other RWMs, such as
critical points of the gradient in the real RWM �43,44�,
which decay to leading order like O�R−3�. It would therefore
be interesting to establish whether the Poincaré index satis-

fies a screening relation analogous to Eq. �32�, since conver-
gence in the integral is marginal.

C. Densities of critical points near mixed boundaries

In the boundary-adapted RWM of Eq. �26�, the density of
vortices and saddles oscillates with distance Y from the
boundary. The form of the vortex and saddle density func-
tions depends only on the function B�Y ;a� of Eq. �27�; the
result of the actual Gaussian integral is independent of the
value of parameter a. The entries of the correlation matrix, of
course, do depend on a, and all may be written as linear
combinations of B�Y ;a� and its derivatives with respect to Y.

The mean vortex density in the boundary-adapted RWM
is �29�

�v�Y ;a� =
�4B + B� − 1�B�2 + B�� − B�2

2B3/2 , �38�

where the dependence of B on Y and a is suppressed and the
prime denotes the partial derivative with respect to Y. The
density is normalized with respect to the bulk density, so
limY→� �v�Y ;a�=1. This equation is the same as Ref. �29�,
Eq. �40�.

Since the saddle density Ds�r�� of Eq. �9� does not involve
modulus signs, the calculation of the average saddle density
in the boundary-adapted RWM uses straightforward Gauss-
ian integration techniques, as outlined in Appendix C. The
resulting density is

�s�Y ;a� =
B1/2

�4B + B� − 2�3/2�B�2 + B�� − B�2�3/2 �16 − 64B + 64B2 + 16B�2 − 64BB�2 + 16B�4 − 16B� + 64B2B� − 32BB�2B�

+ 16BB�2 + 16B2B�2 − 4B�2B�2 + 4B�3 − B�4 + 8B�B� − 32BB�B� + 8B�3B� − 8B�B�B� + 2B�B�2B� − 4B2B�2

+ B�2B�2 − 2BB�B�2 − 8BB� + 16B2B� + 4B�2B� − 8BB�2B� + 8B2B�B� − 2B�2B�B� + 2BB�2B�� . �39�

Asymptotically, for Y �1 we find

�v�Y ;a� � 1 +

2 cos�2�Y − a� −
�

4
�

��Y
+

1 + 5 sin�4�Y − a��
4�Y

,

�40�

�s�Y ;a� � 1 −

2 cos�2�Y − a� −
�

4
�

��Y
+

1 + 5 sin�4�Y − a��
4�Y

.

�41�

�Equation �40� was demonstrated in Ref. �30�.� Therefore the
leading-order oscillations in vortex and saddle densities are
exactly out of phase, as in the two-point correlation functions
discussed in the previous subsection. Also, as with the cor-
relation functions, the oscillations have twice the periodicity
of the underlying correlation function �again, as nodes occur

with double the frequency of a sinusoidal wave�. The mean
saddle density for several choices of a is plotted in Fig. 4.

As shown in Ref. �30�, when a�1, there is a large addi-
tional peak in the vortex density for small R. Robin boundary
conditions in this regime are known to have unusual proper-
ties, such as admitting negative-energy solutions �49� and
diverging momenta on the boundary �50�. When a is small,
the peak occurs in the neighborhood Y �a+�a3, where
�v�Y ;a� has the skewed-Lorentzian form �30�

�v�Y = a + a3�;a� �
12�1 + 4�6� − 1�2

a3�1 + �12� − 1�2�3/2 , �42�

with a peak near Y =a+a3 /12 of height approximately
24�2 /a3. Analysis of Eq. �39� reveals that the saddles, too,
have a peak for small a, and an analogous argument as for
vortices gives, for a�1,
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�s�Y = a + a3�;a� �
12�2 + 24��6� − 1�
a3�1 + 4�6� − 1�2�3/2 , �43�

that is, a peak of almost the same shape and magnitude as for
vortices, but with a maximum near Y =a+a3 /6. This peak
ensures that small a does not give rise to an accumulation of
total Poincaré index near the boundary. Plots of the �v�Y ;a�
and �s�Y ;a� for a=� /10 are Fig. 4�c�, along with the corre-
sponding approximations.

V. COMPARISON BETWEEN EXPERIMENT AND RWM
PREDICTIONS

In this section we compare the results of our microwave
billiard experiment, outlined in Sec. II with the theoretical
predictions of the isotropic and boundary-adapted RWMs de-
scribed in Sec. IV. Since the distances R and Y are scaled
with respect to k as in Eqs. �20� and �24� the experimental
results for different frequencies � have been superimposed,
improving the statistics.

Figure 5 shows the comparison between experiment and
theory for the vortex-vortex pair correlation functions, both
signed �Eq. �31�� and unsigned �Ref. �46�, Eqs. �32�–�35��, in
two different frequency regimes. Because of the limited res-
olution due to the measurement grid in the low-frequency
regime, the correlation function could only be determined
reliably for small kr; see Fig. 5�a�. But in this regime the
system size is comparable to the vortex spacing, leading to
an influence of the boundary on the measured correlation
function and restricting the observable R range up to Rmax

=kL�15, where L corresponds to a typical length of the
system. Due to the boundary effects, the oscillation period of
the experimental results is shorter than the theoretical one for
the bulk statistics �51–53�. The results for the higher-
frequency regime, on the other hand, shown in Fig. 5�b�,
agrees perfectly with theory for large R, but fails for small R
because of the mentioned limited resolution in the measure-
ment. Experimental results for the vortex pair correlation
function have been published already previously, though
with a by far poorer statistics �39�. All other quantities shown
in this section have not been published previously.

Results for the saddle pair correlation function gss�R� and
the vortex-saddle function gvs�R� are plotted in Figs. 6�a� and
6�b� and 6, respectively, with experimental data plotted
against the asymptotic formulas �35� and �34�. As with the
vortex correlation functions, the agreement between theory
and experiment is very good for a wide range of R; since the
theoretical formulas are asymptotic, we do not have a theory
to compare with the data for small R.

Experimental measurements of the average vortex and
saddle density fluctuations against a straight boundary satis-
fying Dirichlet conditions are shown in Fig. 7, vortex fluc-
tuations in Fig. 7�a� �with theoretical density from Eq. �38��,
saddle fluctuations �with theoretical plot from Eq. �39�� in
Fig. 7�b�. The data have been taken from rectangular win-
dows placed parallel to the left and to the upper straight
boundary: see Fig. 1. In the theoretical model, on the other
hand, an infinite half-plane has been assumed, thereby ne-
glecting the influence of all the other nearby walls. This
probably is the cause for the small deviations between ex-
periment and theory exhibited in Fig. 7.

FIG. 5. �Color online� Experimental vortex pair correlation gvv�R� �top histogram� and charge correlation function gQ�R� �bottom
histogram� in �a� the low-frequency regime �5 GHz���9 GHz� and �b� the higher-frequency regime �15 GHz���18.6 GHz�. The solid
lines correspond to the analytic prediction of the RWM discussed in Sec. IV B, using the exact formula for gvv�R� rather than the asymptotic
form.

FIG. 6. �Color online� Pair
correlations involving saddle
points: �a� saddle-saddle correla-
tion function gss�R� and �b�
vortex-saddle function gvs�R�. Ex-
perimental results �histogram� are
plotted against the asymptotic
forms �solid, blue line; see Eqs.
�34� and �35��.
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In summary, by applying a higher grid resolution and a
bilinear interpolation technique the flow pattern through an
open microwave billiard could be resolved by nearly one
order of magnitude better as in previous experiments. This
allowed the determination of various distribution and corre-
lation functions for the critical points in the flows, vortices
and saddles, which had been inaccessible hitherto.

From the theoretical side, we have presented the universal
predictions of the random wave model for the pair correla-
tions of the current’s critical points in the bulk and fluctua-
tions in the saddle density dependent on distance from a
boundary, showing excellent agreement with the measure-
ments. Although some of the results can be obtained in
closed form, an asymptotic method valid for large separa-
tions is necessary to construct some important correlations.
The leading-order asymptotics of these correlations is suffi-
cient to check topological charge screening, leading to a
somewhat surprising behavior of the Poincaré index, which
is still to be explained, but is fully supported by the experi-
mental results.

We also contrast the basic assumptions of the boundary-
adapted random wave model against experimental results.
The influence of the boundary showed up first in an oscilla-
tory behavior in the density of vortices and saddles close to
the wall.
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APPENDIX A: EXPLICIT FORM OF gvv(R)

Here, we give the form for the unsigned vortex-vortex
correlation function. It was originally derived in Refs.
�25,26� and can most compactly be written as an integral

g�R� =
2�1 − J0

2 − 2J1
2�

��1 − J0
2�2

� �
0

�

dt
3 − Z + 2Y + �3 + Z − 2Y�t2 + 2Zt4

�1 + t2�3�1 + �1 + Z − Y�t2 + Zt4
,

�A1�

where

Y =
16J1

2�RJ0
3 − J1J0

2 + R�J1
2 − 1�J0 + J1�2

R4�J0
2 + 2J1

2 − 1�2 , �A2�

Z =
�1 − J0

2��R2 − 4J1
2�

R4�1 − J0�r�2 − 2J1�r�2�2 �2�J0 + 1�J1 + R�1 − 2J0
2 − J0

− 2rJ1
2���2J0J1 + R�1 − 2J0

2 − 2J1
2 − J2�� , �A3�

and explicit dependence on R is suppressed from the Bessel
functions. With the aid of computer algebra, it is possible to
perform the integral in Eq. �A1�, giving a rather unwieldy
form in terms of elliptic integrals �46�.

APPENDIX B: ASYMPTOTIC PAIR CORRELATIONS

In this section we sketch the method we use to calculate
the asymptotic �large-R� approximation to the RWM average
of an arbitrary functional F depending on the field and its
derivatives at points r�1 ,r�2 with k�r�1−r�2�=R the scaled dis-
tance.

We start with an exact expression for the Gaussian aver-
age:


F� =
1

��2��n+m det M
�

−�

�

F�u��e−�1/2�u� ·M−1·u�dn+mu� ,

�B1�

where the vector

u� = �u� �1�,u� �2�� �B2�

comprises all the relevant degrees of freedom u� �1�

= �u1
�1� , . . . ,un

�1�� at position r�1 and u� �2�= �u1
�2� , . . . ,um

�2�� at po-
sition r�2. With this definition, the correlation matrix has a
natural block form

M = �M�1,1� M�1,2�

M�2,1� M�2,2� 
 , �B3�

where �M�
,���i,j = 
ui
�
�uj

����. The key step of the method is to
observe that the only dependence of the average 
F� on the
scaled distance R comes from the off-diagonal blocks and the
known asymptotic expansion of M�1,2��R� will imply an
asymptotic expansion of 
F�. In order to follow this pro-
gram, we found convenient to switch to the Fourier represen-

FIG. 7. �Color online� Critical-point density fluctuations as a function of scaled distance Y from a straight wall satisfying Dirichlet
boundary conditions: �a� vortex density and �b� saddle density. Experimental results are plotted against the analytic forms for Dirichlet
boundary conditions �see Eqs. �38� and �39��.
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tation of the probability distribution in Eq. �B1�:

e−�1/2�u� ·M−1·u�

��2��n+m det M
= �

−�

�

dnw� �1�dmw� �2�ei�w� �1�,w� �2��·�u��1�,u��2��

� e−�1/2��w� �1�,w� �2��·M·�w� �1�,w� �2��. �B4�

Due to the asymptotic form of the off-diagonal block
M�1,2��1 /�R, the last line in Eq. �B4� can be written as

e−�1/2��w� �1�,w� �2��·M·�w� �1�,w� �2�� = e−�1/2�w� �1�·M�1,1�·w� �1�
e−�1/2�w� �2�·M�2,2�·w� �2�

��1 − w� �1� · M�1,2� · w� �2�

+
1

2
�w� �1� · M�1,2� · w� �2��2�

+ O�1/R3/2� . �B5�

We note that, given the particular form of the asymptotic
expansion of the Bessel function, the very first term of the
asymptotic expansion of the off-diagonal blocks not only
gives the leading-order term in 1 /�R of the average, but also
the subleading one of order 1 /R. Beyond the subleading or-
der, higher-order terms of the average require higher-order
terms in the expansion of M�1,2�. This has to be consider a
very special property of the Bessel-correlated RWM with its
characteristic slow ��1 /�R� decay of correlations.

Substitution of Eq. �B5� into Eq. �B4� results in the
asymptotic expansion of the probability distribution, which
in turn leads to the sought asymptotic expansion of the av-
erage in Eq. �B1�. The calculations are simple but tedious, so
we merely quote the result. Denoting

A = �M�1��−1M�1,2��M�2��−1 �B6�

and introducing the tensors

F0 = 
F�0,

F0
�
,�� = 
ui

�
�uj
���F�0, �B7�

where 
¯�0 indicates the average in Eq. �B1� with M�1,2�

=M�2,1�=0, we get finally


F� = F0 + TrAF0
�2,1� +

1

2
F0TrAM�2,2�A�M�1,1�

−
1

2
�TrF0

�1,1�AM�2,2�A� + TrF0
�2,2�A�M�1,1�A�

+
1

2
TrAF0

�2,2�A�F0
�1,1� + O�1/R3/2� . �B8�

Our result, Eq. �B8�, allows us to calculate the leading
��1 /�R� and subleading ��1 /R� contributions to any corre-
lation in terms of the M�1,2�=M�2,1�=0 �uncorrelated� results.
It also provides the large-R asymptotics to one-point func-
tionals at points separated a distance 2R from an infinite
straight boundary.

APPENDIX C: DERIVATION OF THE Y-DEPENDENT
SADDLE DENSITY, EQ. (39)

The saddle density at scaled distance Y from a straight
boundary can be calculated by standard methods of Gaussian
integration �as used, for instance, in Refs. �21,44��, although
the details are rather tedious and only outlined here. Normal-
ized by the bulk density, the Y-dependent saddle density is

�s�Y� = 4�
DY�Y�� =
1

�
� d2t�
exp�ij� · t��Js� . �C1�

Since Js is a sum of terms, linearity of the average simplifies
the Gaussian average to calculations of the form

A
� = 
�	

� − 
	
��2 exp�ij� · t��� , �C2�

where 
�=XX, YY, or XY.
Each A
� is an average over an eight-dimensional Gauss-

ian random vector

u� = �	,	X,	Y,	
�,
,
X,
Y,

�	 . �C3�

The terms in 	 and 
 are uncorrelated. Denoting either by v
and suppressing Y dependence, the relevant nonvanishing
correlations follow from Eq. �27�, B= 
v2�:


vvYY� =
1

2
−

1

4
B�,


vX
2� = −

1

2
+ B +

1

4
B�,


vY
2� =

1

2
+

1

4
B�,


vvY� =
1

2
B�,


vYvXX� = −
1

2
B� −

1

8
B�,


vYvYY� =
1

8
B�,


vXX
2 � = −

5

8
+ B +

1

2
B� +

1

16
B�,


vYY
2 � =

3

8
+

1

16
B�,


vXY
2 � =

1

8
+

1

4
B� +

1

16
B�, �C4�

where the prime denotes the partial derivative with respect to
Y. We denote the appropriate correlation matrix for u� by Mu�.

The scalar product in the exponent in �C2� can be written
as a symmetric quadratic form in u�:
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j� · t� =
1

2
u� · T · u� , �C5�

where T depends on t1 and t2.
Therefore, defining the matrix ���Mu�

−1+iT�−1 and Q
��	

�−
	
��, it is straightforward to see

A
� =
1

�2��4�det Mu�
� d8u�Q2 exp�−

1

2
u� · �−1 · u�


=� det �

det Mu�
��2 exp�−

1

2
w� · � · w� 
�

w� =0
, �C6�

where w� is a Fourier dual to u� and � is the quadratic form of
Fourier derivatives corresponding to Q. The final step in

Gaussian integration by parts reduces to a multilinear com-
bination of entries of �. Each A
� can now be integrated
with respect to t�. In terms of the original correlations, the
final result is

�s�Y� =
�B


vX
2�3/2�B
vY

2� − 
vvY�2�3/2 ��B
vY
2� − 
vvY�2��
vX

2�

��
vXX
2 � + 
vYY

2 � + 2
vXY
2 �� − 2
vYvXX�2� − 
vX

2�
vY
2�

��
vX
2�2 + 
vvYY�2� − B
vX

2��
vYvXX�2 + 
vYvYY�2�

− 2
vX
2�
vvY��
vX

2�
vYvXX� + 
vvYY�
vYvYY��� .

�C7�

Equation �39� follows from this expression with the appro-
priate substitutions from Eqs. �C4�.
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