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It has recently been found in some dynamical systems in fluid dynamics that only a few unstable periodic

orbits (UPOs) with low periods can give good approximations to the mean properties of turbulent (chaotic)
solutions. By employing three chaotic systems described by ordinary differential equations, we compare
time-averaged properties of a set of UPOs and those of a set of segments of chaotic orbits. For every chaotic
system we study, the distributions of a time average of a dynamical variable along UPOs with lower and higher
periods are similar to each other and the variance of the distribution is small, in contrast with that along chaotic
segments. The distribution seems to converge to some limiting distribution with nonzero variance as the period
of the UPO increases, although that along chaotic orbits inclines to converge to a J-like distribution. These
properties seem to lie in the background of why only a few UPOs with low periods can give good mean
statistical properties in dynamical systems in fluid dynamics.
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Chaos in dynamical systems has been discussed in rela-
tion to unstable periodic orbits (UPOs) embedded in a cha-
otic attractor, as a chaotic orbit is considered to be approxi-
mate by an ensemble of UPOs which are densely distributed
in the chaotic attractor.' Recently, in some turbulence sys-
tems in fluid dynamics, it has been shown that even only a
few UPOs with relatively low periods can capture the mean
properties of chaotic motions [1,2]. For the turbulent Couette
flow of rather low Reynolds number in the full Navier-
Stokes system, Kawahara and Kida obtained a remarkable
agreement of an averaged velocity profile along a single
UPO with that along a chaotic orbit in the phase space of a
turbulent Couette flow. Later, van Veen et al. [3] performed a
numerical study of an isotropic Navier-Stokes turbulence
with high symmetry and found that among several UPOs
there is a UPO with relatively low period where the energy
dissipation rate appears to converge to a nonzero value as
assumed in the Kolmogorov similarity theory in the limit of
large Reynolds number. This suggests that the UPO corre-
sponds to the isotropic turbulence of fluid motion, although
the Reynolds number is not large enough to discuss the de-
tailed properties of the fully developed turbulence because of
computational difficulties. As for the universal statistical
properties of fluid turbulence at high Reynolds numbers, em-
ploying the Gledzer-Ohkitani-Yamada (GOY) shell model,
Kato and Yamada [4] found a single UPO which gives a
fairly good approximation to the scaling exponents of struc-
ture functions of velocity, which suggests that the intermit-
tency in the model turbulence can be interpreted as a prop-
erty of a single UPO, rather than a statistical contribution of
complex orbits.

In the above studies, it seems that only a few UPOs with
relatively low periods are enough to capture some mean
properties of a chaotic solution. However, on the other hand,
the chaotic attractor is considered to include an infinite num-
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ber of UPOs, and it appears that a UPO with longer period
gives a better approximation to the statistical properties of
chaotic solutions, as a set of long UPOs and a set of chaotic
orbits are intuitively taken to have similar statistical proper-
ties. So we may have a question why in the above systems
even a small number of UPOs with rather low periods can
give a remarkably good approximation to the chaotic mean
values. Some studies have been concerned with this problem
[5-7].

Kawasaki and Sasa [6] studied a simple model of chaotic
dynamical systems with a large degree of freedom and found
that there is an ensemble of UPOs with the special property
that the expectation values of macroscopic quantities can be
calculated using one UPO sampled from the ensemble. Hunt
and Ott [5] studied an optimal periodic orbit which yields the
optimal (extreme) value of a time average of a given smooth
performance function of dynamical variables. They obtained
an implication that the optimal periodic orbit is typically a
periodic orbit of low period, although they do not consider
the relation of averaged statistical properties along UPOs and
chaotic orbits. On the other hand, Yang er al. [5] reported
that the optimal UPO can be a periodic orbit of high period
when the system is near crisis. In a recent study on UPOs of
low-dimensional map systems by Saiki and Yamada [7], it is
reported that a few UPOs with low periods are not enough to
approximate the time-averaged properties of chaotic orbits.

In this Rapid Communication, we employ chaotic systems
described by ordinary differential equations (ODEs) and in-
vestigate the relation between the average of a dynamical
quantity along a UPO and that along a chaotic orbit, espe-
cially with attention focused on the dependence of the vari-
ance of averaged values on the periods of the UPOs. At first
glance, it may appear that if we take all the UPOs with
period around 7, for example, and take the averages of a
dynamical quantity along these UPOs, the variance of the
averages would decrease as T increases, because an ex-
tremely long orbit would cover most part of the chaotic at-
tractor, capturing possible dynamical states on the attractor.

Our aim in this Rapid Communication is to see whether
this intuitive discussion holds for chaotic systems simple
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FIG. 1. (Color online) Number of detected UPOs with cycle N
of the Lorenz system in comparison with 0.3 1.8".

enough to obtain a large number of UPOs by available nu-
merical computation with double accuracy. For this purpose
we take three chaotic systems: the Lorenz system, Rossler
model, and a business cycle model. A set of UPOs in each
model are obtained numerically, and time averages of vari-
ables along the UPOs are discussed especially in relation to
the periods of the UPOs.

UPOs in the Lorenz system [dx/dt=o(y—x), dy/di=rx
—y—xz, dz/dt=xy—bz] with classical parameter values
(=10, b=8/3, r=28) [8] have been extensively studied.
Although the Lorenz system is not uniformly hyperbolic, it
was recently proved by the aid of numerical calculation with
guaranteed accuracy that the Lorenz attractor is chaotic and
includes an infinite number of UPOs densely [9]. Also there
are several studies about the UPOs from the viewpoint of
dynamical system theory on, for example, the ¢ function,
Hausdorff dimension, and f(«) spectrum [10]. Franceschini
et al. [11] and Viswanath [12] detected UPOs in an system-
atic way and suggested that all UPOs are labeled by a se-
quence of symbols, while Zoldi showed that an ensemble of
UPOs weighted by their periods and stability indices gives
an approximation to a histogram of a dynamical variable in
the chaotic state [13].

Here we focus our attention on the distribution of time-
averaged values of a dynamical variable along UPOs of the
Lorenz system. In order to detect UPOs we employ in this
Rapid Communication the Newton-Raphson-Mees method in
which the period of the UPO is regarded as a variable to be
found in the numerical calculation [14]. We found more than
1000 UPOs of periods from 1.558 to 16.445, corresponding,
respectively, from 2 to 23 rotations around a wing of the
Lorenz attractor. The number of rotations (cycle number)
corresponds to the period of the Poincaré map defined by the
“standard” Poincaré section at z=r—1, dz/dt>0. In our nu-
merical calculation, we identified more than 90% of the
UPOs corresponding to those encoded by the symbol se-
quences up to 14 rotations.” One of the most important indi-
ces representing the complexity of a dynamical system is the
topological entropy [15], which is estimated by the exponen-
tial growth rate of the number of periodic orbits, A,
=lim supy_,» log(number of UPOs with cycle N)/N, and the
topological entropy £,,, of the Poincaré map in this case is
estimated to be log (1.8) from Fig. 1. We should remark that
there is a clear linear dependence of log(number of UPOs

2We expect that the remaining 10% of UPOs have no significant
statistical difference from the obtained UPOs.
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FIG. 2. (Color online) Time averages (z)’s ((z)=/[ thoz/ Tdr)
along UPOs with period T (a). Density distribution of (z)’s along
UPOs with cycle N [=9 (+), 11 (X), 13 (O0)] (b).

with cycle N) on N, which suggests that the number of de-
tected UPOs in our computation is sufficient to study the
statistical properties of UPOs. We now calculate the time
average of z ((z)=JL,z/T dt) along each UPO with period
T. (z)’s along UPOs take similar but different values around
the average value of (z)’s along chaotic segments (23.55)
[Fig. 2 (a)]. Figure 2 (b) shows the density distribution of
(z)’s along UPOs for N (=9,11,13). We can see that the
distribution stays similar in shape though N varies, indicating
that an even longer UPO is not necessarily suitable for evalu-
ation of z averaged along a long chaotic orbit. Although the
range of N is limited, this observation may be contrary to our
expectation that a UPO with longer period would give better
approximations to statistical properties of chaotic orbits. Ac-
tually in Fig. 3 (a) the standard deviations of the density
distribution of (z)’s along UPOs with cycle N are seen to be
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FIG. 3. (Color online) Standard deviation of density distribution
of (z)’s along UPOs with cycle N ((J) and that along 10° chaotic
segments with the corresponding time lengths 7' (=0.753N) (¢) and
3.1IN"98 (line) (a). Density distribution of (z)’s along UPOs with
cycle 11 (average=23.43) (+) in comparison with that along 10°
chaotic segments with the corresponding time length T
(=0.753 X 11) (average=23.55) (X) (b).
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FIG. 4. (Color online) Number of detected UPOs with cycle N
of the Réssler system in comparison with 0.19 X 1.55V,

nearly constant as N increases. The figure also shows that the
standard deviations of (z)’s along segments of chaotic orbits
with time length 7=0.753N, where 0.753 stands for the cor-
responding recurrent time to the Poincaré section. We can
see that as N increases, the latter standard deviation de-
creases nearly as N"7°. The difference between the density
distribution of time averages along UPOs is clearly observed
in Fig. 3 (b) in the case of the distribution of (z)’s along a set
of UPOs with cycle 11 and chaotic segments with the corre-
sponding lengths.

Next, UPOs of the Réssler system (dx/dt=-y—z, dy/dt
=x+0.2y, dz/dt=0.24+xz—5.77) are studied in the same way
as the Lorenz system. Numerical detection of UPOs and its
validity are studied by Galias [16]. Here we study time-
averaged properties of more than 1000 UPOs, whose periods
are between 5.881 and 140.619. More than 90% of UPOs
with cycle N (<17) are covered (Fig. 4) and are used for
statistical analysis, where the cycle number means the period
of a UPO of the Poincaré map of the Rossler system with the
Poincaré section (x=0, dx/dt>0). The topological entropy
of the Poincaré map is estimated to be log(1.55) from the
figure.

Time averages (x)’s (=[L,x/Tdt) for each UPO is
shown in Fig. 5 (a). The distribution of (x)’s is not very
concentrated. In addition, the density distribution of (x)’s
along UPOs with cycle N (=10,13,16) does not depend so
much on N [Fig. 5 (b)]. Figure 6 (a) also indicates that the
variance of the density distribution of {x)’s of UPOs with
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FIG. 5. (Color online) Time averages (x)’s ((x)=[L x/Tdr)

along UPOs with period T (a). Density distribution of (x)’s along
UPOs with cycle N [=10 (+), 13 (X), 16 (O)] (b).
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FIG. 6. (Color online) Standard deviation of the density distri-
bution of {x)’s along UPOs with cycle N ((0) and that along 10°
chaotic segments with the corresponding time length 7' (=5.856N)
(®) and 0.55N7%% (line) (a). Density distribution of (x)’s along
UPOs with cycle 16 (average=0.186) (+) in comparison with that
along 10° chaotic segments with the corresponding time length T
=5.856 X 16 (average=0.177) (X) (b).

cycle N (5<N<17) are small in comparison with that of 10°
chaotic segments with the corresponding lengths. Figure 6
(b) shows a clear difference of the density distribution of
(x)’s along UPOs with cycle 16 and chaotic segments with
the corresponding time lengths.

As the third example, we study UPOs embedded in a
chaotic business cycle model of Goodwin type, which is de-
scribed by six-dimensional ODEs (du;/dr=0.5[0.1/(1-v;)
+{—0.5]u;, dv;/dt=0.1[1.5(1-u;)3+3.5(u;—u;)*+0.5u,
—ap;i+blv;, dmi/di=[v{(0.4m¢+0.2)-0.47-0.16]/(1-v;),
where (i,j)=(1,2),(2,1)) [17]. The constants are set as a,
=0.875, b;=-0.1, a,=-4.2, and b,=2.56. More than 1000
UPOs, whose periods are between 25.22 and 600.05, are nu-
merically detected. We classify UPOs according to the cycle
number which corresponds to the period of the Poincaré map
(m{=0, dm/dt>0) of the system (Fig. 7). Figure 7 suggests
that almost all UPOs with cycle N (<15) are thought to be
covered and the topological entropy of the map is estimated
to be log(1.55). Time averages (u;)’s [(u;y=[Tou,(r)/tdt]
along UPOs with period T (<385) are discussed, hereafter.
(u;)’s along UPOs take various values [Fig. 8 (a)], and we
find in Fig. 8 (b) that the density distributions of (u,)’s along
UPOs with cycle N are similar for N=9,12,15. This figure
suggests that like the former two systems the time-averaged

Number of UPOs

4 6 8 10 12 14 16
N

FIG. 7. (Color online) Number of detected UPOs with cycle N
of the economic system in comparison with 0.5 X 1.55.
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FIG. 8. (Color online) Time average (u;)’s (<ul)EftT:0uldt) of
UPOs with period T (a). Density distribution of (u;)’s along UPOs
with cycle N [=9 (+), 12 (X), 15 (O)] (b).

value u; along a UPO with a long period does not necessarily
approximate that along a chaotic orbit (0.246). In fact, the
standard deviation of the density distribution of (u,)’s along
UPOs with cycle N is small if N is small and does not de-
crease as N increases in comparison with that along chaotic
segments with the corresponding time lengths [Fig. 9 (a)].
The difference between the density distribution of UPOs
with cycle 8 and chaotic segments with the corresponding
time lengths are clearly confirmed in Fig. 9 (b).

We have discussed time averages of dynamical variables
along UPOs in three chaotic dynamical systems described by
ODEs (the Lorenz system, the Rossler system, and a six-
dimensional economic model). We have calculated more
than 1000 UPOs for each system and found that time-
averaged properties along a set of UPOs and a set of chaotic
orbits with finite lengths are totally different from each other.
From our numerical result with double accuracy a longer
UPO is not necessarily advantageous than a shorter UPO to
estimate the mean properties of the chaotic state in these
models. In other words, we can employ a short UPO for the
estimation of the mean properties of the chaotic state without
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FIG. 9. (Color online) Standard deviation of the density distri-
bution of (u;)’s along UPOs with cycle N (CJ) and 10° chaotic
segments with the corresponding time length 7' (=24.541N) (@) and
0.03N7935 (line) (a). Density distribution of {u,)’s along UPOs with
cycle 8 (average=0.253) (4) in comparison with that along 10°
chaotic segments with the corresponding time length T
(=24.541 X 8) (average=0.246) (X) (b).

a significant reduction of plausibility. In addition, it is con-
jectured that the time averages of the dynamical quantities
along UPOs with the same period of the Poincaré map have
a limiting distribution with nonzero variance. Recently, in
some fluid dynamical systems, it has been found that only a
few UPOs with low periods give fairly good approximations
to some statistical properties. Our result suggests that the
estimation by using a short UPO is as reliable (or unreliable)
as that by using a long UPO if the limiting distribution is
applicable to those variables. Thus the good approximation
in the fluid dynamical models may not be improved substan-
tially even if a UPO with a longer period is employed.
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