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We propose a model for DNA dynamics by introducing the helical structure through twist deformation in
analogy with the structure of a helimagnet and a cholesteric liquid-crystal system. The dynamics in this case is
found to be governed by the completely integrable sine Gordon equation, which admits kink-antikink solitons
with increased width, representing a wide base-pair opening configuration in DNA. The results show that the
helicity introduces a length-scale variation and thus provides a better representation of the base-pair opening in
DNA.
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The B-form DNA double-helix molecule is usually mod-
eled by two parallel chains of nucleotides known as strands
with linkage interms of dipole-dipole interaction along the
strands, and the two strands are coupled to each other
through hydrogen bonds between the complementary bases
�1�. Molecular excitations in DNA based on the above model
are generally governed by nonlinear evolution equations
�2–4� and in particular by the completely integrable sine
Gordon–type equations �5,6�. In the above studies, DNA is
treated as two coupled linear chains without involving the
helical character of its structure. However, in nature DNA
exists in a double-helix form and recently there were at-
tempts by a few authors to study the dynamics by taking into
account the helical character of the double helix through dif-
ferent forms of coupling. For instance, Gaeta �7–9�, Dauxios
�10�, and Cadoni et al. �11� assumed that the torsional cou-
pling between the nth base on one strand and the �n+4�th
base on the complementary strand is the responsible force for
the helical nature in DNA and found that the localized exci-
tations are governed by solitons and breathers. Barbi et al.
�12,13� and Campa �14�, however, introduced the helicity
through a proper choice of the coupling between the radial
and angular variables of the helix and obtained breathers and
kinks. On the other hand, very recently, Takeno �15� intro-
duced helicity in DNA through a helical transformation and
obtained nonbreathing compactonlike modes to represent the
base-pair opening through numerical calculations.

In this paper, we propose a model by introducing the he-
lical character in each strand of the DNA molecule through a
twist deformation of the chain in analogy with the twist in
cholesteric liquid crystal �16� or orientation of spins in a
helimagnet �17�. As an illustration in Figs. 1�a�–1�c� we
present a schematic representation of the arrangement of
bases, spins, and molecules, respectively, in a DNA double-
helical chain, in a helimagnet, and in a cholesteric liquid
crystal, leading to the formation of helical structure. In Fig.
1�a�, R and R� represent the two complementary strands of
the DNA double helix and the dots between the arrows rep-
resent the hydrogen bonds between the complementary

bases. The arrows and short lines in Figs. 1�b� and 1�c�,
respectively, represent the spins and molecules at different
sites and planes in a helimagnet and in a cholesteric liquid
crystal. When we go along the z direction, the orientations of
spins and molecules are tilted from one plane to the next
through a certain tilt angle. If we join the tips of the arrows
representing the spin vectors and also the tips of the mol-
ecules, they form a helix as shown in Figs. 1�b� and 1�c�,
respectively.

In a recent paper, one of the present authors studied the
nonlinear spin dynamics of a helimagnet by incorporating
the helicity in terms of Frank free energy corresponding to
the twist deformation which is responsible for helicity in a
cholesteric liquid-crystal system �17,18�. The Frank free-
energy density associated with the twist deformation in a
cholesteric liquid crystal is given by �p · ���p�−q0�2, where
the unit vector p represents the director axis which corre-
sponds to the average direction of orientation of the liquid-
crystal molecules, q0= 2�

q is the pitch wave vector, and q is
the pitch of the helix. The discretized form of the above twist

free energy is written as ��k̂ · �pn�pn+1��−q0�2, where k̂ is
the unit vector along the z direction. In analogy with the
above, we write down the free energy associated with the
twist deformation in terms of spin vector as

��k̂ · �Sn�Sn+1��−q0�2. By taking into account the form of
free energy the Heisenberg model of the Hamiltonian for an
anisotropic helimagnetic system is written as �17�

H1 = �
n

�− J�Sn · Sn+1� + A�Sn
z�2 + h��k̂ · �Sn � Sn+1�� − q0�2� .

�1�

In Eq. �1�, Sn= �Sn
x ,Sn

y ,Sn
z� represents the spin vector at the

nth site and the terms proportional to J and A, respectively,
represent the ferromagnetic spin-spin exchange interaction
and uniaxial magnetocrystalline anisotropy with the easy
axis along the z direction. h denotes the elastic constant as-
sociated with the twist deformation. We identify the above
helical spin chain with one of the strands of the DNA double-
helical chain. Therefore, in a similar fashion we can write
down the spin Hamiltonian H2 for another helimagnetic sys-
tem corresponding to the complementary strand with the
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spin vector Sn replaced by Sn�. We assume that in the Hamil-
tonian the exchange, anisotropic, and twist coefficients as
well as the pitch in both the helimagnetic systems are equal.
Now, for mapping the helimagnetic spin system with the
DNA double-helical chain we rewrite the Hamiltonian
by writing the spin vectors as Sn��Sn

x ,Sn
y ,Sn

z�
= �sin �n cos �n , sin �n sin �n , cos �n� and Sn���Sn�

x ,Sn�
y ,Sn�

z�
= �sin �n� cos �n� , sin �n� sin �n� , cos �n��, where �n��n�� and
�n��n�� are the angles of rotation of spins in the x-y and x-z
planes, respectively. The new Hamiltonian corresponding to
H1 is written as

H1 = �
n

�− J�sin �n sin �n+1 cos��n+1 − �n� + cos �n cos �n+1�

+ A cos2 �n + h�sin �nsin �n+1 sin��n+1 − �n� − q0�2� .

�2�

We now map the two helical spin systems with the two
strands of the DNA double helix with the two angles �n��n��
and �n��n�� representing the angles of rotation of bases in the
x-z and x-y planes of the two strands, respectively. A hori-
zontal projection of the nth base of DNA in the x-y and x-z
planes is shown in Figs. 2�a� and 2�b�. Here Qn and Qn�
denote the tips of the nth bases attached to the strands R and
R� at Pn and Pn�, respectively. The DNA double-helix chain is
stabilized by stacking of bases through an intrastrand dipole-
dipole interaction and through hydrogen bonds �interstrand
interaction� between complementary bases. The interstrand
base-base interaction or hydrogen bonding energy between
the complementary bases depends on the distance between
them, and using the simple geometry in Figs. 2�a� and 2�b�,
we can write the distance between the tips of bases as �6�

�QnQn��
2 	 2�sin �n sin �n��cos �n cos �n� + sin �n sin �n��

− cos �n cos �n�� . �3�

Now, the above equation represents the hydrogen bonding
energy between complementary bases and the Hamiltonian
for the interstrand interaction or hydrogen bonds is written as

H12 = ��sin �n sin �n��cos �n cos �n� + sin �n sin �n��

− cos �n cos �n�� , �4�

where � is a constant. The total Hamiltonian for our helicoi-
dal model of DNA in terms of the angles of rotation of bases
using the above Hamiltonians is written as

H = H1 + H2 + H12

= �
n

�− J�sin �n sin �n+1 cos��n+1 − �n� + cos �ncos �n+1

+ sin �n� sin �n+1� cos��n+1� − �n�� + cos �n� cos �n+1� �

+ h��sin �n sin �n+1sin��n+1 − �n� − q0�2

+ �sin �n� sin �n+1� sin��n+1� − �n�� − q0�2�

+ ��sin �n sin �n��cos �n cos �n� + sin �n sin �n��

− cos �n cos �n�� + A�cos2 �n + cos2 �n��� . �5�

Using the equation of motion for the corresponding qua-
sispin model �19� in the limit A�J ,� ,h, we obtain �̇n

=2A cos �n and �̇n�=2A� cos �n�. Hence, under the absolute
minima of the potential the Hamiltonian �5� becomes

H = �
n

 I

2
��̇n

2 + �̇n�
2� + J�2 − cos��n+1 − �n�

− cos��n+1� − �n��� − ��1 − cos��n − �n��� + h�2q0
2

− �sin��n+1 − �n� − q0�2 − �sin��n+1� − �n�� − q0�2�� ,

�6�

where I= 1
2A2 is the moment of inertia of the bases around the

axes at pn�pn��. While rewriting the Hamiltonian in the above
form, we have restricted the bases to be rotating in the plane
which is normal to the helical axis. In other words, we have
now restricted our problem to a plane base rotator model �6�
by assuming �=��=� /2.

Having formed the Hamiltonian, the dynamics of the
DNA double-helix molecule can be understood by construct-
ing Hamilton’s equations of motion corresponding to the
Hamiltonian �6� as
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FIG. 1. A schematic representation of �a� a DNA double-helical
chain, �b� a helimagnet, and �c� a cholesteric liquid-crystal system.
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FIG. 2. A horizontal projection of the nth base pair in a DNA
double helix �a� in the x-y plane and �b� in the x-z plane.
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I�̈n = �J + 2h cos��n+1 − �n��sin��n+1 − �n�

− �J + 2h cos��n − �n−1��sin��n − �n−1�

+ � sin��n − �n�� − 2hq0�cos��n+1 − �n�

− cos��n − �n−1�� , �7a�

I�̈n� = �J + 2h cos��n+1� − �n���sin��n+1� − �n��

− �J + 2h cos��n� − �n−1� ��sin��n� − �n−1� �

+ � sin��n� − �n� − 2hq0

��cos��n+1� − �n�� − cos��n� − �n−1� �� , �7b�

where an overdot represents derivative with respective to
time. Equations �7a� and �7b� describe the dynamics of the
DNA double helix at the discrete level when the helical na-
ture of the molecule is represented in the form of a twistlike
deformation.

It is expected that the difference in angular rotation of
bases with respect to neighboring bases along the two strands
is small �5,20�. Also, very recently Gaeta �8,9� proposed that
the helical structure of DNA will introduce qualitative
changes only in the small-amplitude regime. Hence, under
the small-angle approximation, in the continuum limit, the
discrete equations of motion �7a� and �7b� after suitable
rescaling of time and redefinition of the parameter � reduce
to

�tt =
�J + 2h�

I
�zz + � sin�� − ��� , �8a�

�tt� =
�J + 2h�

I
�zz� + � sin��� − �� . �8b�

Adding and subtracting Eqs. �8a� and �8b� and after suitable
rescaling of the variable z, we obtain

�tt − �zz + sin � = 0, �9�

where �=2� and we have further chosen 2�=−1. Also,
while deriving Eq. �9�, we have chosen ��=−�, because
among the possible rotations of bases, rotation of comple-

mentary bases in opposite directions easily facilitate an
open-state configuration. Equation �9� is the completely in-
tegrable sine Gordon equation which was originally solved
for N-soliton solution in terms of kinks and antikinks using
the most celebrated inverse scattering transform method
�21�. For instance, the kink-antikink one-soliton solution of
the sine Gordon equation is written in terms of the original
variables as

��z,t� = 2 arctan
exp�	
1


1 − v2

 I

�J + 2h�
�z − vt��� ,

�10�

where 
 and � represent the kink and antikink soliton so-
lutions, respectively, and v is the velocity of the soliton. In
Fig. 3�a� we plot the angular rotation of bases � in terms of
the kink-antikink one-soliton solution as given in Eq. �10� by
choosing the stacking, helicity, moment of inertia, and veloc-
ity parameters, respectively, as J=1.5 eV, h=3.0 eV, I=1.3
�10−36 g cm2, and v=0.4 cm s−1 �10,15�. The kink-antikink
soliton solution which can propagate infinite distance and
time describes an open-state configuration in the DNA
double helix, which is schematically represented in Fig. 3�b�.
In order to understand the effect of helicity on the open-state
configuration, in Fig. 3�c�, we have also plotted the kink-
antikink one-soliton solution of the sine Gordon equation in
the absence of helicity—that is, by choosing h=0 �keeping
all other parameter values the same�—in the solution given
in Eq. �10�. From Figs. 3�a� and 3�c�, we observe that when
there is helicity in the model �h�0�, the kink-antikink soli-
ton becomes broadened. In other words, helicity in DNA
makes a larger number of base pairs to participate in the
formation of open-state configuration without introducing
any qualitative change in the dynamics. This is also sche-
matically represented in Fig. 3�d�, which looks evident on
comparing Fig. 3�b�. In order to highlight the above fact, we
have separately plotted the kink one-soliton solution at a
given time �t=1� for different values of helicity by choosing
h=0,1 ,2 ,3 ,4 in Fig. 4�a�. The increase in width against he-
licity is explicitly represented in Fig. 4�b�. From the figure it
may be noted that the increase in helicity slows down the
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FIG. 3. �a� Kink-antikink one-soliton solutions �Eq. �10�� of the sine Gordon equation when helicity is present �h�0�. �b� A sketch of the
formation of open-state configuration in terms of kink-antikink solitons in a DNA double helix when helicity is present �h�0�. �c�
Kink-antikink one-soliton solutions of the sine Gordon equation when helicity is absent �Eq. �10� when h=0�. �d� A sketch of the formation
of open-state configuration in terms of kink-antikink solitons in DNA double helix when helicity is absent �h=0�.
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rotation of bases and makes a larger and larger number of
base pairs to participate in the open-state configuration, thus
providing a better representation of base-pair opening in
DNA. Thus, helicity introduces a length scale variation in the
base-pair opening.

Similar results have also been observed by Dauxios �10�
through a perturbation analysis of his helicoidal model of
DNA and obtained a soliton with a much broader width. In
order to have a more realistic model, dissipative �viscous
effect� and noise terms should be added to the equations of
motion. Experimentally, the lifetime of a soliton in this case
is shown to be a few nanoseconds at room temperature �see,
e.g., Ref. �22��. Also, in a recent paper, Yakushevich et al.
�23� through a numerical analysis showed that when the vis-
cosity is strong the soliton moves a length of only few chain
links and it will stop after that. On the other hand, when the
viscosity is low the soliton passes more than 3000 chain
links like a heavy Brownian particle which is found to be
stable with respect to thermal oscillations. When the above
two effects are taken into account, Eq. �9� takes the form
�tt−�zz+sin �=����t+
F�z , t��, where the terms propor-
tional to � and 
 are related to viscous surrounding and

thermal forces, respectively. The function F�z , t� is related to
the random normally distributed forces describing the inter-
action of the bases with thermal bath. A soliton perturbation
analysis �24� of the above equation shows that when the
viscosity is high the soliton moves for a small distance and
then stops. But when the viscosity is low, the soliton moves
for a long distance along the chain. The detailed analytical
calculations of the above study will be separately published
elsewhere.

In summary, we proposed a helicoidal model to study
DNA dynamics by introducing the helical character in anal-
ogy with the twist deformation in a cholesteric liquid-crystal
system and the spin arrangement in a helimagnet. The non-
linear dynamics of DNA under the present helicoidal model
is found to be governed by the completely integrable sine
Gordon equation in the continuum limit which admits kink
and antikink soliton solutions. From the nature of solitons,
we observe that helicity introduces a length-scale variation
without causing any change in the shape of the soliton. Due
to this scaling variation, the width of the soliton increases
and hence we obtain broader kinks and antikinks. In other
words, a large number of bases are involved in the base-pair
opening, thus leading to a better representation. This broad-
ened base-pair opening may act as a better energetic activa-
tor in the case of RNA-polymerase transport during the tran-
scription process in DNA. As the continuum helicoidal
model does not introduce qualitative changes in the DNA
dynamics, we propose to study the full nonlinear dynamics
of the helicoidal model of DNA �without making a small-
angle approximation� by solving Eqs. �7a� and �7b� numeri-
cally and the results will be published elsewhere.

The work of M.D. and V.V. forms part of a major DST
project.
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FIG. 4. �a� The kink one-soliton �Eq. �10�� representing base-
pair opening at t=1 for different values of helicity. �b� Variation of
width of the kink soliton against helicity.
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