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Resistivity in percolation networks of one-dimensional elements with a length distribution
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One-dimensional (1D) nanoelements, such as nanotubes and nanowires, making up percolation networks are
typically modeled as fixed length sticks in order to calculate their electrical properties. In reality, however, the
lengths of these 1D nanoelements comprising such networks are not constant, rather they exhibit a length
distribution. Using Monte Carlo simulations, we have studied the effect of this nanotube and/or nanowire
length distribution on the resistivity in 1D nanoelement percolation networks. We find that, for junction
resistance-dominated random networks, the resistivity correlates with root-mean-square element length,
whereas for element resistance-dominated random networks, the resistivity scales with average element length.
If the elements are preferentially aligned, we find that these two trends shift toward higher power means. We
explain the physical origins of these simulation results using geometrical arguments. These results emphasize
the importance of the element length distribution in determining the resistivity in these networks.
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There has been significant recent interest in percolation
networks made up of one-dimensional (1D) nanoscale ob-
jects, such as nanotubes and nanowires, for applications such
as thin film transistors [1], flexible microelectronics [2], mi-
croelectromechanical systems (MEMS) and chemical sensors
[3,4], and transparent, conductive electrodes in photovoltaic
and optoelectronic devices [5-7]. Although there exist nu-
merous experimental works on the subject, comparatively
few have addressed modeling and simulation of their prop-
erties. All of the recent simulation work on the electrical and
thermal conductivity of single-walled carbon nanotube
(CNT) networks and films have modeled the nanotubes as
1D widthless sticks of a fixed length [8—10]. In particular, a
recent simulation study of the effect of element (nanotube)
length on the resistivity in nanotube films has shown that the
resistivity obeys an inverse power law with element length in
the case that all elements are of fixed length [9]. In other
words, p>[~Y, where p is the resistivity, [ is the element
length, and v is the critical exponent. In reality, however, the
lengths of these 1D nanoelements comprising such networks
are usually not constant, rather they exhibit a length distri-
bution [11]. Although the effect of fixed length has been
studied, the effect of this length distribution on the resistivity
in these percolation networks has not been investigated pre-
viously.

In this Brief Report, we systematically study the effect of
the nanotube and/or nanowire length distribution on the re-
sistivity in 1D nanoelement percolation networks for the two
limiting cases of the resistance. We find that, for junction
resistance-dominated random networks, such as CNT films
[9-12], the resistivity correlates with root-mean-square (rms)
element length and not the average length. For element
resistance-dominated random networks, on the other hand,
the resistivity is found to scale with average element length.
If the 1D elements in the network are preferentially aligned,
we find that these two trends shift toward higher power
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means. We explain the physical origins of these simulation
results using geometrical arguments. These results not only
provide fundamental insights into the physics of percolation
transport in 1D nanoelement networks, but also provide
guidance for future experimental work by pointing out the
relevant parameters with which the resistivity correlates.
The study of the electrical characteristics of 1D nanoele-
ment networks followed a Monte Carlo approach, as de-
scribed previously [9,10]. The simulated three-dimensional
networks are comprised of an array of stacked two-
dimensional (2D) planes of randomly dispersed, stick-like
elements [see Fig. 1(a)] between the source and drain elec-
trodes, where each plane represents a small range of vertical
distances from the substrate. Constraining each element to
one plane models experimental evidence that carbon nano-
tubes in films orient themselves mostly parallel to the sub-
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FIG. 1. (Color online) (a) A random 2D nanoelement network
generated using a Monte Carlo process, showing the source and
drain electrodes. (b) Illustration of the definition of the alignment
angle 6,. (c) Various lognormal length distributions with the solid
and long-dashed curves sharing the same average length and solid
and short-dashed curves sharing the same rms length. (d) Illustra-
tion of the circular probabilistic self-area swept out by a particular
element (shaded).
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strate [12]. Each data point in this paper is the statistical
average of 300 such randomly generated meshes. The simu-
lation first places each element randomly in its layer with a
length I, conforming to a length distribution W(/), and a ran-
dom orientation 6. For aligned networks, which are also
studied in this paper, 6 is limited to the range —6,<60<46,
and 180—-6,< <180+ 0,, where 0, is defined as the align-
ment angle, as shown in Fig. 1(b) [10]. For this study, we
employ the lognormal distribution which is given by

(_ [in(2) - M]2>
" )

V(1) !
= ex
ZU\'ET

Figure 1(c) shows sample lognormal distributions with dif-
ferent o and w values, where o and u are the standard de-
viation and the mean, respectively.

The locations of all junctions are found by observing in-
tersections between elements on the same layer and between
nearest-neighbor layers under the assumptions that each
layer is thick enough to allow same-layer interactions yet
thin enough for nearest-layer interactions to be equally likely
and that the networks are sparse enough to avoid the effects
of geometric constraints on the amount of junctions that can
occur on a particular element. Kirchhoft’s current law is im-
posed at each junction to calculate the resistivity of the net-
work by solving a set of nodal equations [9,10].

Two sources of resistance contribute to the overall resis-
tivity of a network: Element-element junction resistance and
the lengthwise resistance of each element itself. As a result,
junctions are modeled by an effective resistance R; at each
junction and the lengthwise resistance along each element
between two junctions a distance d apart is calculated by
R,=Ryd/N\, where \ is the mean free path, and R, is a con-
stant, which corresponds to the resistance of a 1D element
having a length equal to the mean free path. By these defi-
nitions, there are two limiting cases for the resistivity of the
network: (1) R;> R, which is the junction-dominated case
and (2) R;<R,, which is the element-dominated case. For
example, in the case of CNT films, junction resistance has
been found to dominate [9,11,13], but in general this may not
be true; element resistance could dominate for nanoelements
such as large diameter semiconducting nanowires.

Figure 2(a) shows normalized resistivity versus average
1D element length given by (ly=exp(c?/2+u) for an un-
aligned, junction-dominated network for four different o-u
relationships represented by the four data series. The stan-
dard error bars are not larger than the size of the symbols for
all figures. Strong scaling with length, which has been re-
ported before [9], is apparent for each data series. However,
the resistivities for different length distributions at a fixed
average length are distinctly separate, suggesting that, con-
trary to what one might initially expect [9,11], the network
resistivity is not an explicit function of average element
length in this case.

As a result of the monotonic decreasing nature of resis-
tivity in Fig. 2(a), and noting that the widest element length
distributions produce the least resistivity, we plot in Fig. 2(b)
the resistivity versus rms (second power mean) element
length, given by \f%: V2P (Ddl=exp(u+02), for four
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FIG. 2. (Color online) Log-log plot of normalized resistivity of
a junction-dominated network versus (a) average element length
and (b) rms length for four different o-u relationships (labeled by
different symbols). The network has a thickness of five layers with
device length L=15 um, device width W=15 um, and density per
layer n=1.2 um™2. Log-log plot of normalized resistivity of a
element-dominated network versus (c) rms length and (d) average
length using the same device parameters as in parts (a) and (b).

different o-u relationships. Because the rms value of any
distribution is always greater than or equal to its mean, the
effect of Fig. 2(b) is to shift the data series corresponding to
wider distributions in Fig. 2(a) to the right so that they coin-
cide with each other. This shows that the rms length, and not
average length, is the relevant length parameter determining
network resistivity.

Figure 1(d) rationalizes the result of Fig. 2(b) by illustrat-
ing that within each network layer, each 1D element sweeps
out a circular probabilistic “self-area” that is the superposi-
tion of all orientations it may take once anchored to a point.
This self-area represents all possible points of contact with
other nanostuctures, and as a result, the larger this area, the
more junctions that this element can make, and the lower the
resistivity of a junction-dominated network. Since the con-
cept of rms length, by weighing the length distribution by /2,
is equivalent to averaging of areas swept out by an element
of length [, the resistivity correlates with rms length for a

012102-2



BRIEF REPORTS

T 1 | 1 T T
(a) (b)
1F VX:"““‘_ B ;6‘““.-
- v I |
= Al | :
3 v
S [v ® 1 I
$ N | [ 2
o w
c
S . m u=8c m u=8c
% n ® pu=2c 1 1 ‘ ® n=2c
e A ,,1=0'I2 3 A ].L=0'/2
o
o v p=cl/8 | v u=cl/8
[ *
0 | 1 1 1 1 1 1 1
1 1.6 1.1 1.6

A
Average Length (um) RMS Length (um)

FIG. 3. (Color online) Percolation probability versus log (a)
average and (b) rms length for the resistivity data in Fig. 2. Only
two plots are shown since percolation probability is a geometrical
quantity which is independent of whether a network is junction or
element dominated.

junction-dominated network. It can further be shown that this
rms correlation is independent of the functional form of the
element length distribution [14]. For a network with fixed
element length, the rms length is equal to the average length,
and as a result, the effect of one length metric is indistin-
guishable from the other [9].

For the element-dominated case, however, the situation is
quite different. Figure 2(c) shows normalized resistivity ver-
sus rms length for a element-dominated network having the
same dimensions as in Fig. 2(a) for four different o-u rela-
tionships. The four series separate, suggesting that, in con-
trast to the junction-dominated case, the network resistivity
is not an explicit function of rms length for element-
dominated networks. Figure 2(d), on the other hand, shows
normalized resistivity versus average length for four differ-
ent o-u relationships. It is evident that for large average
lengths, all four length distributions show convergence to a
singular point for each average length. This suggests a good
correlation between resistivity and average length for
element-dominated networks. In this case, the network resis-
tivity is independent of the number of junctions, but depends
on the length and number of conducting paths between the
source and drain electrodes, which correlate with average
length.

However, it is evident from Fig. 2(d) that as the average
length decreases, the four data series increasingly diverge.
Furthermore, Fig. 2(c) shows a corresponding convergence
in the resistivity versus rms length plots for small lengths.
These observations can be better understood by plotting the
percolation probability (defined as the probability of finding
at least one conducting path between the source and drain)
versus average length and rms length, as shown in Figs. 3(a)
and 3(b), respectively. Percolation probability is a geometri-
cal quantity which is independent of whether a network is
junction or element dominated. It is clear from Fig. 3 that
when the percolation probability drops below 1, it shows a
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FIG. 4. (Color online) Log-log plot of normalized resistivity
versus alignment angle for (a) junction-dominated network with
fixed rms length=1.8 um and (b) element-dominated network with
fixed average length=1.8 um for four different o-u relationships,
as labeled by different symbols. Both plots show a progressive di-
vergence of the data for highly aligned networks.

better correlation with rms length compared to average
length. Physically, this is due to the fact that a conducting
path may only extend to another element at a junction, which
is proportional to the circular probabilistic self-area swept
out by each 1D element, as previously shown in Fig. 1(d)
and discussed in previous work [15,16]. Since percolation
probability correlates with rms length, which is itself a for-
mulation of average self-area, percolation effects are seen to
drive the resistivity scaling toward rms length for short ele-
ment lengths, as observed in Figs. 2(c) and 2(d).

At this point, it is worth discussing the applicability of the
concept of “excluded area” introduced by Balberg et al. [16]
in determining the percolation threshold [17] for a 2D net-
work of elements with a length distribution. A logical exten-
sion of the excluded area idea for a system of widthless
sticks with a length distibution W(/) gives the average ex-
cluded area A as (A)=(I)*(sin|6,— 6)]), where 6, and 6, are the
angles two interacting sticks labeled by i and j make with the
horizontal axis, respectively (see Fig. 1 in Ref. [16]). This
result, which is proportional to average length, contradicts
the simulation results in Fig. 3 and other Monte Carlo simu-
lations reported in the literature. As also discussed by Bal-
berg et al. [16], the proper averaging of the excluded area
suggested by our Monte Carlo simulations is (A)
=(I*)(sin|6,— 8}, which is proportional to rms length. This
implies that the concept of self-area associated with an ele-
ment illustrated in Fig. 1(d) explains the simulation results
near the percolation threshold better when there is a length
distribution, although its geometrical meaning is not as trans-
parent as that of excluded area.

Finally, we have also studied the effect of alignment of
elements in the network on the resistivity for different length
distributions. Figure 4(a) shows normalized resistivity as a
function of alignment angle 6, for the junction-dominated
case, where each data series has a fixed rms of 1.8 wm, but a
different o-u relationship. As reported previously for the
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case of fixed element length [10,18], the curves are not
monotonic, but rather they reach a minimum at some inter-
mediate 6, that is neither perfectly aligned nor unaligned for
all cases of o and .

As the alignment angle decreases and imposes tighter
constraints on the orientations of the elements, the rms cor-
relation observed for junction-dominated random networks
vanishes. A similar result is observed for the average length
correlation of element-dominated networks in Fig. 4(b),
where each data series has a fixed average length of 1.8 um,
but a different o-u relationship. Similar to the explanation of
Fig. 2(b), since wider length distributions exhibit a smaller
resistivity in Fig. 4 and {(/")= ’”{l”‘) for n>m for a particu-
lar length distribution, these results indicate that the correla-
tion for aligned networks shifts towards higher p_wer mean
lengths, namely towards the third power mean 3{/*) for both
resistive regimes. Indeed, the increasing divergence of the
plots with alignment represents an increasing reliance on
longer elements to carry charge from source to drain.

In an attempt to explain this result, first let us consider a
network with fixed element length [ [16,18,19]. For aligned
elements (i.e., small ,), we compute the average longitudi-
nal (source-drain direction) displacement of an element for

all 6, given by 2I[% y,cos(6)do= lSln , where iy

=(46,)7" is the uniform angular distribution. Phy51cally, this
quantity measures how much a particular conducting element
aids in ferrying charge from source to drain, which we see
increases with decreasing 6,. This effect competes with the
corresponding shrinking probabilistic contact self-area,
which rationalizes the region of minimum resistivity ob-
served in Fig. 4 for slight network anisotropy as the region
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where the two effects reverse in dominance. In order to com-
bine the contribution of these effects into one quantity, a
natural choice is to multiply these effects together; interest-
ingly, the result is a formulation proportional to I*. Although
it seems possible to generalize this to {/*) (and therefore
{(I%)) for a length distribution, the literature suggests there is
no obvious correlation for systems with even slight aniso-
tropy, such as alignment [16,20]. Regardless, increasing
alignment can be seen to increase the relative weight of
longer elements to the overall conduction, hence driving the
resistivity scaling toward higher power mean lengths.

In summary, we have performed Monte Carlo simulations
of 1D element percolation networks for different length dis-
tributions in the both junction- and element-dominated cases
to determine how each affected resistivity scaling with
length. We have observed that network resistivity correlates
well with rms length for junction-dominated and with aver-
age length for element-dominated networks. In the latter
case, percolation effects drive the correlation towards rms
length for short average lengths. Furthermore, in each case,
alignment of nanotubes and/or nanowires in the network
places increasing weight on the longest elements, shifting the
correlation to higher power means. These results not only
provide fundamental insights into the physics of the percola-
tion transport in 1D nanoelement networks, but also empha-
size the importance of taking the nanoelement length distri-
bution into account when using these networks in potential
device applications.
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