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Evoked magnetic fields of magnetoencephalography and their statistical property
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In an evoked magnetic field of magnetoencephalography a wave form is calculated by averaging. We
propose that the wave form is deterministic in the case of 5 Hz periodical stimuli. We have found with
statistical accuracy that the wave form of a somatosensory evoked magnetic field is deterministic in 5 Hz
periodical median nerve stimuli, since any stationary process is decomposed into a deterministic part and a
nondeterministic part from the Wold decomposition theorem. For the decorrelation method of blind source
separation we have obtained several components which have nonzero wave forms. Via the selected components
time series data of a somatosensory evoked magnetic field generated from somatosensory cortexes have been
separated from background brain noise by using a 7/k (fractional) type decorrelation method.
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I. INTRODUCTION

There are two types of neuromagnetic fields in brain ac-
tivities. One type is the spontaneous magnetic field and the
other is the evoked magnetic field. The evoked magnetic
field is classified by stimuli. There are mainly somatosen-
sory, auditory, and visual stimuli for evoked magnetic fields.
A sensory stimulus initially activates a small portion of the
cortex. However, magnetic fields are generated by currents
of various activities in a brain. Magnetic fields are detected
by superconducting quantum interference devices (SQUIDs).
Observed SQUIDs data are magnetoencephalography
(MEG).

Evoked magnetic fields are often used to examine brain
activities [1]. Amplitudes of evoked magnetic fields are
smaller than those of spontaneous magnetic fields. Usually
we use a wave form of MEG to examine the evoked mag-
netic field. The wave form is calculated from the average
triggered by stimuli as will be seen in Eq. (1). Though we
can obtain dynamical information from wave forms, there is
still remaining dynamical information in MEG data. There-
fore we should find a possibility to obtain dynamical infor-
mation from MEG data of non-wave form. Along this direc-
tion we study statistical properties of MEG data in the
present paper.

Let the number of SQUIDs be ¢, and that of active por-
tions in a brain is . When we want to examine brain activi-
ties, we must solve the inverse problem of r from ¢g. Since
there are a lot of background activities in the brain, usually
q <r, that is, to examine brain activities is the underdetermi-
nant problem. In general it is difficult to examine brain ac-
tivities from SQUID time series data inversely. In the case of
an evoked magnetic field we can analyze a wave form ob-
tained by averaging instead SQUID time series data. Since
the wave form relates to a few activities in the brain, usually
r<gq, that is, activities of cortexes evoked by stimuli are
studied by solving the overdeterminant problem.

Evoked magnetic fields are responses for repeated stimuli,
though the interstimulus interval is usually random to re-
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move habituations. However, we can take advantage of the
periodical property in mathematics, if stimuli are periodical.
In 5 Hz periodical median nerve stimulus somatosensory ac-
tivity is observed as a dipole pattern at the primary soma-
tosensory cortex in the contralateral hemisphere [2], though
somatosensory activities are known as contralateral primary
somatosensory cortex, bilateral secondary somatosensory
cortexes, and posterior parietal cortexes in random stimuli
with interstimulus intervals more than 1 s [3].

In the present paper 5 Hz periodical median nerve stimuli
for the somatosensory evoked field (SEF) were used, and
statistical properties of SEF MEG data will be reported in
Sec. III. From statistical properties some results will be
found in a decorrelation method of blind source separation
(BSS) in Sec. IV.

II. SOMATOSENSORY EVOKED FIELD
MAGNETOENCEPHALOGRAPHY

For seven healthy subjects the median nerve was stimu-
lated electrically with a constant voltage, square-wave pulse
of 0.2 ms duration delivered at the right wrist. Stimulus fre-
quency was periodical 5 Hz (f,=5; T=200 ms) and stimulus
intensity was adjusted to the lowest level that would produce
a twitch of the thumb. MEG data were recorded with a 64-
channel whole-head MEG system (NeuroSQUID Model 100;
CTF Systems Inc.). SQUID was the axial gradiometer type.
MEG data were digitized with 1250 Hz sampling frequency
(f,=1250). MEG data (N=125000) during 100s were re-
corded as a single sweep.

Letx(n),n=1,...,N be sampled MEG data of ¢ SQUIDs,
ie., x e RN, Here, q=64. Let an interval L:=Tf,, and M
:=N/L=500 was a repetition number of 5 Hz periodical me-
dian nerve stimuli. Here, the interstimulus interval (ISI) was
200 ms, and L=250, since the sampling time A¢ was 0.8 ms.
For presignal processing of MEG data the mean value of
each interval (200 ms) was set to be zero instead of a high
pass filter: Since ISI was L, %Eﬁqzlx(m)=0 for each interval
of MEG data. Then, x(n) has zero mean.

A. Wave form

After the presignal processing we can have a wave form
defined by w € RI*L,
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FIG. 1. Wave form w(n) of SEF.

M
w(n):izx[n+(m—1)L] forn=1,...,L, (1)

m=1

since ISI was fixed. The wave form of SEF is shown in Fig.
1 for one of seven subjects. Hereafter, we set Ar=1 for the
time representation of figures in the present paper. The elec-
tric stimulus time is at n=27 (21.6 ms) in Fig. 1. The first
peak of wave form at n=53 is known as N20 [2,3] with
latency 20.8 ms.

The bold line in Fig. 1 is a wave form at the 26th SQUID
channel. The location of SQUID channels was reported in

[4].

B. Power spectral density

The power spectral density (PSD) of MEG at the 26th
SQUID channel is calculated by the Welch method as P(f)
and is illustrated in Fig. 2. PSD of MEG in 5 Hz periodical
median nerve stimuli has a line spectrum at 5 Hz (fundamen-
tal) and its repeated higher harmonic frequencies. In PSD
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FIG. 2. PSD P(f) of MEG at the 26th SQUID channel.
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frequency modulation by the presignal processing is seen for
60 Hz power electrical noise. The effect of a 300 Hz low
pass filter is also shown in PSD. If M times repeated wave
form is defined by ryw € R9*N, we have the periodicity of
ruw(n),

rwn)=rywn+mL), m=1,... M-1. (2)

Figure 2 suggests that ry,w(n) may be deterministic.

III. WOLD DECOMPOSITION THEOREM AND SEF MEG

Let x(n) be a weakly stationary process. From the Wold
decomposition theorem [5,6], a stationary process is
uniquely decomposed into x(n)=y(n)+z(n), where z(n) is
nondeterministic and y(n) is deterministic. That is, y | z. The
5 Hz repetitive line spectra of Fig. 2 show us the effect of
Eq. (2). This suggests that the wave form w(n) is determin-
istic, and lets us examine whether the repetitive wave form
ryw is deterministic or not.

The covariance between the 26th SQUID channel and any
SQUID channel is defined by

N
> Xo(n)x . (n) =: V(xpe,x,), (3)

n=1

v 1

26% — N
under the erogodic assumption, where x,, means the 26th
component of x. Here, the asterisk is a certain number of 1
~64. If 500 times repeated wave form is defined by rsoow
e RN, we have fluctuations, &x(n):=x(n)-rsyuw(n), by
elimination of periodical functions. From the Wold decom-
position theorem we have

Vaes = V(X6 + rso0Wa6), (X, + Fspow ) ]
= V(x4 ) + pV(rsooWaes I'sooW ) » (4)

where pV means the pseudocovariance for deterministic
value. The direct sum of x(n)=y(n)+z(n) corresponds to Eq.
(4) That iS, V(&x,rs()oW):O.

To understand that SEF MEG satisfy the decomposition
of Wold theorem let us examine correlation functions of
MEG in the following. The correlation functions of MEG
between the 26th SQUID channel and any SQUID channel
are defined by

N-n

Capn() = 13 xglmhe, (m-+) = Clra0) 2, (). (5
m=1

Cse,(n) of the subject is shown in Fig. 3. The lag of corre-

lation functions of Fig. 3 is from —150 (-120 ms) to 150
(120 ms).
The correlation functions D4, defined by

Dy, (1) == C{x4(0), dx ()} (6)

are also shown in Fig. 4.
We can define

Ry (1) = pClrspowa6(0), 500w . (n)}, (7)

where pC means the pseudocorrelation function. From the
periodical part of the somatosensory evoked magnetic field
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FIG. 3. Correlation functions Cyg, (1) between the 26th and any
SQUID channel.

Ry, is calculated as in Fig. 5. From Figs. 4 and 5 correla-

tions in fluctuations of MEG data are larger than those of
repetitive wave forms. This means that amplitudes of back-
ground brain noises are more than ten times those of periodi-
cal evoked brain activities.

If we define

ACy4,(n) 1= Cyp(n) = [Dog,(n) + R, ()], (8)

the Wold decomposition theorem means that AC, (n)=0
theoretically.

ACy,(n) = Clx6(0),x (1)} = C{Ax6(0), Ak (1)}
= pC{rspow26(0), 7500w (1)}
= C{x4(0), 7500w . (n)} + C{rsoowa6(0), dx ()} = 0.

Therefore ACs,(n)=0 means that 8, is perpendicular to
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FIG. 4. Correlation functions D¢, (n) of fluctuations between
the 26th and any SQUID channel.
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FIG. 5. Pseudocorrelation functions Ry, (1) of repeated wave
forms between the 26th and any SQUID channel.

Let us examine ACys,(n) in SEF MEG. The absolute
value of ACy,(n) is bounded by a small value as in Fig. 6,

since the number of times of repeated stimuli was 500.

If M is smaller than 500, the estimation of wave form
w(n) becomes less poor than that of M=500. This means that
there is a bias from the true value in the case of small M.
Hence the small value is dependent on the number of M.

The Wold decomposition theorem teaches us that
AC,.(n) of MEG data are considered to be a kind of error,

since ACs,(n)=0 theoretically. Finally, let us examine sta-
tistical effects on AC,4,(n) by changing M. If 64 standard
deviations of ACs, (n) within —150=n = 150 are denoted by

S»6, the M dependence of S,4 is shown at M=30, 50, 100,
250, and 500 of Fig. 7.

These changes of AC,,.(n) are due to the statistical con-

vergence of the wave form. Inversely, Figs. 6 and 7 of
ACy,(n) with M =500 supports an assertion that the soma-

tosensory evoked magnetic field of MEG corresponds to the
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FIG. 6. Differences ACyq,(n) of Eq. (8) in M=500.
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FIG. 7. M dependence of standard deviations of ACyg,.

deterministic part of the Wold decomposition theorem.
Therefore it is concluded that the wave form w(n) is deter-
ministic with statistical precision of MEG data.

IV. APPLICATION TO BLIND SOURCE SERRATION

To retrieve SEF MEG, we have used the second-order
correlation functions for periodical types of blind source ser-
ration (BSS), i.e., the decorrelation method of BSS. The
decorrelation method was developed by Molgedey and
Schuster [7], Ziehe et al. [8], Murata et al. [9], and briefly
summarized in [4]. The decorrelation method of BSS has two
procedures. One procedure is the sphering for orthogonaliz-
ing time series data. Since x(n) has zero mean, let us define
a covariance matrix

=
= ;/2 x(m)x(n)", )

n=0

and MEG data are transformed into z(n):= \E'Fx(n). The
other procedure is the rotation for removing the off-diagonal
elements of the correlation matrices at several time delays,
i
Cer) = 2 2lz(n+ 7,)", m=1,... k. (10)
n=0

The main process of rotation is to determine a square matrix
U in the problem of minimization of the cost function J,

k
J(U)= 2 2 UC.(r,) U], (11)

m=1 i#j

where [UC_(7,)U"]; denotes the ij element of matrix
UC,.(1,)UT. The Jacobi-like algorithm proposed by Cardoso
and Souloumiac [10] has been used to solve approximately
the simultaneous diagonalization problem on k normalized
correlation matrices.

However, BSS performance is strongly dependent on the
choice of time delayed parameters. The temporal decorrela-
tion method of BSS has an open problem in the choice of the
time delayed parameters [8,11].
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In SEF MEG data there are periodical components. Power
electric noise is a typical periodical example. Especially, pe-
riodical stimuli induce a repetitive wave form of an evoked
field. Taking advantage of a periodical evoked magnetic
field, we have developed the temporal decorrelation method
useful for the periodical case by minimizing the absolute
sum of off-diagonal elements of correlation matrices at par-
ticular time delays. As to a period T=1/f,, the time delayed
parameters can be defined by

kT type: Tm=m|:£:|, m=1,2,... k. (12)
o

Here [c] rounds the value to the nearest integer. This choice
of time delayed parameters has been called the kT type of
decorrelation method as in Kishida er al. [4,12]. Although we
could extract periodical components related to contralateral
primary somatosensory cortex by using the kT type of deco-
rrelation method, we could not find any other of periodical
brain activities. In 5 Hz periodical median nerve stimuli PSD
of MEG has a line spectrum of 5 Hz and its repeated higher
harmonic modes are illustrated in Fig. 2. Then, improve-
ments with time delayed parameters defined by

T/k type: Tmz[%]/m, m=1,2, ...k, (13)
P

should be made on the BSS as mentioned in Ref. [13]. In the
BSS, the absolute sum of off-diagonal elements of normal-
ized correlation matrices are minimized at times correspond-
ing to 5 Hz and its higher harmonic frequencies. From the
above two procedures we can define a matrix, Al=U V’F
to determine the blind source separation with 7/k type of
time delays:

x(n) =As(n). (14)

where s(n) is a vector of the normalized BSS components.
Let us call the temporal BSS with Eq. (13) by the 7/ type of
decorrelation method.

For MEG data we have used the 7/k type of BSS method
based on temporal structure to extract 5 Hz periodical SEF
components. Here, we used parameters of the 7/k type of
BSS, f,=1250, f,=5, and k=8. The wave forms of BSS
components are defined by

M

wi(n) = 52 s[n+ (m-1)L] (15)

m=1

and shown in Fig. 8 for the subject. The superscript s denotes
components of BSS.

The bold line in Fig. 8 is a wave form of the 23rd BSS
component, s,3. PSD of the 23rd BSS is shown in Fig. 9.
From Fig. 8 there are several BSS components which have
wave forms of the evoked magnetic field, and the other BSS
components have no wave forms of evoked magnetic field.

Hereafter, we focus cross-correlations of BSS components
from the point of figure presentation, since s(n) is normal-
ized by YD~!. Let us examine a cross-correlation function
between the 23rd BSS and the other BSS defined by
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FIG. 8. Wave form w*(n) of BSS components.

N-n

Chn) = }VE $2(m)s.(m + n) = Cls(0).5.()}. (16)
m=1

The 63 cross-correlation functions, C35,(n), are shown in Fig.
10. Here the symbol ° is the other number except 23.
If M times repeated wave form of w*(n) is defined by

rywi(n), we have &(n):=s(n)—ryw*(n). The cross-
correlation function D3.(n) defined by
53.(n) 3= C{85,3(0), &.(n)} (17)

is also shown in Fig. 11.

This means that the decorrelation method is not the inde-
pendent component analysis but the blind source separation,
since there remain small correlations between BSS compo-
nents. For a trivial example there are two BSS components
necessary to express power electric noises, which have cor-
relations and are not independent. That is, the temporal deco-
rrelation method is not perfectly the independent component

P (dB/Hz)

10 100
f (Hz)

FIG. 9. PSD P(f) of the 23rd BSS component.
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FIG. 10. Cross-correlation functions C3;,(n) between the 23rd
and the other BSS component.

analysis but the blind source separation, i.e., not diagonal but
block-diagonal matrix type.
We can define

23:(1) 1= pClrywi3(0), rywi(n)}. (18)

Pseudocorrelation functions of repeated wave forms between
23 and the other BSS, R3,,(n), are shown in Fig. 12. It should
be noted that Fig. 12 indicates the number of BSS compo-
nents which have nonzero wave forms. This means that the
SEF MEG is given by the several BSS components which
have the nonzero wave forms in Fig. 12. By selecting the
several BSS components and transforming them to SQUID
data we can extract time series data which have repetitive
wave forms and their fluctuations of the evoked magnetic
field from MEG data. From Fig. 12 the number of BSS com-
ponents with wave forms was eight in the subject under sta-
tistical accuracy of MEG data. That is, SEF MEG of the
subject is expressed by a block of eight BSS components of
5, 15, 23, 26, 35, 39, 41, and 48. The number is equal to that

0.15

0.1 -
-150 -100 =50 0 50 100 150

FIG. 11. Cross-correlation functions D3,.(n) of fluctuations be-
tween the 23rd and the other BSS component.
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FIG. 12. Pseudocorrelation functions R);,(n) of repeated wave
forms between the 23rd and the other BSS component.

with nonzero wave forms in Fig. 8. This property holds for
all subjects, though the number is not fixed in subjects. This
property will be useful in checking whether any BSS has a
wave form or not. Hence it should be noted that SEF MEG is
not diagonal but block-diagonal in BSS.

Let us define

AC§3Q(H) = CE}»(”) - [D§3o(”) + R%?,o(n)] (19)

to examine that SEF MEG satisfy the decomposition of Wold
theorem in the decorrelation method. The absolute value of
AC54.(n) is bounded by a small value as in Fig. 13. Therefore
BSS components of MEG satisfy the decomposition of Wold
theorem with statistical precision.

It can be concluded from Fig. 13 that periodic data
ryw(n) or ryw*(n) are deterministic and that

330(71) = D;So(n) + R;}o(”) . (20)

These properties will be useful for MEG analysis with BSS
as in [12,14,15].

By selecting eight BSS components with wave forms in
the subject time series SQUID data of the somatosensory
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0.004- 1

0.002 1

S
ACB
=

-0.002 1

—-0.004 1

-0.006 1

—0.008 1

~0.01 . . . . .
-150 -100 =50 0 50 100 150
n

FIG. 13. Differences AC3;.(n) of Eq. (19).
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FIG. 14. PSD P(f) of SEF at the 26th SQUID channel.

evoked magnetic field generated from somatosensory cor-
texes, b,(n):=Asm(n), can be separated from background
brain noise of MEG data, since SEF wave forms are gener-
ated from currents of cortexes related to somatosensory ac-
tivities. Here the symbol [-] indicates that eight BSS compo-
nents of 5, 15, 23, 26, 35, 39, 41, and 48 with wave forms
leave the original ones and that the other 56 BSS compo-
nents without wave form are set as zero vectors. PSD of the
reconstructed somatosensory evoked field b,(n) at the 26th
SQUID channel is illustrated in Fig. 14 (cf. Fig. 2).

In this way, stationary time series SQUID data of fluctua-
tions of SEF MEG as &b,(n):=A&o(n)=Alsg(n)
—rywi(n)] is obtained by elimination of the repeated SEF
wave form. PSD of éb,(n) at the 26th SQUID channel is also
illustrated in Fig. 15.

By comparison with Figs. 14 and 15 PSD over 150 Hz
shows background noises of MEG, and dynamical informa-
tion of fluctuations of stationary SEF is included in PSD
under 150 Hz, though the effect of a 300 Hz low pass filter is
also shown in PSD.

—-240
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3
=}

|
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=]
T

=290

=300

-310 : :
10 100
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FIG. 15. PSD P(f) of fluctuations of SEF at the 26th SQUID
channel.

011922-6



EVOKED MAGNETIC FIELDS OF ...

Wave forms are usually used in MEG analysis. Though
dynamical information is obtained from wave forms, there
still remains dynamical information in MEG data. That is,
SEF MEG shown by Fig. 14 have repetition of a SEF wave
form and SEF fluctuations around it. It is a future problem to
have dynamical information from SEF fluctuations of Fig.
15.

V. CONCLUSION

When MEG data with evoked magnetic fields in 5 Hz
median nerve stimuli satisfy the decomposition of Wold
theorem, it can be concluded that wave forms of a soma-
tosensory evoked magnetic field are deterministic with sta-
tistical precision of MEG data.

Results can be summarized for the 7/k type of the deco-
rrelation method.

(1) Stationary SEF MEG data are decomposed into the
deterministic part and nondeterministic part.

PHYSICAL REVIEW E 79, 011922 (2009)

(2) Time series data of a somatosensory evoked magnetic
field generated from somatosensory cortexes can be sepa-
rated from background brain noises of MEG data with sta-
tistical precision as in Fig. 15.

Though wave forms that have actives in the somatosen-
sory evoked magnetic field are found usually from Eq. (1) or
Eq. (15), there is a possibility to find a nonzero small wave
form [13] that has actives in addition to the somatosensory
evoked magnetic field by comparison with correlation func-
tions of BSS components mentioned as in Sec. IV. Our ap-
proach to this direction will be useful for understanding dy-
namical brain functions.
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