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We study the effect of delay on the synchronization of two nerve impulses traveling along two ephaptically
coupled, unmyelinated nerve fibers. The system is modeled as a pair of delay-coupled Fitzhugh-Nagumo
equations. A multiple-scale perturbation approach is used for the analysis of these equations in the limit of
weak coupling. In the absence of delay, two pulses with identical speeds are shown to be entrained precisely.
However, as the delay is increased beyond a critical value, we show that this precise entrainment becomes
unstable. We make quantitative estimates for the actual values of delay at which this can occur in the case of
squid giant axons and compare them with the relevant time scales involved.
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I. INTRODUCTION

Ephaptic coupling refers to interactions between nerve fi-
bers mediated by current flow through the extracellular space
without any specialized connecting regions such as synapses
for chemical transmission or electronic gap junctions. These
interactions occur due to physical proximity of axons, espe-
cially those lacking an insulating myelin sheath around them.
The mammalian olfactory nerve in which unmyelinated ax-
ons are arranged in densely packed fascicles �see Fig. 1 in
�1�� is an example of a brain region that may favor ephaptic
interactions.

Experimentally, ephaptic coupling can be detected by ob-
serving several phenomena. One such phenomenon is when
an action potential on one nerve fiber changes the excitability
of the neighboring fibers, and in some cases, evokes action
potentials on them. In the second case, adjacent nerve fibers
can synchronize their firing patterns, i.e., the action poten-
tials traveling along them can travel at the same speeds and
get phase locked. These observations were recorded by Katz
and Schmitt in 1940 �2� in the case of crab motoneurons by
placing two axons in a medium with reduced extracellular
conductance. Similar experiments to detect ephaptic cou-
pling have been done using squid giant axons by Arvanitaki
�3� and Ramon and Moore �4�, active single nerve fibers in
the spinal nerve roots of dystrophic mice by Rasminsky �5�
and algal strands by Tabata �6�. Early theoretical studies of
ephaptic coupling between unmyelinated nerve fibers were
done by Markin �7,8�, Luzader and Scott �9�, and Barr and
Plonsey �10�. More recently, Bokil et al. �1� tested the hy-
pothesis that ephaptic interactions occur in a mammalian ol-
factory nerve by considering the Hodgkin-Huxley model of
impulse propagation and showed that an action potential in a
single axon can evoke an action potential in all other axons
in the fascicle and that the action potentials in neighboring
nerve fibers can synchronize. Ephaptic coupling between
myelinated nerve fibers whose membrane is covered by a
fatty insulating myelin sheath except for some regions called
the active nodes, has been studied by Binczak et al. �11� and

Reutskiy et al. �12� and Bateman and Van Vleck �13�.
Since these interactions occur via the spread of ionic cur-

rents, it is reasonable to expect transmission time delays in
these processes, due to finite times of propagation for these
currents. Most experimental papers �3–5� on ephaptic trans-
mission mention that an action potential on one fiber evokes
an action potential on an adjacent fiber after a certain time-
delay often referred to as the ephaptic transmission time.
Ramon and Moore �4� found that this time varied from
200 to 400 �s in the case of squid giant axons. Rasmisky
�5� measured an ephaptic transmission time of 100–240 �s
in the case of single nerve fibers in the spinal nerve roots of
dystrophic mice. While, to our knowledge, there are no ex-
perimental measurements of the speeds of the ion currents
involved in ephaptic transmission, the observations by Ra-
mon and Moore and Rasminsky strongly suggest the pres-
ence of time-delays in ephaptic interactions. Since delays are
ubiquitous in dynamical systems and may have profound ef-
fects related to stability and the onset of complex behavior
�14–17�, understanding the impact of ephaptic transmission
time delays on the stability of the entrained state of nerve
impulses could be of wider interest.

In this article, we study the effect of delay on the entrain-
ment of pulses on two ephaptically coupled, unmyelinated
nerve fibers. Our approach is an extension of some old work
of Luzader and Scott �9� who developed an analytical model
of the ephaptic coupling between two parallel, unmyelinated
nerve fibers, representing giant axons of squid. Each indi-
vidual fiber was expressed mathematically by the piecewise-
linear Fitzhugh-Nagumo equations. By using a perturbation
expansion of the velocities of the impulses on two fibers in
terms of the coupling parameter they showed that in the limit
of weak coupling, the two coupled pulses can be entrained to
leading order. Eilbeck et al. �18� integrated these equations
numerically and confirmed this result. These, as well as all
the previous studies assumed instantaneous transmission
with no delays.

We show that, when delay is included in the Luzader and
Scott model this precisely entrained state is destabilized as
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the delay increases beyond a critical value and the pulses
maintain a stable, nonzero phase difference between them.
We calculate an estimate of this critical value of delay in the
case of squid giant axons and show that it is comparable to
the ephaptic transmission times measured by Ramon and
Moore �4� and Rasminsky �5�. Since the piecewise-linear
form of Fitzhugh-Nagumo equations captures the essential
features of impulse generation and propagation on nerve fi-
bers exhibited by more complex models such as the
Hodgkin-Huxley or the Fitzhugh-Nagumo with cubic nonlin-
earity, this destabilization of precise entrainment due to delay
is expected to be generic, independent of the precise nonlin-
earity in the equations. Thus, careful experiments could be
carried out to measure phase differences between entrained
pulses which, in turn, can be used to estimate the ephaptic
transmission times.

II. EPHAPTIC COUPLING WITH DELAY

In order to study the effect of delay on the synchroniza-
tion of pulses on two ephaptically coupled, unmyelinated
nerve fibers, we employ the model equations used by Luza-
der and Scott �9� and include the delay in the coupling terms.
Thus the equations have the following dimensionless form:

V1,t�x,t� = �1 − ��V1,xx�x,t� − �V2,xx„x,�t − ��…

− F„V1�x,t�… − R1�x,t� , �1�

R1,t�x,t� = �„V1�x,t� − bR1�x,t�… , �2�

V2,t�x,t� = �1 − ��V2,xx�x,t� − �V1,xx„x,�t − ��…

− F„V2�x,t�… − R2�x,t� , �3�

R2,t�x,t� = ��V2�x,t� − bR2�x,t�� . �4�

Here V denotes the normalized trans-membrane potential
across each fiber and R is the recovery variable which
roughly represents the turn-on of potassium permeability.
Thus the individual fibers are modeled using the Fitzhugh-
Nagumo set of two coupled equations �19� that capture the
essential features of action potential generation and propaga-
tion of a four dimensional description given by Hodgkin and
Huxley �20�. The independent variables x and t are scaled in
the units of 1 /�rg and g /c, respectively, with g, r, and c
being the trans-membrane conductance �in mhos/cm�, resis-
tance �in ohm/cm�, and capacitance �in F/cm� per unit length,
respectively. � can be considered to represent any of a num-
ber of debilitating effects such as temperature or narcotic
concentration, etc. �9�, and � represents the time-delay in-
volved in ephaptic transmission. The nonlinear function for
the potential, F�V�, is approximated by a piecewise linear
form considered originally by McKean �21�:

F̃�Ṽ� = Ṽ − V+H�Ṽ − ã� �5�

with H�Ṽ− ã� being the Heavyside unit step function, ã being
the threshold for the generation of an action potential, and V+
the peak value of the membrane potential. We introduce di-
mensionless variables V ,a ,R by normalizing with V+:

Ṽ=V+V, R̃=V+R and ã=V+a so that the dimensionless non-
linear potential function that appears in the Eqs. �1� and �3�
has the form F�V�=V−H�V−a�, whose largest zero is unity.

For a single fiber, integration of the corresponding
Fitzhugh-Nagumo equations yields a family of traveling
wave solutions parametrized by velocity u���. Rinzel and
Keller �22� assumed b=0 and showed that, for each value of
� below a critical value �c, there exists a stable pulse solution
of higher velocity and an unstable pulse solution of lower
velocity.

Luzader and Scott �9� assume b=0 and consider two
pulses traveling with the same velocity on identical fibers
coupled ephaptically. They assume instantaneous coupling
and hence set �=0. The coupling parameter � is equal to the
ratio of external to internal resistance/length and is consid-
ered small. They assume the following expansions for the
potential and the velocity of the pulse on each fiber in terms
of �:

Vi = Vi0 + �Vi1 + ¯ ; i = 1,2,

ui = u0 + �u1
�i� + ¯ ; i = 1,2

and solve for the first order corrections in the velocities u1
�i�

as a function of the phase difference between the pulses.
Requiring u1

�1�=u1
�2�, they show that the phase difference of

zero between the pulses is stable, implying that the two
pulses can be entrained if they start with a sufficiently small
phase difference initially. We introduce a slow time scale in
the problem owing to the smallness of the coupling constant
and study the entrainment of the pulses in slow time scale as
a function of the time delay �.

Assuming b=0, Eqs. �1�–�4� can be written as

V1,tt�x,t� = �1 − ��V1,xxt�x,t� − �V2,xxt„x,�t − ��…

− F��V1�V1,t�x,t� − �V1�x,t� , �6�

V2,tt�x,t� = �1 − ��V2,xxt�x,t� − �V1,xxt„x,�t − ��…

− F��V2�V2,t�x,t� − �V2�x,t� . �7�

We assume

Vi��,�;�� = Vi0��,�� + �Vi1��,�� + O��2� , �8�

where �=x−ut is the traveling wave coordinate and u is the
speed with which each pulse travels down the axon. �=�t is
a slow time variable:

�

�t
= − u

�

��
+ �

�

��
,

�

�x
=

�

��
.

Thus for i=1,2 we get

Vi,x = Vi0,� + �Vi1,� + O��2� ,

Vi,t = − uVi0,� + ��Vi0,� − uVi1,�� + O��2� ,

Vi,tt = u2Vi0,�� + ��u2Vi1,�� − 2uVi0,��� + O��2� ,
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Vi,xx = Vi0,�� + �Vi1,�� + O��2� ,

Vi,xxt = − uVi0,��� + ��− uVi1,��� + Vi0,���� + O��2� ,

− �Vi,xxt = �uVi0,��� + O��2� ,

− �V1 = − �Vi0 + ��− �Vi1� + O��2� ,

− F��Vi�Vi,t = uVi0,�F��Vi0� + ��F��Vi0��uVi1,� − Vi0,��

+ uVi1Vi0,�F��Vi0�� + O��2� .

Substituting these expressions in Eqs. �6� and �7� we get the
leading order equations for i=1,2:

u2Vi0,�� + uVi0,��� − uF��Vi0�Vi0,� + �Vi0 = 0. �9�

The solution to this equation Vi0��� is the traveling pulse on
each fiber �if they are uncoupled� with a speed u. We assume
that the solutions to Eq. �9� have the form

Vi0 � Vi0„� + �i���… . �10�

Thus,

Vi0,� = Vi0,�,

Vi0,� = �i,�Vi0,�,

Vi0,�� = �i,�Vi0,��,

Vi0,��� = �i,�Vi0,���.

Using the above expressions and Eq. �9�, O��� equations can
be written as

uVi1,��� + u2Vi1,�� − uF��Vi0�Vi1,� − Vi1�uF��Vi0�Vi0,� − ��

= �i,��uVi0,����i�� −
�

u
Vi0��i��� + uVj0,�����i� + 	�

+ uVi0,�����i�� �11�

Here, i, j=1,2; i� j, �i�=�+�i��� and 	=u�. Equations �11�
are linear and hence, for i=1,2, each can be written as

LiVi1 = f i �12�

for which a solvability condition is

�wi,LiVi1� = �wi, f i� = 0, �13�

where wi is the solution of

Li
†wi = 0.

Here, Li
† is the adjoint of Li under the inner product em-

ployed in Eq. �13�. Here we use the conventional definition
for the inner product

�v,w� � 	
−





v���w���d� . �14�

Integrating Eq. �13� by parts, we get

Li
†wi = uwi,��� − u2wi,�� − uF��Vi0�wi,� − �wi = 0. �15�

Then for i=1,2, �wi , f i�=0 implies

�1,�	
−





w1��1��� �

u2V10��1�� − V10,����1���d�

= 	
−





w1��1��V10,�����1��d� + 	
−





w1��1��V20,�����2� + 	�d� ,

�2,�	
−





w2��2��� �

u2V20��2�� − V20,����2���d�

= 	
−





w2��2��V20,�����2��d� + 	
−





w2��2��V10,�����1� + 	�d� .

These two equations can be solved for the change in the
phase difference between two pulses as a function of the
slow time variable �, if we know the functional form of Vi0
and wi which are the solutions to Eqs. �9� and �15�, respec-
tively. Solving these equations is straightforward and is done
in the Appendix.

Now the first integrals on the right hand sides of above
equations are independent of �1 and �2 and when integrated
from −
 to 
, they are equal to constants. Similarly, the
coefficients of �1,� and �2,� on the left hand sides of the
equations are independent of �1 and �2 and when integrated
from −
 to 
, they are also equal to each other and con-
stants. Thus we can write

	
−





w1V10,���d� = 	
−





w2V20,���d� = H1,

	
−





wi� �

u2Vi0 − Vi0,���d� = H2 ¯ i = 1,2.

Hence the equation for the rate of change of the phase dif-
ference between the two pulses with respect to � becomes

d��

d�
=

�I	−�� − I	+���
H2

, �16�

where ��=�2−�1, H2 is as defined before, and

I	��� = 	
−





w���V0��� + 	 � ���d� . �17�

The expressions for Vi0 and wi can be divided into three
regions defined by L, the range of � for which the potential is
above the threshold, as follows. Region I: �
−L; Vi0�a,
region II: −L
�
0; Vi0�a, region III: ��0; Vi0�a. Then,
as done in the Appendix, the functional forms of V0 and w in
these three regions can be written as given below. �We drop
the symbol i as the leading order expressions for the solution
and the adjoint are identical on both fibers.� Thus, for
�
−L,

V0��� � V1��� = A1ek1� + A2ek2�, �18�

w��� � w1��� = A�e−k3�. �19�

For −L
�
0,

V0��� � V2��� = B1ek1� + B2ek2� + B3ek3�, �20�
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w��� � w2��� = B1�e
−k1� + B2�e

−k2� + B3�e
−k3� �21�

and for ��0,

V0��� � V3��� = Cek3�, �22�

w��� � w3��� = C1�e
−k1� + C2�e

−k2� �23�

with k1, k2�0 and k3
0. Next, we want to find expressions
for I	+�� and I	−�� in terms of ��. Since V0���� is discon-
tinuous at �=−L and �=0, we can write

V0����� = V1����� + �V2����� − V1������H��� − �− L��

+ �V3����� − V2������H��� − 0� .

Here, ��=�+	��� and H��� is the Heaviside step func-
tion. Hence,

V0����� = V1����� + �V2����� − V1������H��� − �− L��

+ �V2����� − V1���������� − �− L��

+ �V3����� − V2������H����

+ �V3����� − V2����������� . �24�

Thus,

	
−





w���V0�����d�

= 	
−


−L�

w���V1�����d� + 	
−L�

−	�

w���V2�����d�

+ 	
−	�




w���V3�����d� + w�− L���V2��− L� − V1��− L��

+ w�− 	���V3��0� − V2��0�� , �25�

where L�=L+	��� and 	�=	���. Now, integrating
each of the first three integrals on the right-hand side of Eq.
�25� by parts, we see that the last two terms on the right-hand
side of above equation, will cancel with the contributions
from the values of the integrands in the first three integrals at
the limits of the integration. Hence we obtain

	
−





w���V0�����d�

= − 	
−


−L�

w����V1�����d� − 	
−L�

−	�

w����V2�����d�

− 	
−	�




w����V3�����d� .

However since w���� has different functional forms in differ-
ent regions of �, each of the three integrals on the right-hand
side of the above equation needs to be divided differently for
different ranges of values of ��. Here, then, are the different
cases and the various integrals involved in the calculation of
I	+��.

Case I: ��=0. There is nothing to learn in this case as the
right-hand side of the Eq. �16� equals zero, hence, ��,�=0 as
well and this just implies that ��=0 is a fixed point of Eq.

�16� irrespective of the value of 	 or the delay in ephaptic
coupling.

Case II: 0
���L−	.

	
−





w���V0���+�d�

= − 	
−


−L+

w1����V1���+�d� − 	
−L+

−L

w1����V2���+�d�

− 	
−L

−	+

w2����V2���+�d� − 	
−	+

0

w2����V3���+�d�

− 	
0




w3����V3���+�d� .

Case III: −L−	���
0.

	
−





w���V0���+�d�

= − 	
−


−L

w1����V1���+�d� − 	
−L

−L+

w2����V1���+�d�

− 	
−L+

0

w2����V2���+�d� − 	
0

−	+

w3����V2���+�d�

− 	
−	+




w3����V3���+�d� .

Case IV: L−	���

.

	
−





w���V0���+�d�

= − 	
−


−L+

w1����V1���+�d�

− 	
−L+

−	+

w1����V2���+�d� − 	
−	+

−L

w1����V3���+�d�

− 	
−L

0

w2����V3���+�d� − 	
0




w3����V3���+�d� .

Case V: −

���−L−	.

	
−





w���V0���+�d�

= − 	
−


−L

w1����V1���+�d� − 	
−L

0

w2����V1���+�d�

− 	
0

−L+

w3����V1���+�d� − 	
−L+

−	+

w3����V2���+�d�

− 	
−	+




w3����V3���+�d� .

These integrals can be done analytically or numerically,
given the functional forms of Vi0 and wi, for particular values
of � and a, and hence I	+�� can be calculated for a given
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value of 	. I	−�� can be calculated in a similar fashion and
hence the vector field in Eq. �16� can be found as a function
of ��.

In the case considered by Luzader and Scott �9�, i.e.,
when the coupling is instantaneous and hence 	=0, there are
five fixed points with 0, ��2 and −��2 being the stable fixed
points while ��1 and −��1 being the unstable fixed points,
as shown in Fig. 1. Since ��=0 is a stable fixed point, the
two pulses will get entrained with no phase difference be-
tween them, if they start with a small initial phase difference,
as was shown by Luzader and Scott.

However, as the value of the delay is increased from zero,
while ��=0 remains a fixed point, it undergoes a pitchfork
bifurcation giving rise to two new fixed points. These new
fixed points are stable while 0 becomes unstable, in turn
destroying the precise entrainment of the two pulses. This,
nonzero stable phase difference between the two pulses in-
creases as the delay increases further. The other nonzero
fixed points ����1 and ���2 in Fig. 1� present in the zero
delay case also increase in magnitude but do not change their
stability. These effects of a higher-than-critical value of the
delay can be seen in Fig. 2�c� �with a closer look near
��=0 in Fig. 2�d�� while Fig. 2�a� �with a closer look near
��=0 in Fig. 2�b�� shows that, for a lower-than-critical
value of the delay, the locations as well as the nature of
stability of all the fixed points in the zero delay case �Fig. 1�
remain unchanged; the only difference is in the value of the
slope at ��=0.

As mentioned in the last section, Rinzel and Keller �22�
showed that for a given value of the threshold potential a,
there are several values of �
�c for which the Fitzhugh-
Nagumo equations for a single nerve fiber admit stable pulse
solutions. We calculated the critical values of the delay, at
which the precise entrainment between the two pulses is de-
stabilized, for several such values of �. As shown in Fig. 3,
the critical value of the delay increases as � increases. It
indicates that for slower recovery �i.e., smaller values of ��,
the threshold values of the delay in ephaptic transmission
beyond which the pulses will maintain a stable, nonzero

phase difference between them, is smaller than those for
quicker recovery. In other words, shorter pulses �i.e., those
having quick recovery� can maintain precise entrainment for
comparatively higher values of the delay in ephaptic trans-
mission than longer ones.

III. DISCUSSION

Ephaptic interactions happen between neurons that are in
close proximity of each other, through spread of ionic cur-
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rent. It is reasonable to expect that they occur with some
delay due to finite time of propagation of these currents. In
this article, we showed theoretically, that if the delay is suf-
ficiently large, then it can destabilize the precise entrainment
between impulses traveling down two identical, parallel
nerve fibers. We now make a rough estimate of the actual
value of this critical delay, in the case of squid giant axons.

For �=0.1 and a=0.3, the value of 	 at which ��=0
bifurcates, turns out to be 
0.11L where L, in the units of
the traveling-wave coordinate �, is 
4.72. Now 	=u�,
where u, the dimensionless velocity of each pulse, is 
0.71.
This gives the value of �, but since the original equations
�1�–�4� are dimensionless themselves, the actual value
of delay is obtained by multiplying � by g /c, the relevant
time scale in the problem. For the giant axon of squid
the typical values of g and c are 0.0108 mhos /cm and
1.5�10−7 F /cm, respectively �23�. Thus the value of the
transmission delay at which the pulses are desynchronized,
turns out to be 
10.1 �s. The time interval between the
arrival of the action potential at the preephaptic fiber and the
firing of the postephaptic fiber was found to be, in the range
of 200–400 �s by Ramon and Moore �4� in the case of squid
giant axons and, in the range of 100–240 �s by Rasminsky
�5� in the case of spinal nerve roots of dystrophic mice. Con-
sidering that the processes involved in generation of an ac-
tion potential on a resting fiber by an active adjacent fiber are
more complex and time consuming than the case when both
fibers have action potentials traveling along them, our esti-
mate of the time delay responsible for the destabilization of
precise entrainment between the two impulses seems quite
reasonable and relevant. Thus our results suggest that careful
experiments could be carried out to measure the stable, non-
zero phase difference between the pulses thereby calculating
the transmission time delay. On the other hand, if the pulses
get entrained precisely, with zero phase difference between
them, our result gives an upper limit for the time delays
involved in ephaptic transmission.

In this article we demonstrated the effect of finite ephaptic
transmission time �delay� qualitatively and gave an estimate
of the critical delay for loss of synchrony between two fibers.
Extending this work to study the effect of time delay on the
synchronization of a collection of ephaptically coupled fibers
would be of considerable biological interest.

APPENDIX: CALCULATION OF Vi0 AND wi

The equations for the leading order solution Vi0 and its
adjoint wi are as follows:

Vi0,��� + uVi0,�� − F��Vi0�Vi0,� +
�

u
Vi0 = 0, �A1�

wi,��� − uwi,�� − F��Vi0�wi,� −
�

u
wi = 0. �A2�

Let us take Eq. �A1� first. This has a pulse solution, which
when plotted as a function of �, can be divided into three
regions. Region I: �
−L; Vi0�a, region II: −L
�
0;
Vi0�a, region III: ��0; Vi0�a. We can write a general
form of the solution in all three regions as

Vi0 = A1 exp�k1�� + A2 exp�k2�� + A3 exp�k3��; in I,

=B1 exp�k1�� + B2 exp�k2�� + B3 exp�k3��; in II,

=C1 exp�k1�� + C2 exp�k2�� + C3 exp�k3��; in III.

Since Vi0→0 as �→ �
, we get

Vi0 = A1 exp�k1�� + A2 exp�k2��; in I, �A3�

=B1 exp�k1�� + B2 exp�k2�� + B3 exp�k3��; in II, �A4�

=C exp�k3��; in III. �A5�

k1, k2�0, and k3
0 are the roots of the characteristic equa-
tion obtained from Eq. �A1�:

k3 + uk2 − k +
�

u
= 0. �A6�

Thus k1, k2, k3 are functions of � and u. Now we use the
continuity of the solution and its first derivative and the dis-
continuity in the second derivative at �=0 and �=−L to solve
for the constants in Eqs. �A3�–�A5� and also for L. The dis-
continuity in the second derivative comes from the form of
the function F�V� and is expressed as follows:

�Vi0� �II − �Vi0� �I = − 1,

�Vi0� �III − �Vi0� �II = 1.

Thus using these matching conditions at �=0 we get three
equations that can be written in a compact form as follows:

k3
mC = �

i=1

3

ki
mBi + �m2 ¯ m = 0,1,2 �A7�

and at �=−L,

�
i=1

2

ki
mAie

−kiL = �
j=1

3

kj
mBje

−kjL + �m2 ¯ m = 0,1,2, �A8�

where �m2 is the Kronecker delta. There are two additional
conditions

Vi0�� = 0� = Vi0�� = − L� = a �A9�

which along with Eq. �A7� imply C=a. Then we can solve
for B1, B2, and B3 in terms of k1, k2, and k3:

B1 =
�k2 − k3�

D
, �A10�

B2 =
k3 − k1

D
, �A11�

B3 =
k1 − k2

D
+ a �A12�

with D=k2k3�k3−k2�+k1k3�k1−k3�+k1k2�k2−k1�. We can
then solve for L:
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L =
− 1

k3
ln	 . �A13�

Here,

	�k1,k2,k3,a� = 1 −
a

B3
=

k1 − k2

�k1 − k2� + aD
. �A14�

We can then solve for A1 and A2:

A1 = B1�1 − 	−k1/k3� , �A15�

A2 = B2�1 − 	−k2/k3� . �A16�

Now using the final condition, i.e., Vi0��=−L�=a we get

B1	k1/k3 + B2	k2/k3 + B3 = 2a . �A17�

This is an equation in terms of k1, k2, k3 which are in turn in
terms of u, the velocity. Thus we can solve this equation for
u for particular values of � and a. Once we know u, we can
calculate k1, k2, k3 from which we can know A1, A2, B1, B2,
B3, and L and hence the functional form of Vi0. The plot of
Vi0 is given in Fig. 4 and it matches the plot in the article by
Luzader and Scott �9�.

The functional form of wi would be similar since the dif-
ferential equation for the adjoint, Eq. �A2� is similar to Eq.
�A1� although a main difference is that Eq. �A2� is linear.
The only change would be in the signs of k1, k2, k3 as the
characteristic equation corresponding to Eq. �A2� can be ob-
tained from that for Eq. �A1� by replacing k by −k. A general
form of the solution to Eq. �A2�, in all the three regions
defined before, can be written as

wi = A1� exp�k1��� + A2� exp�k2��� + A3� exp�k3���; in I,

=B1� exp�k1��� + B2� exp�k2��� + B3� exp�k3���; in II,

=C1� exp�k1��� + C2� exp�k2��� + C3� exp�k3���; in III,

where k1�, k2�, k3� are the roots of the characteristic equation

k3 − uk2 − k −
�

u
= 0. �A18�

Comparing this equation with Eq. �A6� we see that k1�=−k1,
k2�=−k2, and k3�=−k3 which implies that k1�
0, k2�
0,
k3��0. Hence the functional form of wi becomes

wi = A� exp�− k3��; in I, �A19�

=�
i=1

3

Bi� exp�− ki��; in II, �A20�

=C1� exp�− k1�� + C2� exp�− k2��; in III. �A21�

Now we use the continuity of the solution and its first de-
rivative and the discontinuity in the second derivative at
�=0 and �=−L to solve for the constants in Eqs.
�A19�–�A21�. The discontinuity in the second derivative
comes from the form of the function F�V� and is expressed
as follows:

�wi��II − �wi��I =
− wi��− L�
Vi0� �− L�

, �A22�

�wi��III − �wi��II =
wi��0�
Vi0� �0�

. �A23�

Thus using these matching conditions at �=0 we get the
following set of equations:

�
i=1

2

ki
mCi� = �

i=1

3

ki
mBi� ¯ m = 0,1, �A24�

�
i=1

2

ki
2Ci� = �

i=1

3

ki
mBi� +

k1C1� + k2C2�

k3C
�A25�

and at �=−L,

k3
mA�ek3L = �

i=1

3

ki
mBi�e

kiL
¯ m = 0,1, �A26�

k3
2A�ek3L = �

i=1

3

ki
2Bi�e

kiL −
k3A�ek3L

� j=1
2 kjAje

−kjL
. �A27�

Eliminating B1�, B2�, B3� leads to the following three equations
for C1�, C2�, and A�:

�1 + c11�C1� + c12C2� − a11A� = 0, �A28�

c12C1� + �1 + c22�C2� − a12A� = 0, �A29�

c13C1� + c23C2� − �1 + a13�A� = 0, �A30�

where

c11 = −
k1B1

k3C
, c12 = −

k1B2

k3C
, c13 = −

k1�B3 − C�
k3C

,
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FIG. 4. Functional form of Vi0 as a function of �—a stable pulse
solution for the Fitzhugh-Nagumo equation with �=0.1 and a=0.3.
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c21 = −
k2B1

k3C
, c22 = −

k2B2

k3C
, c23 = −

k2�B3 − C�
k3C

,

a11 = −
k3�1e�k3L�

k1�1 + k2�2
, a12 = −

k3�2e�k3L�

k1�1 + k2�2
,

a13 = −
k3�3

k1�1 + k2�2
,

where �i=Aie
�−kiL�, i=1,2, � j =Bje

�−kjL�, j=1,2 ,3 and Ai, Bj,
and C are the coefficients in the functional form of Vi0. The
above relations can be obtained from the expressions
�A10�–�A12� for these coefficients and using the condition
for the discontinuity in the second order derivative of
wi—Eqs. �A22� and �A23�. It can be easily proved that two
of the three equations �A28�–�A30� are redundant and hence
we can solve for two of three coefficients C1�, C2�, and A� in
terms of the third one. Hence we solve for C1� and A� in
terms of C2�, which then yields all the coefficients in the
functional form of wi:

C1� = �a11�1 + c22� − a12c21

a12�1 + c11� − a11c12
�C2�, �A31�

A� =
c13C1� + c23C2�

�a13 + 1�
, �A32�

B1� = a11A�, �A33�

B2� = a12A�, �A34�

B3� = �a13 + 1�A�. �A35�

With these coefficients, we now plot wi as functions of � for
a=0.3 and �=0.1 in Fig. 5 and it matches with the one given
in Ref. �9�.
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FIG. 5. A solution of the adjoint homogeneous equation that
corresponds to the pulse shown in the above figure. The ordinate
scale is arbitrary �a=0.3, �=0.1�.

ADHIKARI, MCIVER, AND COUTSIAS PHYSICAL REVIEW E 79, 011910 �2009�

011910-8


