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We present an approach to modeling the two-dimensional Brownian dynamics of semiflexible filaments in
the worm-model description as uniform, isotropic, and continuously flexible. Experimental observations in-
creasingly show that the mechanical behavior of semiflexible filament networks departs from conventional
knowledge. A force-balance-based dynamic simulation of the filament networks has multiple advantages as an
approach to understanding their anomalous mechanics. However, a major disadvantage is the difficulty of
capturing filament hydrodynamics and bending mechanics in a computationally efficient and physically con-
sistent manner. To that end, we propose a strategy for modeling semiflexible filaments which involves ideal-
izing a semiflexible filament as a contiguous string of flexible rods, and considering the Brownian forces on it
as Einsteinian-like point normal and tangential forces. By idealizing the filament as a string of rods, we avoid
the complex hydrodynamic treatment involved in beads-on-string idealizations, and implement large-deflection
beam mechanics and filament inextensibility in a natural manner, while reducing the computational size of the
problem. By considering the Brownian forces as point normal and tangential forces, we decompose the
Brownian forces on straight and curved segments into a combination of classical resultant forces and couples
whose distribution is shown to be governed by the rod diffusion coefficients. The decomposition allows
solution of the Euler beam equations to second-order continuity between segments and fifth-order continuity
within segments. We show that the approach is physically consistent by capturing multiple Brownian phenom-
ena ranging from the rigid to the semiflexible limit: the translational and rotational diffusion of rigid rods; the
thermal fluctuation of semirigid cantilever filaments; and the shape, bending, and time relaxation of freely
diffusing, semiflexible actin filaments.
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I. INTRODUCTION

The cytoskeleton is made up of a network of filamentous
proteins which by their assembly dynamics and mechanics
mediate cell shape, migration, and force transfer �1,2�. The
three broadly important cytoskeletal filaments are actin, mi-
crotubules, and intermediate filaments, with diameters of 8,
25, and 10 nm, respectively �2�. These filaments are classi-
fied as semiflexible, because the length over which their con-
tour angles correlate, i.e., the persistence length, is on the
order of the lengths typically found in the cytoskeleton. Con-
sequently, unlike in typical flexible polymers, the entropic
contribution to the free energy is very small for these fila-
ments, and the enthalpic or strain energy contribution plays a
larger role. A popular conception of the free-energy state of a
semiflexible filament is the worm model of Kratky and Porod
�3�. It likens a semiflexible filament to a continuously flex-
ible and isotropic rod, with the bending at any point gov-
erned by Euler beam mechanics. Consequently, for a given
conformation � of a semiflexible filament, the total free en-
ergy H��� is obtained by integrating over the bending en-
ergy of infinitesimal beams at every point of its contour
length L,

H��� =
EI

2
�

0

L

dl� ���l�
�l

�2

, �1�

where ��l� is the filament angle at contour length l. The
proportionality constant EI is the filament’s bending stiffness

or flexural rigidity, with E being the Young’s modulus in
extension and I being the cross-sectional inertia �2,4�. Since
the above free energy of the filament is quadratic in � �Eq.
�1��, the probability of finding a particular filament confor-
mation, p���, at thermal equilibrium, is given by the Boltz-
mann distribution �2,5�,

p��� =
1

Z
exp�−

H���
KT

� =
1

Z
exp�−

EI

2KT
�

0

L

dl� ���l�
�l

�2	 ,

�2�

where K is the Boltzmann constant, T is the temperature, and
Z is a normalization constant. Equation �2� defines a unique
material constant, the persistence length �Lp�,

Lp =
EI

KT
, �3�

which captures the competition between flexural rigidity and
thermal energy in determining the conformation or shape of
the filament. Using Eq. �2� and the equipartition theorem
�mean energy of KT /2 for one degree of bending freedom in
two dimensions �2D��, the filament’s persistence length can
be determined from the decorrelation of the filament’s tan-
gent angles along its contour l �2�,


cos ��l�cos ��0�� = exp�−
l

2Lp
� . �4�

Due to its nonlinear nature, Eq. �2� can be used to determine
only a few properties of semiflexible filaments analytically,
notably the mean squared end-to-end distance and the persis-*Corresponding author. mofrad@berkeley.edu
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tence length. Its use to solve for semiflexible filament behav-
ior is further complicated by the need to impose filament
inextensibility as an external constraint �6,7�.

The ability to solve for semiflexible filament behavior is
critical to understanding the behavior of their networks,
which have increasingly been found to show mechanical
properties that differ from those of flexible polymer net-
works. Networks of actin filaments show a reversible stress-
softening in compression �8�, whereas any known stress soft-
ening in flexible polymer networks has been due to failure
and yielding, and is not reversible. Also, networks of semi-
flexible polymers show negative normal stresses in shear
which tend to pull the shear plates inward �9�. Networks of
flexible polymers, on the other hand, show positive normal
stresses in shear or push the shear plates outward. Also, net-
works of semiflexible filaments show nonlinear shear stiffen-
ing much larger than that observed with networks of flexible
polymers �10�. It is unclear whether the anomalies can be
explained within the worm model description of a network
filament as a uniform flexible rod; or if additional complexi-
ties due to nonhomogeneous protein microstructure need to
be accounted for �11�. It is also unclear what the underlying
filament deformations are that lead to such a network behav-
ior �12,13�.

Dynamic or force-balance-based simulation presents a
way to avoid the mathematical complexities with analytically
solving for semiflexible filament behavior, and for under-
standing the microstructural basis of the above network be-
havior. At the filament level, the chief advantages of dynamic
simulation are that �1� the small-fluctuation approximations
required for analytically solving semiflexible filament equa-
tions �Eq. �2�� are no longer necessary; �2� a force-balance-
based description of Brownian motion, Langevin dynamics,
is well developed �14,15�; and �3� a form of filament inex-
tensibility can be naturally imposed. From the network point
of view, the chief advantages of dynamic simulation are that
�1� the pointwise displacement and force constraints charac-
terizing filament cross linking in a network are easily im-
posed, unlike in free-energy models; and �2� by requiring the
forces to balance, no extraneous assumption on filament or
cross-link kinematics needs to be made, unlike in the statis-
tical models. Even though the computational cost of dynamic
simulation is higher, because all relevant centers of force
balance must be accounted for, one cannot overstate the im-
portance of these simulations in instructing the kinematic
assumptions of free-energy and statistical models.

A serious disadvantage with the dynamic or force-balance
approach, however, is our limited knowledge of the nature
and geometry of the forces and their points of action. This is
particularly true in the case of semiflexible filaments, where
the force balance is complicated by the continuous and non-
linear nature of filament bending and by the constraint of
filament inextensibility. A number of these issues can be re-
solved by increasing the computational cost of modeling a
single semiflexible filament. However, increasing the compu-
tational cost of modeling a single filament seriously limits
the ability to scale up to multiple-filament networks. In this
paper, we focus only on the central problem of dynamically
simulating semiflexible filaments in a physically consistent
but computationally efficient manner. We propose a different

way of idealizing a semiflexible filament that overcomes
many of the above problems. To that end, we first illustrate
the difficulties with dynamically simulating semiflexible fila-
ments, in the context of the popular string-of-beads idealiza-
tion.

In a weak force field �FP�, a particle is assumed to drift
with a velocity �v� that is proportional to the force, and the
proportionality constant is known as the frictional coefficient
���. In Langevin dynamics, this linear relation between par-
ticle velocity and external force is extended to describe the
particle’s response to random Brownian forces �FB� gener-
ated by incessant collision with solvent molecules �15�,

�v�t� = FP�t� − FB�t� , �5�

where FP is the conserved force, a function of the particle
position and/or conformation. By requiring the solution of
Eq. �5� to match the Boltzmann distribution, two key rela-
tions are obtained:

D =
KT

�
, �6�


FB�t�FB�t��� = 4KT���t − t�� . �7�

Note that all expressions in this study pertain to two-
dimensional space. Equation �6� allows for a microscale par-
ticle feature like the frictional coefficient to be determined
from macroscale observations of particle diffusion, and gave
one of the first numerical estimates for the Boltzmann con-
stant �16�. Equation �7� suggests that the Brownian fluctua-
tion motion is intimately linked to the viscous forces on the
particle, and allows for the determination of viscoelastic re-
laxation times from the Brownian fluctuation motions
�16–18�.

For fluctuating semiflexible filaments, the conserved force
Fp is replaced by the internal bending force of the worm
model, and Eq. �5� appears as

�v�t� = EI
d2�

dl2 − F�t� . �8�

For ease of representation we have denoted the Brownian
force in the above expression by F instead of FB, and will
maintain the representation throughout the rest of the paper.1

In simulating a semiflexible filament, one first needs to de-
termine the points on the filament at which the fluctuation,
dissipation, and elastic forces in Eq. �8� can be applied and
balanced. A common approach is to discretize the filament
into a string of beads, and apply viscous and Brownian
forces well known for a sphere at each bead center. However,
the discretization into beads leads to an error in the hydro-
dynamics that vanishes only as the bead number tends to
infinity �15�. For instance, the diffusion coefficient of a rigid
representation of a string of beads matches that of a rigid
cylindrical rod only at infinite bead number �15�. Corrections

1Note that in Eq. �8�, F indicates force and not force density. Also,
the filaments are assumed inextensible and therefore no tension
term appears in it. See the discussion of Eqs. �9� and �10� for how
filament incompressibility is ensured.
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such as scaling up of bead size and use of overlapping beads
have been proposed to match rod diffusion data, but the cor-
rections have not been found uniformly applicable �19–21�.
In addition, the discretization of a continuous filament leads
to errors in determining bending angles and contour length.
In order to avoid the large increase in computation that
comes with increasing bead number, the error is usually ac-
cepted, with the argument that over long-time simulations of
a large number of filaments the errors average out �15�. To
our knowledge, there are very few publications where semi-
flexible filament dynamics have been captured in a physi-
cally consistent manner for a range of Lp /L, i.e., from rigid
to semiflexible, and validated rigorously �22�.

In this paper we propose an idealization of a semiflexible
filament as a string of continuously flexible rods. It bypasses
the above discretization errors with decreased computational
cost in the following ways: �1� by discretizing into rods,
Euler beam mechanics and filament inextensibility can be
naturally imposed; �2� the errors in hydrodynamics that come
with discretization into beads are preempted; and �3� since a
single rod replaces a number of beads, a significant decrease
in computational time and effort is obtained. The string-of-
rods approach is made possible by two implementations.
First, we show that for a curved rod much smaller than the
persistence length the Brownian forces and hydrodynamics
can be derived as an extension of those of a straight rod.
Second, we show that the large-deflection Euler beam me-
chanics can be solved at each rod segment to second-order
continuity in angle between segments and to fifth-order con-
tinuity within the segment, thereby naturally preserving the
inextensibility constraint. A schematic of the solution strat-
egy is shown in Fig. 1. We show that, with this approach, the
dynamics of a semiflexible filament can be captured from its
rigid to semirigid to semiflexible limit.

In the version of the model presented in this paper, we
look only at the dynamic behavior of semiflexible filaments
that results from their shape as a uniform, slender, and con-
tinuously flexible rod. We neglect any complexities due to
the nonhomogeneous internal microstructure. Such a shape-

based approximation of dynamics has been shown valid for
densely packed systems like proteins in which the large-
amplitude low-frequency deformations, usually involved in
macromolecular function, are found to be universally deter-
mined by macromolecular shape �23,24�.

II. MATERIALS AND METHODS

Our formulation likens a semiflexible filament to a con-
tinuous string of rod segments. We make two basic assump-
tions on the nature of the Brownian forces exerted on the
filament segment. �1� The Brownian force on a segment that
is a part of a filament is the same as when the segment is free
in solution, provided hydrodynamic screening and end ef-
fects are neglected. �2� The Brownian force on a segment is
not affected by the bending capacity of the segment. There-
fore, at any instant, the Brownian force on a segment that is
a part of a flexible filament is assumed equal to the Brownian
force that would occur on the same segment were it freely
diffusing, rigid, and locked in its shape at the instant of force
application. Based on this idealization, we make the follow-
ing three assertions as to how the Brownian force on a seg-
ment of a semiflexible filament is determined, and how the
resulting segment deformation is determined from large-
deflection Euler beam mechanics. We prove these assertions
in Secs. II A–II C.

�1� For a rigid, straight segment, the net effect of the
Brownian forces on its surface can be captured by a combi-
nation of a single resultant force and a couple acting at the
segment center. The variance of these resultants is deter-
mined by the translational and rotational diffusion coeffi-
cients of the segment.

�2� For a rigid, curved segment, the net effect of the
Brownian forces projected in any direction can be captured
as single resultant force and a couple at the center of the
segment projection in that direction. The variance of these
resultants is determined by the translational and rotational
diffusion coefficients for the projected length.

�3� For flexible segments much smaller than the persistent
length the net moment balance is completely determined by
the resultants of the Brownian forces projected in two mutu-
ally perpendicular directions. For such a projection of the
Brownian forces, the large-deflection Euler beam equations
can be solved to fifth-order continuity in angle within each
segment, and to second-order continuity in angle between
segments.

Solution of the large-deflection Euler beam equations in-
volves not making the small-strain assumptions on filament
curvature. In x and y coordinates, the filament curvature is
given as

��

�l
=

�2y/�x2

�1 + ��y/�x�2�3/2 , �9�

where � is the angle along the contour length l. The above
expression is nonlinear, and makes the beam equations diffi-
cult to solve. On the other hand, a small-deflection assump-
tion �small �y /�x� allows the denominator to go to 1, giving
the curvature as

(a)

(b)

(c)

FIG. 1. Modeling of filament fluctuation dynamics. �a� Dis-
cretize filament into string of rod segments. �b� Determine resultant
Brownian forces and couple on each segment. �c� Solve for the
large-deflection beam mechanics and filament displacement to bal-
ance Brownian forces. Repeat from step �b� for new filament
configuration.
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��

�l
�

�2y

�x2 . �10�

The small-deflection or small-strain approximation is com-
monly made in structural mechanics where the deflections
are indeed small. The approximation gives about 4% error at
10% deflection �25�, with the error increasing nonlinearly
thereafter. However, the small-deflection assumption used
along with a Lagrangian frame of reference introduces a spu-
rious lengthening in the bending filament, i.e., a filament
deflection in the vertical direction is not accompanied by a
horizontal inward deflection to preserve filament length �Fig.
2�. Therefore, models of semiflexible filaments which use the
small-deflection assumption typically add on an external
constraint forcing the filament to be inextensible.

A. Brownian force on a rigid segment

The diffusion of rigid cylindrical rods is described by
three independent diffusion coefficients Dn, Dp, and Dr,
which govern the rod’s translation normal �Dn� and parallel
�Dp� to itself, and the rod’s rotation �Dr�. The mathematical
expressions for these coefficients have been well studied,
standardized, and shown to match experimental data �26�.
For slender rods, the three diffusion coefficients are

Dp =
KT

8��L
ln�L

d
� , �11�

Dn =
KT

4��L
ln�L

d
� , �12�

Dr =
3KT

8��L3 ln�L

d
� , �13�

where d is the filament diameter and � is the solvent viscos-
ity. Without the logarithmic �ln� term, the above expression
can be derived by idealizing a rod to a string of infinitesimal
beads, and considering the Brownian forces on them �Kirk-
wood theory� �15�. The ln term captures a super-posed hy-

drodynamic effect from the interaction between the beads
�15�, as though the extension of the segment screens and
reduces the local drag on it. Experimentally, the diffusion
coefficients are determined from the mean square of the net
displacement or rotation occurring in intervals of �t,

Di =

�zi�zi�

2�t
, �14�

where i=n , p ,r. The parallel and normal directions for the
interval �t are usually assigned based on the rod’s orienta-
tion at the beginning of the interval. The denominator in Eq.
�14� includes a factor of 2 instead of the factor of 4 that is
usually encountered with 2D diffusion, particularly of spheri-
cal particles. This is because, for a cylindrical rod diffusing
in 2D, there is only one degree of freedom for it to diffuse
parallel or normal to itself, and for it to rotate in plane.

A fundamental tenet in rigid-body mechanics is that the
net effect of any set of surface forces can be captured by �1�
a single resultant force acting at the center of mass and equal
to the vector sum of all forces on the rod, and �2� a single
resultant couple acting at the center of mass and equal to the
sum of all moments about the center of mass. Brownian mo-
tion of a rod can be idealized as occurring from the net effect
of all the point tangential and point normal forces acting on
its surface from collision with the solvent molecules. In such
a case, any rotation of the rod must be due to the net moment
that the point normal Brownian forces exert about its center.
Also, the rod’s diffusion coefficients, by virtue of being mea-
sured from net displacements and rotations of the rod �Eq.
�14��, are likely to govern the variance of the resultant forces
and couple. That is, in the expression obtained by combining
Eqs. �6� and �7�,


Fi . Fi� =
4�KT�2

Di�
. �15�

Fi is expected to be the resultant of the point normal and
parallel Brownian forces for i=n , p and the resultant of the
moments due to the normal Brownian forces on the rod for
i=r. The idealization is depicted in Fig. 3.

In order to prove the above ideas, we use a version of the
diffusion coefficients in Eqs. �11�–�13� which does not in-
clude the correction term for hydrodynamic screening �ln
term�, and denote it by Di�, with i=n , p ,r. We do not include
the correction because hydrodynamic screening is a second-
order effect and not primarily determined by the Brownian
forces. We do include the ln term in our simulations, but as a
constant prefactor multiplying Di�, determined by the overall
filament dimensions and acting as if to condition the local
Brownian response equally everywhere on the rod.

For a Gaussian distribution, the variance of a sum of n
samples is equal to the sum of the variance of each sample,
i.e.,

Var�X1 + ¯ + Xn� = Var�X1� + ¯ + Var�Xn�

= n Var�X�, Xi � X . �16�

For Brownian motion, the total number of point forces due to
collision must be proportional to the length of the rod, for
rods of the same diameter. If the normal and parallel diffu-

�y
Small-deflection bending

�x

�y
Large-deflection bending

(b)

(a)

FIG. 2. Small-deflection �a� versus large-deflection �b� bending
dynamics of a cantilever. Small-deflection theory does not account
for the inward deflection in the −x direction that accompanies any
deflection in the −y direction, consequently overpredicting the
length of the deformed cantilever.
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sion coefficients govern the variance of the sum of point
normal and parallel forces, respectively, the corresponding
variance should show a proportionality to the rod length
similar to Eq. �16�. Combining Eqs. �10� and �12� with Eq.
�7�, for two rods of length L1 and L2,


Fi
1Fi

1�

Fi

2Fi
2�

=
Di�

2

Di�
1 =

L1

L2 , i = p,n . �17�

Equation �17� shows that the parallel and normal Brownian
forces Fp and Fn, whose variance is governed by the diffu-
sion coefficients, behave like the resultant forces of rigid-
body mechanics. Similarly, if �fn is a point normal Brownian

force, and l is the variable indicating position along the rod
length, then the variance of the net moment due to all �fn on
the rod surface can be written as


�
−L/2

L/2

l�fndl�
−L/2

L/2

l��fn�dl��
=
�

−L/2

L/2

dl�
−L/2

L/2

l�fnl��fn�dl�� =
�
−L/2

L/2

l�fnl�fndl�
= 
�fn�fn��

−L/2

L/2

l2dl = �4KT��4���
2L3

24

= �4KT�
���L3�

3
= 4

�KT�2

DT
. �18�

The third equality is because the point normal Brownian
forces are random. The variance of the point normal force
�fn was obtained from Eqs. �12� and �16�. From Eq. �18�, it
can be concluded that the variance of the net moment due to
the point normal forces is determined by the rotational dif-
fusion coefficient. A similar relation for the rotational diffu-
sion coefficient has been derived in �15� in terms of the vis-
cous forces. In Appendix A we show that our idealization of
the Brownian forces as point normal and point parallel ran-
dom forces, and the consequent idea that diffusion coeffi-
cients capture the distribution of their resultants, is physi-
cally consistent with classical mechanics theory.

B. Brownian force on a curved segment

By a treatment similar to that above, it can be shown that
for a curved rod, the variance of the resultant of the Brown-
ian point normal forces projected in a particular direction, is
governed by the corresponding normal diffusion coefficient
for the projected length in that direction �see Fig. 4�. If �fn is
a point normal Brownian force acting at contour length l, and
� is the angle at that point, then the net projection of the
point normal Brownian forces in the horizontal direction is


�
−L/2

L/2

�fn cos ��l�dl�
−L/2

L/2

�fn� cos ��l��dl��
=
�

−Lx/2

Lx/2

�fndlx�
−Lx/2

Lx/2

�fn�dlx�� = 
�fn�fn�Lx =
4�KT�2

Dn�
X ,

�19�

where Dn�
X is the normal diffusion coefficient corresponding

to the projected length Lx. The above relation can be proved
similarly for the parallel Brownian forces. Also, the variance
of the total moment due to projected normal forces can be
shown governed by the rotational diffusion coefficient for the
projected length. For a projection in the horizontal direction,
the net moment due to normal Brownian forces is

(c)

(b)

(a)

FIG. 3. Rigid-rod diffusion. The parallel, normal, and rotational
diffusion of a rod segment �a� can be thought of as occurring due to
point parallel and normal Brownian forces on the surface of the rod
�b� and the moments resulting from the normal Brownian forces. In
classical rigid-body mechanics, the effect of multiple point forces
can be captured by a resultant force and resultant couple �c�.
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�
−L/2

L/2

l�fn cos2 ��l�dl�
−L/2

L/2

l�fn� cos2 ��l��dl��
=
�

−Lx/2

Lx/2

�fnlxdlx�
−Lx/2

Lx/2

�fn�lx�dlx�� = 
�fn�fn�
Lx

3

12
=

4�KT�2

Dr�
X

�20�

and Dr�
X is the rotational diffusion coefficient corresponding

to the projected length Lx.

C. Large-deflection Euler beam response to resultant forces
and couples in mutually perpendicular directions

Consider the curved rod segment in Fig. 4, with N dis-
crete point forces fn

i acting normal to it at contour lengths li.
Let �i be the segment angle at the points of action of the
forces. According to large-strain Euler beam mechanics, the
moment balance at l=0 due to the N discrete forces is

EI
d�

dl
�0� = �

i=1

N � fn
i cos �i�

0

li

cos ��l�dl�
+ �

i=1

N � fn
i sin �i�

0

li

sin ��l�dl� , �21�

where ��l� is the segment angle as a function of contour

length, and each integral captures the moment arm of the
corresponding force component. Now, the above equation is
difficult to solve, and has been solved only for simple load-
ing conditions using elliptic integrals �27� and, iterative and
numerical methods �28–33�. However, by resolving the nor-
mal forces over the segment l=0–L into resultant forces and
couples in two independently perpendicular directions �Fig.
4�d��, the moment balance for that segment can be accurately
determined at l=0. In Fig. 4, if −x and −y are the axes along
which the Brownian forces are resolved,2

EI
d�

dl
�0� = Fn

XLX

2
+ Fn

Y LY

2
+ Fr

X + Fr
Y . �22�

In Eq. �22�, Fn
X and Fr

X are the resultant force and couple of
the x projections of the point normal forces acting on the
segment �Eqs. �23a� and �23b��, and Fn

Y and Fr
Y correspond to

the y projections:

Fn
X = �

i=1

N

fn
i cos �i, �23a�

Fr
X = �

i=1

N

fn
i cos �i��

0

li

cos ��l�dl −
LX

2 � . �23b�

LX and LY are the −x and −y projections of the segment
length �Eqs. �23c� and �23d��, and are determined by numeri-
cal integration using a polynomial fit of ��l� �see derivation
for Eq. �30��,

LX =� cos ��l�dl , �23c�

LY =� sin ��l�dl . �23d�

Note that Eq. �22� is dependent only on the resultant forces
over the rod’s projection, and does not require the exact pro-
file of the normal forces on the rod.

When written only for a straight rod �y projection does
not exist�, Eq. �22� reduces to the standard moment-balance
equation of Euler beam mechanics for a cantilever with a
single force and couple at its center. If we represent a couple
by equal and opposite forces at the ends of the segment, the
generalized Euler beam moment-balance equation for a
curved rod will appear as

EI
d�

dl
�l� = Fn

X�LX

2
− x� + Fn

Y�LY

2
− y� +

Fr
Y

LX �LX − x�

+
Fr

Y

LX �LY − y� . �24�

Substitution of l=0, and therefore x=y=0, in the above
equation gives back Eq. �22�. The above equation can be

2To maintain the least correlation in the Brownian forces between
the two projected directions, we always choose one direction to be
along the line connecting the segment ends and the other direction
to be perpendicular to it.

a)

d)

b)

Y
rF

X
rF

Y
nF

X
nF

YL

XL

nfδ

X
nfδ

Y
nfδ

c)

y

x

FIG. 4. Decomposition of normal forces on a curved segment
into resultant forces and couples of the normal force projections in
two mutually perpendicular directions. �a� Sample profile of point
normal forces ��fn� on a curved segment. �b� Projected lengths Lx

and Ly of the curved segment in −x and −y directions. �c� Projec-
tions of the point normal forces in the −x and −y directions. �fn

X is
the x projection of the point normal force and �fn

Y is the y projection
of a point normal force. �d� Decomposition of the projected forces
into resultant forces and couples. Fn

X and Fr
X are the resultant force

and couple due to the point normal forces projected in the −x di-
rection. Fn

Y and Fr
Y are the resultant force and couple due to the

point normal forces projected in the −y direction.
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derived using the well-known free-body approach of solid
mechanics. The moment at a point on a beam is determined
by cutting a free surface at the point and calculating the
moment required there to keep the resulting free body from
rotating.

For a curved filament, the second differential of � with
respect to l can be obtained by distributing the differentiation
of d� /dl over the −x and −y projection,

EI
d2��l�

dl2 =
d

dx
�EI

d��l�
dl

�dx

dl
+

d

dy
�EI

d��l�
dl

�dy

dl
. �25�

At l=0, Eq. �25� can be correctly determined by noting that,

EI
d

dx

d�

dl
�0� = − Fn

X, �26a�

EI
d

dy

d�

dl
�0� = − Fn

Y , �26b�

dx

dl
�0� = cos ��0�,

dy

dl
�0� = sin ��0� . �27�

There are two ways to show that Eqs. �26a� and �26b� are
true. First, they can be directly obtained from Eq. �25� by
differentiating with respect to x and y, setting x and y to zero,
and adding in the remaining equal and opposite forces that
exist at x ,y=0 due to the couples Fr

X and Fr
Y. In Euler beam

mechanics, −EId2��l� /dl2 physically represents an internal
shear force that acts perpendicular to the beam at the point l.
Secondly, Eqs. �26a� and �26b� can be shown to be true for
an arbitrary distribution of point normal forces fn

i , as in the
case of the curved rod depicted by Fig. 4 and Eq. �21�. Con-
sider stepping into the rod horizontally by an infinitesimal
amount dx. At the new position, each vertical component of
the point normal forces, fn

i cos �i, has decreased its moment
arm by dx. Noting that the horizontal force components do
not contribute to the moment about the horizontal lever arm,

d

dx
�EI

d�

dl
�0�� =

EI
d�

dl
�0 + dx� − EI

d�

dl
�0�

dx
=

�
i=1

N

fn
i cos �i��

0

li

cos ��l�dl − dx	 − �
i=1

N

fn
i cos �i�

0

li

cos ��l�dl

dx

=

− ��
i=1

N

fn
i cos �i�dx

dx
= − Fn

X. �28�

Finally, the difference between the end angles of the segment
can be determined by integrating d� /dl. Integration of Eq.
�24� between l=0 and L gives

��0� − ��L� =
1

EI
�Fn

XLY
2

8
+ Fn

Y LY
2

8
+ Fr

XLX

2
+ Fr

Y LY

2
� .

�29�

Note that the integration of the internal moment, EI d� /dl,
requires knowledge of the exact distribution of the point nor-
mal forces on the segment. However, Eq. �29� was derived
assuming the moment distribution due to a single resultant
force and couple. The resulting error is discussed toward the
end of this section.

In all, there are six equations that can be solved to obtain
the large-deflection Euler beam response of a curved rod
segment under resultant forces and couples: an equation for
moment balance �Eq. �22��; two equations of force balance
�Eqs. �26a� and �26b��; an equation of angle change �Eq.
�29��; and two equations for the segment length projections
�Eqs. �23c� and �23d��. The six equations, solved simulta-
neously with boundary conditions on l=L, give the values of
d� /dl , �d /dx��d� /dl�, �d /dy��d� /dl�, �, x, y at l=0. The con-

figuration of the segment is obtained from a fifth-order poly-
nomial approximation of ��l� determined as

��l� = ��0� + �
n=1

5

	nln, �30�

where the coefficients 	n are obtained by fitting Eq. �30� for
��L�, �d� /dl��0�, �d� /dl��L�, �d2� /dl2��0�, �d2� /dl2��L�.

In the above scheme for solving large-deflection beam
mechanics, error arises from two places: �1� from the deter-
mination of ��0� in Eq. �29� since the integration is sensitive
to the profile of the normal forces along the moment-arm; �2�
from the fifth-order approximation of ��l� which in turn af-
fects the estimates for LX and LY �Eqs. �23c� and �23d��.
However, as shown below, we solve the above equations at
segments within a beam/filament, instead of over the entire
beam/filament; and by stipulating the segment lengths to be
much smaller than the persistence length, we improve the
accuracy of the formulation greatly �see Sec. III�.

D. Brownian fluctuation of a semiflexible filament

In the previous section we showed how Euler beam me-
chanics can be solved on a segment with relative ease, pro-
vided the resultants of Brownian force projections in two
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mutually perpendicular directions are known. We also
showed that the resultant Brownian forces can be obtained
by random sampling of Gaussian distributions whose vari-
ances are determined by the diffusion coefficients for the
projected lengths. In this section, we put it all together and
solve for the Brownian fluctuation dynamics of semiflexible
filament. We divide the filament into segments, determine the
Brownian forces on each segment, and solve a modified ver-
sion of the above Euler beam equations over all segments
simultaneously to balance the Brownian and other forces on
each. By way of nomenclature, we denote a segment and the
variables associated with it by uppercase letters, and we de-
note a node �segment intersection� and the variables associ-
ated with it by lowercase letters. A segment I is always
flanked by node i on the left and node i+1 on the right.

Figure 5 shows the forces and couples on a segment
which has been cut off from a semiflexible filament in
Brownian fluctuation. There are three kinds of forces and
couples at play.

�1� Brownian forces and couples: The normal Brownian
forces and their role in the bending of a segment have been
discussed above. The parallel Brownian forces which affect
segment translation and may contribute to moments else-
where in a curved filament need to be included in the force
balance also.

�2� Forces and couples at the segment interface: When a
segment it cut from a filament, a remnant force �V� and a
couple arise at the cut interface from any internal bending or
stretch mechanics there, from any force or couple exerted by
the neighboring segments, and from any force or couple ap-
plied externally at the filament ends.

�3� Viscous forces or couples: The viscous forces resisting
parallel or normal motion and the viscous moments resisting
rotational motion can be calculated directly from the seg-
ment deformation in a time interval by straightforward nu-
merical integration �Appendix B�.

As discussed earlier, the Brownian forces are determined
from Gaussian distributions with variance determined by the
diffusion coefficients. We note at this point that the variance
as described in Eq. �15� is for the Brownian force at a time
point t. The variance for the net Brownian force in a time
interval �t is given as


FiFi� = 4
�KT�2

Di�
�t . �31�

The above equation is obtained by integrating the forces in
Eq. �15� over �t and applying arguments similar to Eq. �16�
or �19�. We also note that the diffusion coefficient in Eq. �31�
is calculated from the segment configuration at the beginning
of �t. This is in keeping with the way the parallel and normal
displacements of a rod are measured in a time interval in
order to determine diffusion coefficients—the parallel and
normal directions are determined with respect to the rod ori-
entation at the beginning of the time interval. Consequently,
in the framework of a forward Euler time-stepping proce-
dure, Di� and therefore the Brownian forces Fi appear as
constants in the balance equations for each time step. On the
other hand, the viscous forces and the forces arising at the

cut interface are functions of the segment or filament defor-
mation in each time step and are iteratively updated. Shown
below are the six balance equations assembled for each seg-
ment I �Eqs. �32�–�37��. All segment equations, along with

a)

b)

c)

y

xIY
rF

IX
nF

IY
nF

IX
rF

IY
pF

IX
pF

iXV
iY

V

1+iXV

1+iY
V

1+i

dl

dθi

dl

dθ

FIG. 5. Forces on segment I �gray rod� of a fluctuating semi-
flexible filament. �a� Brownian forces: The parallel and normal
Brownian forces projected in the −x and −y directions �white rods�
are resolved into the corresponding resultant forces and couples.
The Brownian force resultants �F� are written with superscripts in-
dicating the direction of projection and segment number, and with
subscripts indicating the kind of force �parallel, normal, or rota-
tional�. It should be noted that the rotational force is a couple which
captures the net moment of the projections of the normal Brownian
forces about the center of the projection length. �b� Viscous forces:
The viscous forces arise from the frictional resistance to motion. �c�
Forces at cut surface: Forces �V� and couples �d� /dl� latent at the
cut surfaces �nodes i and i+1�, arising either from the internal re-
sistance to bending, or from the forces and couples transmitted by
neighboring segments, or from the forces and couples imposed at
the boundary. The lower-case superscripts indicate the node number
associated with the force or couple.

PREETHI L. CHANDRAN AND MOHAMMAD R. K. MOFRAD PHYSICAL REVIEW E 79, 011906 �2009�

011906-8



boundary conditions, are solved simultaneously in each time
step, to update the values of x, y, �, d� /dl, VX, and VY at
each ith node for the end of that time step. The contribution
of the viscous drag to the change in filament end angles, to
the balance of moment, and to the balance of forces in the x
and y directions, are shown as 
�, 
C, 
V

X, and 
V
Y, respec-

tively, in Eqs. �34�–�37�. The full expression for these terms
is discussed in Appendix B. Figure 6 shows the schematic of
the solution process.

xi − xi+1 = − �
0

LI

cos���l��dl , �32�

yi − yi+1 = − �
0

LI

sin���l��dl , �33�

�i − �i+1 =
1

EI
�Fn

XI
LXI

2

8
+ Fn

YI
LYI

2

8
+ Fr

XI
LXI

2
+ Fr

YI
LYI

2

+ VXi+1
LXI

2

2
+ VYi+1

LYI
2

2
+ L� ��

�l
� i+1

+ ��
I� ,

�34�

� ��

�l
� i

− � ��

�l
� i+1

=
1

EI
�Fn

XI
LXI

2
+ Fn

YI
LYI

2
+ Fr

XI + Fr
YI

+ VXi+1LXI + VYi+1LYI + �C
I � , �35�

VXi − VXi+1 =
1

EI
�Fn

YI + Fp
XI + �V

XI� , �36�

VYi − VYi+1 =
1

EI
�Fn

XI + Fp
YI + �V

YI� , �37�

where

��l� = �i + �
n=1

5

	nln, �38�

	n = f��i+1,
d�

dl
i,

d�

dl
i+1,

d2�

dl2
i,

d2�

dl2
i+1� , �39�

�d2�

dl2 � i

= −
1

EI
�Fn

XI cos��i� + Fn
YI sin��i�� . �40�

Note that Eqs. �36� and �37� are force-balance equations that
include both bending and translational forces. Consequently,
the end force Vi balances both bending and translational
forces.3 However, as discussed in Sec. II C, EI�d2� /dl2��l�
physically represents the internal shear force perpendicular
to the segment at l, which balances bending forces only.
Therefore, Eqs. �36� and �37� cannot be used to determine
the components of d2� /dl2 as in Eqs. �26a� and �26b� of Sec.
II C. Instead, the components of d2� /dl2 at the ith node are
determined directly from the solution of each iteration �Eq.
�40��, and are used to obtain the fifth-order polynomial ap-
proximation of ��l� for the next iteration �Eqs. �38� and
�39��.

III. RESULTS AND VALIDATION

We validate our model for a range of Brownian phenom-
ena in which the filament strain energy is the principal resis-
tance to thermal motion. The filament properties and simula-
tion details for each case are shown in Table I. For the
flexible filaments, we chose the simulation time to be much
larger than the relaxation time of the largest bending mode of
interest and the time intervals to be smaller than the relax-
ation time for the smallest bending mode of interest. From a
preliminary estimate of the number of segments required to
give less than 1�10−6 error in the deflections of a unit can-
tilever �Sec. III B 1�, we chose the number of segments so
that every 5° angle change is resolved by at least two seg-
ments.

3Note that any Euler bucklinglike force imposed via V is naturally
solved in Eq. �35�. The following point about the projected direc-
tions should also be noted. As mentioned earlier, to obtain the least
correlation in the Brownian forces between the two projected direc-
tions, we always choose one direction to be along the line connect-
ing the segment ends and the other direction to be perpendicular to
it. This entails rotating the frame of reference for each segment.
Therefore a rotational correction is applied on the nodal variables �i

and Vi which communicate between segments. However, for clarity
of expression, the rotational corrections are not shown in Eqs.
�32�–�40�.

For each time step

Determine Brownian forces on each segment

by random sampling of Gaussian Distributions.

For each segment I, assemble

equations to be solved at node i.

Enter boundary conditions. Check

norm of the equations

If norm < 1x10-8

Solve equations. Update

x
i
,y

i
, ii YX

i
i VV

dl

d
,,,

θ
θ 1+ .

NO

YES

FIG. 6. Schematic of the solution process.
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A. Rigid filament dynamics

1. Free diffusion of a straight filament

At high flexural rigidity, the diffusion coefficient of a
freely diffusing semiflexible filament should match the dif-
fusion coefficient of a rigid rod of the same length �Eqs.
�11�–�13��. We simulated the free diffusion of semiflexible
filaments for lengths ranging from 1 to 5 
m and calculated
the tangential, normal, and rotational diffusion coefficients
from the net displacements in each time interval �Eq. �14��.
We also verified that there was no dependence on the number
of segments, by repeating the simulations for 1, 5, and 20
segments each. The boundary conditions for free diffusion
are listed in Table I and the simulation details for each run in
Table II. Shown in Fig. 7 are the average and standard de-
viation of eight simulation runs for each data point. The
simulated diffusion coefficients showed the same depen-
dence on filament length as the diffusion coefficient of rigid
rods �Eqs. �11�–�13��, irrespective of the number of segments
used.

B. Semirigid filament dynamics

In Sec. III B 1, we validate the proposed methodology for
solving large-deflection Euler beam mechanics. In Sec.
III B 2, we validate our filament model in the small-
fluctuation or semirigid regime by showing that, for a test
case of a cantilevered condensed chromosome, the analytical
predictions for angular and transverse thermal fluctuations
are recovered, irrespective of the viscosity of the medium.

1. Large-deflection cantilever bending

We compared the deflections of a simulated cantilever
against published data for various weight loadings �32�, and
for various vertical end loadings �30� �Fig. 8�a��. Weight
loading was simulated by applying over each segment the
numerical estimate of the resultant force and couple on it due
to its weight. End loading was simulated by setting the load
as the boundary condition for Vy at the free end �see Table
II�. As shown in Figs. 8�b� and 8�c�, for both loading cases,
the vertical ��y�, horizontal ��x�, and angular ���� deflec-
tions of a simulated cantilever matched published results. We
also simulated an experimental loading of a cantilever ruler
under its own weight �0.554 N� and a vertical end load of
3.92 N �33�. The length and flexural rigidity of the ruler were
30 cm and 0.24 N m2, respectively. As shown in Fig. 8�d�,
the simulated deflection profile matched the experimental
profile correctly.

2. Transverse Brownian fluctuation of cantilevered chromosome

In the semirigid regime �Lp /L�1�, the thermal fluctua-
tions of a filament are small, and analytical expressions can
be derived for the angular and transverse fluctuations of the
filament in a cantilevered state. For one, the histogram of
angular fluctuations matches the Boltzmann distribution �see
Eq. �2��,

p���� =
1

�2�
��2�
exp�−

����2

2
��2�� �41�

with variance given as

TABLE I. Boundary conditions for freely diffusing and cantile-
vered filaments. Since six equations or degrees of freedom are
solved for each filament segment, six boundary conditions are
required.

Freely diffusing Cantilevered

1 �d�

dl
�

L=0
= 0

�x�L=0=0

2 �VX�L=0=0 �y�L=0=0

3 �VY�L=0=0 ���L=0=0

4 �d�

dl
�

L=Lf

= 0 �
d�

dl
�L=Lf

=0

5 �VX�L=Lf
=0 �VX�L=Lf

=0

6 �VY�L=Lf
=0 �VY�L=Lf

=0

TABLE II. Filament and simulation details for validation studies of Sec. III.

Rigid
filament

�Sec. III A 1�

Cantilevered
chromosome
�Sec. III B 2�

Freely diffusing F-
actin-phalloidin �36�

�Sec. III C 1�

Filament flexural
rigidity EI

1�10−6 N m2a 5.523�10−23 N m2 7.3�10−26 N m2

Filament diameter
d

8�10−2 
 m2 0.8 
m 0.008 
m

Filament length L 1–5 
m 5 
m 15.5 
m

Lp /L �10−10 2694.1 1.14

No. of segments 1–20 25 62

Simulation time 200 s 20 s 80 s

Simulation time
interval

0.001 s 0.0002 /0.002 s 0.01 s

Temperature 20 °C 25 °C 25 °C

Viscosity 1�10−3 Pa s 0.89�10−3 /0.89�10−1 Pa-s 0.89�10−3 Pa s

aArbitrarily large EI.
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�2� =
KTL

EI
. �42�

For the small fluctuations, the mean square of the transverse
fluctuation ��y� along the filament contour can be derived by
equating the energy of each bending mode to KT /2 �equipar-
tition theorem�, and it can be shown to have a cubic depen-
dence on contour length �34�,


�y2� =
32KTl3

�4EI
. �43�

We examined our model in the semirigid regime by simulat-
ing the cantilevered thermal fluctuations of a 5 
m con-
densed chromosome and comparing against the experimental
study by Poirier et al. �35�. Due to the large EI and diameter
�see Table II�, the thermal fluctuations of the chromosomes
are small, and were found to agree with the analytical pre-
dictions for a fluctuating uniform elastic cantilever, implying
such a microstructure �35�. We initially did our simulations
in water at 25 °C, with the EI of 5.56�10−23 N m2 esti-
mated in �35�. Figure 9�a� shows the normalized histogram
of the angular fluctuations of the free end of the simulated
chromosome. The distribution closely matched the predicted
Boltzmann distribution �Eq. �41�� for the corresponding vari-
ance �Eq. �42��. Also, the mean-square transverse fluctua-
tions along the filament length showed the cubic dependence
on filament length predicted by Eq. �43� �Fig. 9�b��. The time
profile of thermal fluctuations in Fig. 9�c�, however, sug-
gested a smaller relaxation time than that observed in the
experiments �Fig. 4a in �35��. A preliminary calculation of
the relaxation time gave an estimate of 0.14 s for chromo-
some fluctuations in water �36�, which was on the order of
that observed in the simulations. Since the experimental ob-
servations were performed within a colchicine-arrested cell,
and assuming cytoskeletal viscosity to be at least 100 times
greater than that of water �2,37�, we repeated the simulation
of chromosome fluctuation in a “cell-like” medium with 100
times the viscosity of water. The results for these simulations
are shown in Figs. 9�d�–9�f�. The new time profile of the
angular fluctuations showed an increase in the bending relax-
ation times �Fig. 9�f��, and was similar to that observed in the
experiments �Fig. 4a of �35��. Importantly, however, the dis-

tribution of angular and transverse fluctuations �Figs. 9�d�
and 9�e�� did not change with the change in viscosity, as
predicted by the dependencies in Eqs. �41� and �43�. These
results validate the ability of the model to capture the inter-
play between Brownian, viscous, and bending forces in the
small-fluctuation or semirigid limit.

C. Semiflexible filament dynamics

1. Brownian fluctuation of freely diffusing F-actin-phalloidin

We validated our model in the semiflexible limit �Lp /L
�1� by comparing the simulated thermal fluctuations of a
phalloidin-labeled actin filament against the experimental
observations of Gittes et al. �36�. The filament length and EI
are 15.5 
m and 7.3�10−26 N m2.

Figure 10�a� shows frames of the Brownian simulation of
the actin filament, 1.5 s apart. The filament conformations in
Fig. 10�a� are similar to those observed by Gittes et al. �36�.
There are either filaments with smoothly bending conforma-
tion �constant or gradually changing curvature� or filaments
with long regions of nearly constant and small curvature
separated by a short region of high curvature or bends. In
experiments, due to the Gaussian blurring, some bends ap-
pear as sharp kinks that were initially attributed to internal
defects in the filament �38–40�. In Fig. 10�b� we show two
filament conformations that resemble ones observed by Git-
tes et al. �36� and Kas et al. �39�. The inset shows the fila-
ments plotted with large symbols to imitate Gaussian blur-
ring, and sharp kinks are evident. However, the plain
filament contour alongside show the sharp kink as regions of
high curvature separating regions of monotonic low curva-
ture.

Some average quantifications of the filament bending can
be compared against theoretical predictions. The average de-
cay in angle correlation along the filament contour is given
by Eq. �4�, and the simulation was found to match it �Fig.
10�c��. The worm model predicts the mean-square end-to-
end distance 
R2� for the freely fluctuating filament in 2D to
be 208.7 
m2, from the following equation �2�:


R2� = 8Lp
2�exp�−

L

2Lp
� − 1 +

L

2Lp
	 . �44�

The corresponding 
R2� from our simulations was
210.7 
m2. Finally, the different independent bending modes
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FIG. 7. Rigid limit: Free diffusion of rigid rods. At high flexural rigidity, the tangential �parallel�, normal, and rotational diffusion
coefficients of semiflexible filaments of different lengths �1–5 
m� matched that of rigid cylindrical rods given by Eqs. �11�–�13� �shown
as a broken line�. This was irrespective of the number of segments used to simulate the filament �shown for 1, 5, and 20 segments�. Each
average simulated diffusion coefficient was determined from eight simulation runs, with the details of a run shown in Table II.
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for the filament can be extracted by decomposing the fila-
ment angle along its contour into a Fourier series �36,40�,

��l� =�2

L
�
n=0

�

an cos�n�

L
l� . �45�

In the above equation, the Fourier coefficient an is the am-
plitude of the nth bending mode. By equating the net bending
energy from each mode to KT /2 �equipartition theorem�, the
variance of the bending amplitudes can be obtained for each
mode as �36�


an
2� =

KT

EI
� L

n�
�2

. �46�

Figure 10�d� shows that the variance of the bending ampli-
tudes measured from an 80 s simulation using Eq. �45�. It
closely matches the values predicted by Eq. �46�. The largest
bending mode was underestimated due to its large relaxation
time �about 15 s� and the consequently large simulation or
experiment time required to obtain a statistically relevant
sampling of the bending amplitudes �36,40�. For the second
bending mode, we show in Fig. 10�d� that the relaxation
profile matches that calculated by Brangwynne et al. �38�.

IV. DISCUSSION

In this paper, we presented an idealization of semiflexible
filaments as a string of continuously flexible rods. The ide-
alization allows for overcoming many of the discretization
errors and computational costs that come with simulating
semiflexible filament dynamics by traditional idealizations
such as the string of beads. We first showed how the Brown-

ian forces over the flexible rods and the resulting Euler beam
mechanics can be determined. Brownian forces due to sol-
vent collision were considered as point normal and parallel
forces acting on the surface of the rods. The projections of
the point Brownian forces in two mutually perpendicular di-
rections were resolved into resultant forces and couples. The
diffusion coefficients for each projected length of the rod
were then shown to govern the distribution of the Brownian
resultant forces and couples over that projected length. On
the other hand, by projecting the Brownian forces in two
mutually perpendicular directions, we showed that the Euler
moment over the curved rod can be correctly determined,
and the large-deflection Euler beam mechanics can be solved
to fifth-order continuity within the rod. Finally, working off
these arguments, we solved for the Brownian fluctuation dy-
namics of semiflexible filaments: by dividing the filament
into segments much smaller than the persistence length, im-
posing the Brownian force resultants on each segment, and
simultaneously solving for the Euler beam mechanics in all
segments. The immediate benefits of such an approach were
�1� a reduction in computational cost that came with dis-
cretizing into rods as opposed to spheres, �2� an improved
accuracy in capturing filament shape that came with using
higher-order continuity for contour angles, and �3� the natu-
ral preserving of filament inextensibility that came with solv-
ing large-deflection beam mechanics. We found that the ap-
proach was physically consistent in that the translational,
rotational, and bending Brownian dynamics of filaments can
be captured from the rigid to the semiflexible limit.

The key departure of our approach from other modeling
techniques was the discretization into rod segments. It al-
lowed us to directly apply the diffusion coefficients and the
bending mechanics well established for cylindrical rods, and
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FIG. 8. Validation of proposed large-
deflection Euler beam equations. �a� Cantilever
under weight �w� and vertical end loading �P�.
�b� −x, −y deflections and end angle of a cantile-
ver under different vertical end loading �P�. The
end loadings are scaled by the filament length �L�
and flexural rigidity �EI�, and the deflections are
scaled by the filament length. The simulated can-
tilever deflections matched that calculated by
Mattiason et al. �30�. �c� −x and −y deflections of
a cantilever under different weight loading. The
weight loading is scaled by the filament length
�L� and flexural rigidity �EI�, and the deflections
are scaled by the filament length. The simulated
cantilever deflections matched that calculated by
Demiroz et al. �32�. �d� Simulation of the experi-
mental loading of a ruler under its own weight
�0.224 N� and a vertical end load of 0.394 N. The
length and flexural rigidity of the ruler were 3 cm
and 0.24 N m2, respectively. The −x and −y pro-
files of the simulated cantilever matched those of
Belendez et al. �33�.
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avoid the hydrodynamic complexities associated with ap-
proximating a filament into a string of beads. A bead-string
model by Alberto et al. �22� also used the parallel and nor-
mal friction coefficients of a cylindrical rod as the aniso-
tropic friction coefficients of a bead. They were able to re-
produce the relaxation dynamics of rigid filaments and the
tangent-angle decay of semiflexible filaments. However, in
our method we can include information on the rotational
diffusion coefficient of a rod in a physically consistent man-

ner, as the moment of the normal Brownian forces. This al-
lows us to capture the effect of the Brownian force over a
much larger length scale than a single bead. However, a de-
ficiency in our model is that it does not account for the
hydrodynamic interaction between the rod segments of a
filament. This issue is addressed in other work �41�.

The proposed model is particularly applicable in the semi-
flexible limit, where the filament aspect ratio is large and
end-factor corrections for diffusion coefficients can be ne-
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FIG. 9. Validation of model in semirigid regime by comparison against the thermal fluctuations of a cantilevered condensed chromosome
in Poirier et al. �35�. �a� Transverse fluctuations of a cantilevered condensed chromosome in water: The transverse fluctuations ��y in Fig.
8�a�� show a cubic dependence on cantilever length as expected for small thermal fluctuations �Eq. �43��. �b� Angular fluctuations of a
cantilevered condensed chromosome in water: The figure shows the normalized binned counts of the angular fluctuation ��� in Fig. 8�a�� of
a cantilevered condensed chromosome. The plot matches the binned counts of a Boltzmann distribution of corresponding variance �Eqs. �41�
and �42��. �c� Time profile of angular fluctuations of a cantilevered condensed chromosome in water: The time profile of the angular
fluctuations ��� in Fig. 8�a�� is plotted at 0.01 s intervals. The relaxation time of the fluctuations is much faster than that shown in Poirier
et al. �35�. The observations in �35� were made within a colchicine-arrested cell, whereas these simulations �Figs. 9�a�–9�c�� were performed
in water at 25 °C. �d� The transverse fluctuations of a cantilevered condensed chromosome in cell: The transverse fluctuations retained the
cubic dependence on cantilever length as expected for small thermal fluctuations �Eq. �43��, irrespective of the viscosity of the medium. The
simulation was performed in a cell medium, with 100 times the viscosity of water at 25 °C. �e� Angular fluctuations of a cantilevered
condensed chromosome in cell: The distribution of the angular fluctuation of the cantilevered chromosome was similar to the Boltzmann
distribution of corresponding variance �Eqs. �41� and �42��, and was independent of the viscosity of the medium. The simulation was
performed in a cell medium, with 100 times the viscosity of water at 25 °C. �f� Time profile of angular fluctuations of a cantilevered
condensed chromosome in cell: The cell medium was assumed to have 100 times the viscosity of water at at 25 °C. The profile is plotted
in 0.01 s intervals. The relaxation time of the large-wavelength fluctuations is longer than that observed in, and closer to that observed in
Poirier et al. �35�.
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glected, and where the shape fluctuations are small so that
coarse discretizations are sufficient to resolve Brownian
forces and Euler mechanics. This opens up possibilities for
modeling the mechanics of cytoskeletal networks where the
filament length and fluctuation between cross links are typi-
cally small. The consequent saving in discretization allows
for modeling larger and more realistic networks.
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APPENDIX A

A basic tenet in the classical theory of rigid-body mechan-
ics is as follows: for a rigid rod divided into segments, with
the resultant force and couple known for each segment, the
net moment on the rod is given by sum of the segment
couples and the moments of the resultant forces at the seg-
ments. We show that the tenet holds for Brownian forces;
i.e., for a rigid rod in Brownian diffusion, with the variance
of the resultant normal force �fn� and resultant couple �fr� for
each segment known from its diffusion coefficients, the vari-
ance of the net rod moment, Fr, is equal to the sum of the

variance of the resultant couples and the variance of the mo-
ments of the resultant forces at the segments.

First we note that

�
−L/2

L/2

l2dl = �
−N/2

N/2 ��n�L�2�L + �
n�L−�L/2

n�L+�L/2

l2dl� . �A1�

Second, from Eq. �18�, the variance of the net moment on the
rigid rod can be written as


FrFr� = 
�fn�fn��
−L/2

L/2

l2dl . �A2�

Combining Eqs. �A1� and �A2�


FrFr� = 
�fn�fn� �
−N/2

N/2

�n�L�2�L + 
�fn�fn� �
−N/2

N/2 �
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n�L+�L/2

l2dl

=

fnfn�

�L
�
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�n�L�2�L + �
−N/2

N/2


�fn�fn��
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n�L+�L/2

l2dl

= �
−N/2

N/2

�n�Lfnn�fn� + �
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FIG. 10. Semi flexible filament dynamics. �a�
Time-lapse images of simulated actin filaments in
a thin film of water at 25 °C. The sequence of
images, 1.5 s apart, run top to bottom and left to
right. The filament is 15.5 
m long. �b� Simu-
lated images of sharp bends in actin filaments �in-
sets� are similar to those observed in Kas et al.
�39� �top� and Gittes et al. �36� �bottom�. The
images were plotted with large symbols to imitate
Gaussian blurring, which creates the impression
of sharp bends or kinks. The enlarged images
show the corresponding contour of the filament
within the inset. �c� Correlation of contour angle
along contour length: The decay in the cosine
angle correlation along the filament contour fol-
lows that specified by the worm model �Eq. �4��
for a persistence length of 17.7 
m. �d� Variance
of bending modes: The variance of the ampli-
tudes �an� of the different bending modes follows
that specified by Eq. �46� requiring each indepen-
dent bending mode to have an energy KT /2 �eq-
uipartition theorem�. �e� Time relaxation of sec-
ond bending mode: The relaxation time profile of
the second bending mode �black dots� matches
the theoretical approximation of Brangwynne et
al. �38� �gray line�.
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APPENDIX B

Let vn and vp be the normal and parallel velocities along
a segment, and �n and �p be the normal and parallel friction
coefficients. Now, at every point on a segment, the viscous
forces can be resolved into �1� a drag force ��n /L�vn acting
normal to the segment at the point and is due to the normal
velocity component, and �2� a drag force ��p /L�vp acting
parallel to the segment at the point and is due to the parallel
velocity component.

The total x and y projections of the point normal drag
forces can be obtained as shown:

�
0

LI
�n

L
vn cos � dl = �

0

LXI �n

L
vndlX, �B1a�

�
0

LI
�n

L
vn sin � dl = �

0

LYI �n

L
vndlY , �B1b�

where lX and lY indicate length projections along the x and y
directions, and LX and LY indicate the total length projections
in those directions. The notation convention for the different
variables is similar to that described in the main text. The
superscript indicates the projection of the rod �x or y� to
which the variable is affiliated. The subscript to the super-
script, when upper case, indicates the segment number with
which the variable is associated.

Calculating the projections of the point parallel viscous
forces similarly, the net contribution of viscous drag 
V

X and

V

Y to the x and y force balance equations �Eqs. �36� and �37��
can be written as


V
XI = �

0

LXI �p

L
vpdlX + �

0

LYI �n

L
vndlY , �B2�


V
YI = �

0

LYI �p

L
vpdl + �

0

LXI �n

L
vndlY . �B3�

Note that the normal viscous forces along the x projection
contribute to the force balance in the y direction, and vice
versa.

The contribution of the point normal viscous forces to the
moment balance, 
C in Eq. �35�, is


C
I = �

0

LXI �n

L
vnlXdlX + �

0

LYI �n

L
vnlYdlY + �

0

L �r

L3

d�

dt
dL .

�B4�

The moment contribution is calculated similarly to Eq. �21�,
but using the idea of Eq. �B1�. The third term captures the
pointwise viscous couple resisting the rotation along the seg-
ment. As discussed before, the normal and parallel orienta-
tions are assigned based on the configuration of the segment
at the beginning of a time step. Therefore the point normal
and the point parallel viscous forces do not account for the
change in orientation along the segment during the time step.
The viscous resistance to this orientation change is captured
by the third term, where �r is the rotational friction coeffi-
cient.

The contribution of the viscous point forces to the change
in angle, 
� in Eq. �34�, is obtained by integrating the vis-
cous moment contributions over the segment length,


�
I = �

0

LXI �
0

LXI �n

L
vnlXdlXdlX + �

0

LYI �
0

LYI �n

L
vnlYdl dl

+ �
0

L �
0

L �r

L3

d�

dt
dL dL . �B5�

The integrations were performed numerically, with about ten
integration intervals found sufficient for the simulations in
this work.

�1� Cytoskeletal Mechanics: Models and Measurements, edited by
M. R. K. Mofrad and R. D. Kamm �Cambridge University
Press, Cambridge, U.K., 2006�.

�2� J. Howard, Mechanics of Motor Proteins and the Cytoskeleton
�Sinauer Associates, Sunderland, MA, 2001�.

�3� O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106
�1949�.

�4� J. Wilhelm and E. Frey, Phys. Rev. Lett. 77, 2581 �1996�.
�5� R. F. Feynman, Feynman Lectures on Physics �Addison-

Wesley Longman, Redwood City, CA, 1970�.
�6� D. Thirumalai and B.-Y. Ha, e-print arXiv:cond-mat/9705200.
�7� E. Frey, K. Kroy, and J. Wilhelm, e-print arXiv:cond-mat/

9808022v1.
�8� O. Chaudhuri, S. H. Parekh, and D. A. Fletcher, Nature �Lon-

don� 445, 295 �2007�.
�9� P. A. Janmey, M. E. McCormick, S. Rammensee, J. L. Leight,

P. C. Georges, and F. C. MacKintosh, Nature Mater. 6, 48
�2007�.

�10� C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and

P. A. Janmey, Nature �London� 435, 191 �2005�.
�11� D. Ben-Avraham and M. M. Tirion, Biophys. J. 68, 1231

�1995�.
�12� Q. Wen, A. Basu, J. Winer, A. Yodh, and P. A. Janmey,

http://adsabs.harvard.edu/abs/2008APS..MAR.R1308W.
�13� Q. Wen, A. Basu, J. P. Winer, A. Yodh, and P. A. Janmey, New

J. Phys. 9, 428 �2007�.
�14� D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352

�1978�.
�15� M. Doi and S. F. Edwards, The Theory of Polymer Dynamics

�Oxford University Press, New York, 1988�.
�16� E. Frey, Ann. Phys. 14, 20 �2005�.
�17� B. Schnurr, F. Gittes, F. C. MacKintosh, and C. F. Schmidt,

Macromolecules 30, 7781 �1997�.
�18� A. C. Maggs, Phys. Rev. E 57, 2091 �1998�.
�19� B. Carrasco and J. García de la Torre, J. Chem. Phys. 111,

4817 �1999�.
�20� B. Carrasco and J. G. d. l. Torre, Biophys. J. 76, 3044 �1999�.
�21� P. J. Hagerman and B. H. Zimm, Biopolymers 20, 1481

RODS-ON-STRING IDEALIZATION CAPTURES … PHYSICAL REVIEW E 79, 011906 �2009�

011906-15



�1981�.
�22� M. Alberto, D. C. Morse, and P. Matteo, J. Chem. Phys. 122,

084903 �2005�.
�23� M. Lu and J. Ma, Biophys. J. 89, 2395 �2005�.
�24� J. Ma, Curr. Protein Pept. Sci. 5, 119 �2004�.
�25� E. P. Popov, Engineering Mechanics of Solids �Prentice-Hall,

Englewood Cliffs, NJ, 1999�.
�26� A. Ortega and J. G. de la Torre, J. Chem. Phys. 119, 9914

�2003�.
�27� K. E. Bisshopp and D. C. Drucker, Q. Appl. Math. 3, 272

�1945�.
�28� M. A. Ang, Jr., W. Wei, and L. Teck-Sang, in Industrial Elec-

tronics, Control, and Instrumentation, Proceedings of the
IECON ‘93, Maui, HI �IEEE, Piscataway, NJ, 1993�, pp.
1604–1609.

�29� T. Bélendez, M. Pérez-Polo, C. Neip, and A. Beléndez, Phys.
Scr., T 118, 61 �2005�.

�30� K. Mattiasson, Int. J. Numer. Methods Eng. 17, 145 �1980�.
�31� F. V. Rohde, Q. Appl. Math. 11, 337 �1953�.

�32� A. Demiroz, Text. Res. J. 75, 662 �2005�.
�33� T. Beléndez, N. Cristian, and A. Beléndez, Eur. J. Phys. 23,

371 �2002�.
�34� L. D. Landau and E. M. Lifshitz, Theory of Elasticity �Perga-

mon Press, New York, 1986�.
�35� M. Poirier, S. Eroglu, and J. Marko, Mol. Biol. Cell 13, 2170

�2002�.
�36� F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell Biol.

120, 923 �1993�.
�37� M. A. Tsai, R. E. Waugh, and P. C. Keng, Biophys. J. 74, 3282

�1998�.
�38� C. P. Brangwynne, G. H. Koenderink, E. Barry, Z. Dogic, F. C.

MacKintosh, and D. A. Weitz, Biophys. J. 93, 346 �2007�.
�39� J. Kas, H. Strey, M. Barmann, and E. Sackmann, Europhys.

Lett. 21, 865 �1993�.
�40� J. Kas, H. Strey, J. X. Tang, D. Finger, R. Ezzell, E. Sack-

mann, and P. A. Janmey, Biophys. J. 70, 609 �1996�.
�41� P. L. Chandran and M. R. K. Mofrad �unpublished�.

PREETHI L. CHANDRAN AND MOHAMMAD R. K. MOFRAD PHYSICAL REVIEW E 79, 011906 �2009�

011906-16


