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Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort

electrical pulse
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Self-consistent evaluations of both the transmembrane potential (TMP) and possible electroporation density
across membrane of spheroidal cells in response to ultrashort, high-intensity pulses are reported and discussed.
Most treatments in the literature have been based on spherical cells, and this represents a step towards more
realistic analyses. The present study couples the Laplace equation with Smoluchowski theory of pore forma-
tion, to yield dynamic membrane conductivities that influence the TMP. It is shown that the TMP induced by
pulsed external voltages can be substantial higher in oblate spheroids as compared to spherical or prolate
spheroidal cells. Flattening of the surface area in oblate spheroids leads to both higher electric fields seen by
the membrane, and allows a great fraction of the surface area to be porated. This suggests that biomedical
applications such as drug delivery and electrochemotherapy could work best for flatter-shaped cells, and
secondary field-enabled orienting would be beneficial. Results for arbitrary field orientations and different cell

sizes have also been presented.
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I. INTRODUCTION

A large body of literature has now begun to emerge on the
application of electric pulses for biomedical engineering. Po-
tential uses include cellular response manipulation, cell hy-
bridization in the formation of monoclonal antibodies, elec-
trically assisted drug delivery, bacterial decontamination, the
production of hybridomas, injection of xenomolecules such
as hormones, proteins, RNA, DNA, and chromosomes, and
electrofusion of dielectrophoretically aligned cells [1-17].
Generally, the underlying principle used in these techniques
is cellular electroporation. This phenomena, first reported
several decades ago [18,19] involves the structural rearrange-
ment of the lipid bilayer molecules that constitute the cell
membrane. As a result, aqueous pathways are created that
effectively lead to orders-of-magnitude enhancements in the
permeability and transport of ions and molecules through the
plasma membrane. This process facilitates the entry of drug
molecules into cells and leads to applications such as elec-
trochemotherapy and electrogene therapy [6,8,9,20,21]. The
dimension and distribution of the membrane electropores so
formed typically depend on both the magnitude and pulse
durations of the applied electric fields. At this time the bio-
physics of electroporation is somewhat understood based on
both continuum and molecular-level analyses [22-30],
though some open issues remain [31]. Experiments including
those based on fluorescent dye imaging, have clearly demon-
strated the increased transport of molecules upon electric
pulsing [32,33]. Tonic changes as well as calcium release
from the endoplasmic reticulum (and its transport through
the plasma membrane) has been detected [34,35]. All of
these processes collectively point to the enhanced transport
and altered “conductivity” of the membranes.

A more recent development, in this context, has been the
use of electric pulses with very high fields (~100 kV/cm or
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higher) and pulse durations in the nanosecond range [36-38].
From a practical standpoint, such high-intensity, nanosecond,
pulsed electric fields (nsPEFs) have been shown to be useful
as a nonthermal tool capable of modulating the response both
at the plasma membrane and reaching the interior cellular
organelles. Various biological applications have been demon-
strated, ranging from cellular electroporation [33], electri-
cally triggered intracellular calcium release [34,35], the non-
thermal destruction of micro-organisms [33,39,40], killing of
tumor cells [33,41], DNA damage [42], and temporary
blockage of action potential propagation in nerves [43,44].
The hallmark of such nsPEFs is the creation of high-density
nanometer-sized pores in cell membranes, including those
covering the various inner-organnelles. This has been
roughly been supported by tracking fluorescent dyes in flow
cytometry experiments [32,33], and is also in line with ana-
lytical [45-48] and molecular dynamic calculations [49-51].
Other observed effects include conformational changes of
membrane-embedded proteins and disruption of voltage-
gated channels [52]. Cell death upon exposure to pulses of
high-electric field (~100 kV/cm or more) intensity has also
been well established experimentally [53,54].

In all of the above applications, the development of a
transmembrane potential (TMP) is critical to influencing and
modulating the cellular bioresponse. Membranes develop the
highest voltages given their near impermeability making
them behave as dielectric capacitor elements. Almost all
analyses and calculations of the TMP created as the direct
result of applying external pulsing have assumed spherical
cells. In biology, examples of such spherical shapes are
vesicles, protoplasts, murine myeloma cells [55], and some
bacteria such as Streptococcus [56]. However, most other
cells are nonspherical in nature. Hence, the reported analyses
of possible bioelectric effects on spherical cells have a lim-
ited applicability and must be regarded as being somewhat
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approximate at best. For nonspherical cells, the shape and
orientation (e.g., the major axis with respect to the electric
field direction) begin to play an important role. However, as
it turns out, many cells deviating from the spherical shape do
exhibit rotational symmetry and can be represented either as
prolate or oblate spheroids fairly accurately. For example,
mammalian red blood cells are close to an oblate spheroidal
shape, while retina photoreceptor cells [57], many bacteria
such as E. coli, Pseudomonas [56], and yeasts [58] roughly
have a prolate spheroidal geometry. This makes a compelling
case, at least from the practical standpoint, to examine bio-
electric pulsing effects in such spheroidal cell shapes for a
more realistic and accurate analyses and predictions. Hence,
self-consistent calculations for spheroidal cell geometries
that include time- and voltage-dependent membrane elec-
troporation are analyzed and discussed in this contribution.

There have been only a few reports in the literature on
analyses that deviate from the spherical geometry. Pucihar
et al. [59] used a finite element approach to solve for the
TMP in irregularly shaped cells, though electroporation was
not explicitly considered. An earlier report by this group had
considered a lattice model of spherical cells which allowed
for the inclusion of identical multiple cells [60]. Analyses for
multiple cells have also been considered by Gowrishankar
and Weaver [61] using a distributed lattice model, and by
Joshi et al. [62] on the basis of a Voronoi network of cells.
However, in all these multicell approaches, spherical cell ge-
ometries had been used. The only other reports on spheroidal
cells to our knowledge were those by Kotnik and Miklavcic
[63], analyses for ac voltage signals by Maswiwat er al.
[64,65], and a very recent report [66] by this same group. In
neither case though, was electroportion considered in a self-
consistent manner.

II. MODELING DETAILS
A. Time-dependent transmembrane potential calculations

Self-consistent approaches to calculating the transmem-
brane potential of spherical cells in response to external
ultra-short pulses have been discussed in our previous papers
[29,67]. Basically, the external field produces a TMP, which
could lead to poreformation at the membrane. This pore den-
sity modulates the local conductivity, thereby, affecting the
local fields and the subsequently development of the TMP.
Here we extend that approach to time-dependent TMP calcu-
lations in spheroidal cells based on a coupled solution of the
Laplace and Smoluchowski equations. The external electric
field E,(¢) was taken to be along the z axis, the axis of revo-
lution, and assumed to have the exact time dependent shape
as the external wave form. The schematic shown in Fig. 1(a)
represents a prolate spheroidal cell suspended in a medium
and Fig. 1(b) represents an oblate spheroidal cell. The geo-
metric model is similar to that used by Jerry and Popel [68]
for analyzing potentials induced by alternating fields. The
cells in Fig. 1 are characterized by an outer equatorial radius
a,, an inner equatorial radius a;, an outer polar radius b, and
an inner polar radius b;. It is assumed that the outer spheroid
and inner spheroid share the same foci. The focal distance ¢
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of both spheroids can then be found as c= \,’biz—a?= ybg—au
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FIG. 1. (Color online) Schematic of the spheroidal cell model
for the transmembrane potential calculation. (a) Prolate spheroid
with b>a. (b) Oblate spheroid with b<a.

for prolate (b;>a;) and c=\a;—b’=\a’—b> for oblate
(b;<a;) spheroids, respectively. Thickness at the polar points
is h=b,—b; for the prolate and h=a,—a; for oblate spheroids.
The outer region has an assigned conductivity o, and per-
mittivity €,, while the corresponding parameters for the cell
membrane are o, and ¢,,. In Fig. 1, 0; and g; are the con-
ductivity and permittivity of the cytoplasm.

The TMP ® can be obtained by solving the Laplace’s
equation for the prolate spheroid [69]

1 Jd L Jd 0P
Vz%m{a[“’“”ﬂ *5[“—%]}

;@_0 (1)
" AP =1)(1-v?) dp>

Here the usual prolate-spheroidal coordinates (u,v,¢) have
been used. Coordinates u and v are orthogonal, u=1, -1
<v=1, and 0= ¢<2m. The prolate-spheroidal coordinates
(u,v, @) are related to Cartesian coordinates by

—
x=c\(w?-1)(1 -v?)cos ¢, (2a)

011901-2



TRANSMEMBRANE VOLTAGE ANALYSES IN SPHEROIDAL...

[ 2 iN/1 2y
y=cV(u?-1)(1-v?)sin ¢, (2b)
Z=cuv. (2¢)

Here u=cosh(§¢) and v=cos(#) with £>0 and 6e[0,n].
Since the prolate spheroid is symmetrical with regards to the
angle by ¢, the second term in Eq. (1) is zero and can be
omitted. Hence, we obtain

V2 = %[(uz— 1)%} + %[(1 —vz)@} =0. ()

By separation of variables, Eq. (3) can be easily solved. The
time-dependent solution of the Laplace’s equation is

¢i(u,v,t) =A;(Duv, u<u,, (4a)

¢m(u’v’t) =V |:Am(t)u + Bm(t)(g 111 Z _

w <u<u,, (4b)

¢, (u,v,1) = v[— cE, (t)u +Bo(t)<g In Z+ ! - 1)},

u>u,, (4¢c)

where ¢,(u,v,t), ¢, (u,v,1), and ¢;(u,v,t) are the potentials
at the outer region, the plasma membrane, and the cyto-
plasm, respectively. Here u;=b;/c, u,=b,/c, and E(t) is the
externally applied electric field. Also, A1), A, (1), B, (), and
B, (1) are the coefficients that can be determined by applying
matching boundary conditions at the interfaces of the three
regions.

Similarly, the transmembrane potential @ for an oblate
spheroidal cell can be obtained by solving the following
Laplace’s equation in oblate-spheroid coordinates:

R SR YA PPN ) A PN
_cz(u2+v2){&u{(u +1)(7u]+07v[(1 v)(?v]}

PR B
AP+ 1)(1-v?) 9>
Here u=sinh(§) and v=cos(#) with £>0 and 6 [0, 7]. The

oblate-spheroidal coordinates (u,v,¢) are related to Carte-
sian coordinates by

Vo

(5)

s
x=cV(u?+1)(1 —v?)cos @, (6a)

[ 2 1Nf1 2y
y=c\(u*+1)(1 - v?)sin ¢, (6b)
Z=cuv. (6¢)

The second term in Eq. (5) can be omitted due to the sym-
metry by the azimuthal angle ¢. The time-dependent solution
of Eq. (5) is

¢(u,v,1) = F(t)uv, u < u; (7a)

Gu(tt,0,1) = V{F,(u+ G, ()[u cot™ (u) - 11},
w,<u<u,, (7b)
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Bo(u,0,1) = v{= cE,(Du+ G, (1)[u cot™ (u) - 1]},
u>u,. (7¢)

Here for an oblate spheroid u;=b;/c, u,=b,/c. Also, Fi(1),
F, (1), G,(t), and G,(1) are the coefficients that can be deter-
mined by proper boundary conditions at the interfaces of the
three regions.

The Laplace (rather than the Poisson) equation has been
used based on the assumption that charge inequalities arising
from ionic transport during the electroporation process can
be ignored on the ultrashort time scales. The current flows
are not very large and so charge transfer during the ultrashort
time scales (~ nanoseconds) of interest here, are indeed
minimal. Invoking continuity in the potential and current
density then leads to the following boundary conditions that
are time dependent with variable conductivities and permit-
tivities at the membrane:

¢0(M7Uat)|uo= ¢m(u7vst)|uo7 (83)
¢m(u’v7t)|ui = d)i(u’vat) u;? (Sb)
e IE)
O-UEu(t) + 80 (9[ “, - Um(t)Eu (t) + sm(t) ot uos
(8c)
a (DE"(1) + Sm(t)# _ () + e, Bl
(8d)

Here E,=-d¢/du is the electric field along the u direction.
Due to the membrane electroporation process, the parameters
0,,(1) and &,,(r) become time dependent. These can be evalu-
ated by the dynamic pore model, which combines Eqs.
(4a)—(4¢c) and (7a)—(7c) with Egs. (8a)—(8d). Then, all of the
unknown coefficients A,(r), A, (1), B,(t), and B,(r) for the
prolate spheroid case or F,(1), F,, (1), G,,(t), and G,(¢) for the
oblate spheroid case can be determined as discussed in the
next section. Thus, the transmembrane potential is given as

AD = d)m(ui?vat) - ¢,,1(MD,U,I). (9)

B. Dynamic pore model

Predictions of pore generation, growth and size evolution
required for accurately characterizing membrane electropo-
ration are based here on the continuum Smoluchowski
theory. The following governing equation for the pore den-
sity distribution function n(r,z) results [3-5,25-27,29], with
r being the pore radius:

an(ro) D dn(r,1)3E(r)/dr] _Dazn(z,t) _ S0,
ot kBT or ar
(10)

where S(r) is the source or pore formation term and D is a
pore diffusion constant. Physically, the diffusion process rep-
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resents a “random walk” of the pore radius in “r space,”
brought about by fluctuations in radius arising from the con-
stant entry and egress of water molecules and other species.
The formation of pores is generally assumed to be a two-step
process [26,36,70,71]. These reports assume pores to be ini-
tially created as hydrophobic and nonconducting, at a rate
S(r) per unit area of the membrane, during every time inter-
val “dt.” This rate is given as

_vch dE(r)
" kgT dr

S(r) exp[— E(r)/(kgT)]dr, (11)

where v,. is an attempt rate density [72], E(r) the energy for
hydrophobic pores, T the operating temperature, and kg the
Boltzmann constant. If a nonconducting pore is created with
a radius r>r* (=0.5 nm), it spontaneously changes its con-
figuration and transforms into a conducting, hydrophilic
pore. All conducting pores then survive as long as their radii
remain larger than r*. Destruction of a conducting pore oc-
curs only if it drifts or diffuses in r space to a value below r*.
Due to the exponential term in Eq. (10), most pores are cre-
ated with very small radii.

As shown in Egs. (10) and (11), the energy E(r) is the
most important entity that governs the pore formation,
growth and decay. This energy E(r), which is a function of
the pore radius “r,” determines the “drift flux” for pores in r
space [the left side of Eq. (10)], and the formation rate
through Eq. (11). This energy function depends on several
factors, including the membrane tension, the applied E field
and associated stored electrostatic energy, and steric repul-
sion. These changes make E(r) self-adjusting in response to
pore formation, without causing uncontrolled growth and ex-
pansion. Thus, one has [48]

E(r)=2myr- f ZWTefpr(r*,t)r*dr* +(CIr)*
0

a 71_<‘-JW; Em sz az(r")r"dr", (12)
0

for a flat membrane, with A,(r,#) being the dynamic pore
area, I’y a variable membrane tension, and « a pore-
dependent factor. Expressions of the tension Iy and A (7, 1)
are [48]

1-[Ay(A-A,)T
1 —(Ay/A)?

Feff(Ap) = Feff(Ap =0) > (13a)

A,(r,1) zA0<fr271'r"n(r",t)dr"). (13b)

0

Here A is the equilibrium area corresponding to minimum
total interfacial energy. Area A slightly exceeds the equilib-
rium level A, and roughly, A/A,=1.0125 yielding a tension
of 107 J m™2 [48]. The pore area A,(r,7) dependent surface
tension can become quite important for situations involving
transient voltage pulses. In such cases, the voltage could fall
to zero quickly (i.e., ultrashort ns pulses), thereby canceling
out the electrostatic contribution to E(r). However, the
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FIG. 2. (Color online) Schematic of the prolate spheroidal cell
model for the surface area calculation of each segment.

A,(r,t) term would continue to affect dynamical evolution
over much longer periods.

Since the external electrical field is on the direction of the
major axis of the prolate spheroidal cell, and the cell has
rotational symmetry on ¢ direction, the whole cell can be
discretized along the Z direction according to different 6 as
shown in Fig. 2. Here 6 and the prolate spheroidal coordinate
v has the following relationship: v=cos(6). Thus, from Eq.
(2¢), the Cartesian coordinate z can be expressed as z=cuv
=cu cos(#). The surface area of each segment on the prolate
spheroid is calculated by rotating the Cartesian ellipse
x*/a>+z*/b2=1 about its major axis as shown in Fig. 2. By
the method of calculating the area of surface of revolution,
we can obtain

P1 gp? b?
A0(0)=27TJ aT\’l—pzdp=7TaT (pV1 - p?
P

ab? —
+ arcsin p)|§; = m—1[(p,\1 - p? +arcsin p;)
c
P— .
— (pa\1 = p3 +arcsin p,)]. (14a)

In the above, p,=eu, cos(6), p,=e’u,cos(6+A6), and e
=c/b, is the eccentricity of the prolate spheroid.

Similarly, the surface area of each segment from an oblate
spheroidal cell is

abz I I
Ay(0) = 7= —[p\1+ pi+In(p; + V1 +p) = poV1+p)

N
+1In(p, + V1 +p3)]. (14b)

Here plzz—iu,, cos(6) and pzzz—iu,, cos(6+A0).

III. RESULTS AND DISCUSSION

Coupling Laplace’s equations with the Smoluchowski
equations yields the time-dependent transmembrane potential
(TMP) across spheroidal cells. The electroporation-related
time-dependent conductivity and permittivity changes at the
membrane will eventually affect the TMP as shown in Fig. 3.
This simulation result shown was obtained by considering a
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FIG. 3. (Color online) TMP versus angle (¢) for oblate spheroi-
dal cells with minor-to-major axes ratio a:b=3:1. A 80 kV/cm,
trapezoidal external pulse (with rise, fall, and on times of 0.5, 0.5,
and 2 ns, respectively) was used for these simulations. The results

shown are at t=2.5 ns.

simple one-shell oblate spheroidal model with a polar radius
b=5 um and equatorial radius a=15 um. The membrane
thickness was taken to be 5 nm at the polar points. The cell
parameters used are given in Table I and are typical of bio-
logical cells. Most values were chosen from a study by Er-
molina er al. [73]. The response of a high intensity 2 ns
trapezoidal external pulse with E=80 kV/cm (0.5 ns rise
and fall times), with time-dependent membrane conductivity
(electroporation considered), was compared with identical
cells having constant membrane conductivity. Figure 3
shows that the TMPs at polar points of the oblate cell (a:b
=3:1) with electroporation, have much lower values than
without electroporation. This is due to the formation of con-
ducting pores on membrane, which results in the increase of
conductivity at the polar points from an initial 5.3
X 107 S/m value to about 5.8 X 1072 S/m. The higher con-
ductivity due to electroporation at the poles reduces the volt-
age drop and pushes the peak TMP location to larger angular
values. This feature is qualitatively similar to that reported
for spherical cells [9].

A. Case for various geometries

Permeabilization is not only a function of electric field
intensity and cell size but also of cell shape. To probe this

TABLE 1. Parameters used in simulations.

Conductivities (s/m):

Cell membrane 53%107°

Cytoplasm 0.13

Environment 0.6
Dielectric Constant:

Cell membrane 8.0

Cytoplasm 60.0

Environment 80.0
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further, comparative simulation were carried out for (i) a
prolate spheroid with a:b=1:3 and polar radius b=15 um,
(ii) a spherical cell with radius r=5 um, and (iii) an oblate
spheroid with a:5=3:1 and b=5 um. The same pulse used
in Fig. 3 was applied for these simulations. The temporal
development of TMP across spheroidal cells at #=0° with
different minor-to-major axes (a:b) ratios is shown in Fig.
4(a). Since the TMPs of spherical and prolate cells were
lower than 1V, no poration (as evaluated through the
Smoluchowski equation), was predicted for these two cases.
The peak TMP of oblate spheroidal cell is predicted to be
about three times that of the spherical cell, and exceeds 1 V.
The latter point perhaps requires some discussion, since tra-
ditionally this 1-V voltage has been accepted as the threshold
for electroporation. For the traditional (long-duration) elec-
troporative pulses, TMP does not really exceed this 1-V
value since poration would set in at this level, thereby driv-
ing the local conductivities to high values and reducing the
trans-membrane voltage drop. However, in the present case
of ultrashort pulses, it becomes possible to exceed the 1-V
magnitude during transient periods, leading to a “voltage
overshoot.” Physically, this occurs since a finite time and
energy is required to rearrange the molecular structure within
the membrane, and form conductive channels. Hence, exces-
sive voltages beyond the customary 1-V threshold can be
attained over ultrashort time durations, and do not necessar-
ily cause irreversible damage [37]. In other words, despite
the higher TMP, the molecules have not necessarily had the
time to rearrange and form membrane pores.

The TMP of oblate spheroidal cell in Fig. 4(a) decays
rapidly after it reaches its maximum, even though the exter-
nal pulse is on. This decrease occurs due to the TMP-
controlled pore generation. The overall “voltage overshoot”
behavior agrees well with a previous report on the time de-
pendent behavior of the membrane voltage [74] on giant pla-
nar lipid membranes. As the external electric field is turned
off beyond 3 ns, the transmembrane potentials converge to
zero quickly with a time constant in the nanosecond range
for the oblate case but rather larger ones for spherical and
prolate spheroidal cells. This is the result of discharging of
the membrane, which acts as a “leaky capacitor.” For the
oblate spheroid, a slight negative TMP value is predicted
(brought about by the negative displacement current) at the
end of the external pulse.

In order to better gauge the transmembrane potential pro-
files of different geometries, the TMPs versus polar angle
(@) are shown in Fig. 4(b) in spherical coordinates for the
prolate, spherical, and oblate cases. A conversion between
the polar angle (6) in prolate spheroidal coordinates and po-
lar angle (') in spherical coordinates can be realized by

, _1 z - ucos 6
0 = COS ﬁ = COS ﬁ .
Vx“+z Vu®—1+cos” 0

(15a)

Similarly, the relationship between polar angle (6) in sphe-
roidal coordinates and polar angle (') in oblate spherical
coordinates is
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FIG. 4. (Color online) Simulation results for a:b=1:3 (prolate),
1:1 (spherical), and the 3:1 (oblate) cases. A 80 kV/cm, trapezoidal
external pulse with and rise, fall, and on times of 0.5, 0.5, and 2 ns,
respectively, was used for these simulations. (a) Results of the TMP
versus time at #=0°. (b) Results of the TMP versus polar angle (6)
in spherical coordinates at =2.5 ns. (c) Corresponding semiloga-
rithmic plot of pore density versus polar angle (6).

ucos 0 ) (15b)

0, :COS_ <?
Vu~+1—-cos” 0

The results in Fig. 4(b) show that the shape of a spheroid
determines the fraction of the membrane that is electropo-
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rated. Oblate spheroidal cell has much higher build-up TMP
and is more prone to be electroporated than prolate and
spherical ones. Physically, its shape is such that a larger and
flatter surface area is “threaded” by the external electric field
at the “poles” and the nearby regions. By comparison, the
“poles” of the prolate spheroid where the electric field is the
highest, presents a much sharper curvature. Hence, a smaller
surface area experiences the same field magnitude as an ob-
late spheroid. One can thus expect stronger poration in oblate
spheroidal geometries (with field parallel to the axis of sym-
metry) than in prolate spheroids or spheres. Also, the pores
would cover a larger fraction of the surface area. This is
borne out from calculations of the Smoluchowski equation
(10) for the membrane pore density. The relationship be-
tween pore density and polar angle (6') at t=2.5 ns for the
three cases is shown in Fig. 4(c). About 78% of the mem-
brane is electroporated with pore density in the order of
10'7 per m?. Pore densities for prolate spheroidal and spheri-
cal cases are very small, about 10° per m>.

For oblate spheroidal cells, the TMP is strongly related to
the flattening factor f, which is defined as 1 —b/a. Simulation
results for oblate spheroidal cells with flattening f
=0.5,0.65, and 0.7 are shown in Fig. 5. A 65 kV/cm, trap-
ezoidal external pulse with and rise, fall, and on times of 0.5,
0.5, and 2 ns, respectively, was used for these simulations.
The results are measured at =3 ns (when the pulse was off).
Figure 5(a) shows that as flattening f increases, the cell
membrane is more prone to be electroporated. With f=0.5,
no field-induced conducting pores were predicted since the
TMP is lower than 1 V. A small portion of membrane was
electroporated when f was increased to 0.65. However, a
little more than 2/3 of the membrane was electroporated
when f was increased to 0.7. The semilogarithmic plot of
pore density versus polar angle (') at r=3 ns for the three
cases is shown in Fig. 5(b).

B. Cellular responses to different electrical pulses

As already discussed, the prolate cells are more difficult
to electroporate than oblate spheroids. Thus, pulses with
much higher intensities and long durations were used here to
probe such effects in prolate cells. Simulation results shown
in this section were obtained for a prolate cell with b
=25 nm and a:b=1:5. First, a 200 kV/cm trapezoidal pulse
with rise, fall, and on times of 1.5, 1.5, and 10 ns, respec-
tively, was used across a prolate spheroidal cell. Figure 6
shows simulation results of the time-dependent TMP with
cell properties as given in Table I. Three different times at
0.75 ns (middle of rise), 6.5 ns (middle of the pulse on-time),
and 12.27 ns (middle of the fall time) were chosen to probe
the angular dependence (6) of the TMP. Obviously, no elec-
troporation occurs at 0.75 ns since the pulse magnitude at
this instant is still too small and the elapsed time too short.
At 6.5 ns, the membrane for angles #<<50° is predicted to be
electroporated with appreciable TMP decreases associated
with the large local increments in membrane conductivity.
However, the membrane voltage at the polar region is still
predicted to be at (or above) 0.5 V. This is simply due to the
relatively small size of the induced pores (not shown here)
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FIG. 5. (Color online) Simulation results for oblate spheroidal
cells with flattening f=0.5, 0.65, and 0.7. A 65 kV/cm, trapezoidal
external pulse with and rise, fall, and on times of 0.5, 0.5, and 2 ns,
respectively, was used for these simulations. The results are mea-
sured at r=3 ns (when the pulse is off). (a) Results of the TMP
versus polar angle (). (b) Semilogarithmic plot of pore density
versus polar angle (6").

due to the ultrashort times, which restrict the magnitude of
the external energy deposited. Consequently, the local mem-
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FIG. 6. (Color online) TMP versus 6 for a prolate spheroidal cell
(a:b=1:5) at three different times of 0.75 ns (middle of pulse rise),
6.5 ns (middle of pulse-on time), and 12.25 ns (middle of pulse
fall). A 200 kV/cm, trapezoidal external pulse with rise, fall, and on
times of 1.5, 1.5, and 10 ns, respectively, was used for these
simulations.

tributed RC” time constant. At 6=90°, the TMP is always
zero since the membrane is perpendicular to the external
electrical field.

The relationship between different pulse intensities and
TMP was studied next. Figure 8 shows the TMPs for prolate
spheroid (a:b=1:5) under pulses with the same pulse dura-
tion f,,=10ns but with different field intensities (E
=100, 150,200, and 250 kV/cm). The rise, fall, and on times
of the external pulse were taken to be 1.5, 1.5, and 10 ns,
respectively. A snapshot at 11.5 ns (just prior to pulse fall-
off) for the TMP versus 6 in each case, is shown in Fig. 8(a).
The TMP curve corresponding to £=100 kV/cm shows no
electroporation on the cellular membrane since the pulse du-
ration is too small. The polar points bear the highest TMP
across the whole membrane while the equatorial points have

1.8

1.6
1.4}

brane conductivity is not excessively large, and so the TMP
dos not collapse to very small values. At 12.27 ns (middle of
the pulse fall-time), the TMP at small angles 6 in Fig. 6 is
seen to be close to zero. This is the result of larger pore sizes
and their higher density at these longer times. Also as ex-
pected, the TMP exhibits angular symmetry.

Results for the prolate spheroidal cell using the above
conditions are alternatively shown as a function of time at
specific angles in Fig. 7. Angular locations of 6
=0°,15°,30°,45°,60°,75°, and 90° were selected. The
temporal responses at the various angles are roughly the
same. Voltage overshoots occur with delays that increase
progressively with the angle. Furthermore, for the 6
=0°,15°, and 30° locations, the TMPs tend to decay to zero
soon after the external pulse is turned off. But for @
=45°,60°,75°, the TMPs take relatively longer time for dis-
charging. This is due to the lower membrane pore density
(and hence, conductance) that effectively increases the “dis-

Transmembrane Potential (V)

0
-0.2

1.2}
l
0.8
0.6
0.4
0214

0

10 15 20
Time (ns)

FIG. 7. (Color online) TMP versus time for a prolate spheroidal
cell (a:b=1:5) at the different angular locations of #=0°, 15°, 30°,
45°, 60°, 75°, and 90°. Here the polar radius b=25 um. The trap-
ezoidal external pulse used was the same as in Fig. 6.
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FIG. 8. (Color online) A prolate spheroid (a:b=1:5) cell under
applied pulses with 10 ns duration but with different intensities
(E=100, 150, 200, and 250 kV/cm). The rise and fall times of the
external pulse were taken to be 1.5 ns. (a) A 11.5 ns snapshot of
TMP versus 6 and (b) TMP versus time at the §=0° location.

zero TMP. With electrical field intensities increasing from
150-250 kV/cm, the fractions of the electroplated mem-
brane increase from 39 to 56 %. The TMPs of E
=250 kV/cm has the lowest value among the four cases be-
cause the pore density and size are the largest. This results in
the lowest membrane conductivity. Figure 8(b) shows tem-
poral development of the TMP for a prolate spheroidal cell at
the 6#=0° location for various pulse intensities. The results
show that for E=100 kV/cm, the intact membrane would
have the longest discharge time, while in the remaining three
cases the membrane voltage recovers back to zero over sub-
nanosecond time frames.

The relationship between different pulse durations and
TMP for prolate spheroidal cell is shown in Fig. 9. The
TMPs for the prolate spheroid cell subjected to external
pulses with the same intensity E=150 kV/cm but different
pulse durations (z,,=5, 10, 15, and 20 ns, respectively) were
used. The rise and fall times of the external pulse were both
taken to be 1.5 ns. Figure 9(a) shows the TMP versus 6 at the
end of each pulse, while Fig. 9(b) shows the temporal devel-
opment of TMP at polar points. The predictions in Fig. 9(a)
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FIG. 9. (Color online) A prolate spheroid (a:b=1:5) cell under
pulses with the same intensity £=150 kV/cm but with different on
times (¢,,=35, 10, 15, and 20 ns, respectively). (a) TMP versus 6 at
the end of each pulse. (b) TMP versus time at §=0°.

are for the membrane to remain intact with the 5 ns pulse,
but to get 33-50 % electroporated for pulses of 10 ns or
longer. Figure 9(b) shows that at =0, except for 7,,=5 ns,
the TMPs of the remaining three cases (i.e., f,,=10, 15, and
20 ns) show relatively similar behavior. The recovery time
constant is expectedly lower for the higher duration pulses
due to their larger porative (and hence conductivity modula-
tion) effects.

For completeness, the relationship between the TMP ver-
sus the polar angle 6 for prolate and oblate spheroidal cells at
different electric-field orientation angles “«” is shown in Fig.
10. The rise, fall, and on times of the trapezoidal external
pulse were 1.5, 1.5, and 10 ns, respectively, with E,
=50 kV/cm. Values of a=0°, 30°, 45°, 60°, and 90° were
chosen. Figure 10(a) shows the angular variation for the pro-
late spheroidal case with a:b6=3 um:5 um. When a=0°,
the TMP has its lowest peak value at §=0°, since the field is
along the z direction where the spheroidal cell has minimum
curvature. For the other three cases of «=30°, 45°, and 60°,
the TMP peak values increase as « increases. However, the
peak occurs at polar angles 6 of 50°, 65°, and 75°, respec-
tively, which are greater than the corresponding « values.
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FIG. 10. (Color online) Total outer membrane TMP versus the
polar angle @ at r=11.5 ns for prolate (a:b=3um:5 pum) and oblate
(a:b=5pum:3 um) spheroidal cells under a 50 kV/cm external E
field. Angular field orientations of a=0°, 30°, 45°, 60°, and 90°
were used. (a) Prolate spheroidal case and (b) the oblate spheroidal
case.

This is due to the dominance of the E, induced TMP over
that induced by E.. Figure 10(b) shows TMPs for an oblate
spheroidal cell (a:b=5 um:3 wm). Unlike the prolate sphe-
roidal case, the TMP has the highest peak value at 6=0°
when a=0°, and the lowest peak value at #=90° when «
=90°. This is to be expected, since the flattest surface for the
oblate spheroid occurs at @=0° rather than «=90°. For the
cases with a=30°, 45°, and 60°, the TMP peak values de-
crease as « increases.

Finally, results probing the size effects on the TMP are
given in Fig. 11. Cells with two different semimajor axis
lengths, but the same aspect ratio were used. The total TMP
versus polar angle 6 at an angular field orientation of «
=15° for two prolate spheroids with the same aspect ratio
(a:b=1:5) but different lengths (a=1 wm, 5 wm) were con-
sidered. A 50 kV/cm, trapezoidal external pulse with rise,
fall, and on times of 1.5, 1.5, and 10 ns, respectively, was
used for these simulations. A relatively modest field was cho-
sen to avoid electroporation effects and maintain a relatively
simpler situation. As seen from Fig. 11, the larger cell devel-
ops a slightly higher TMP. This is qualitatively in keeping
with the trend seen in spherical cells. However, the TMP
ratio between the two is substantially different from the 1:5
ratio of their axes.
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FIG. 11. (Color online) Total TMP versus the polar angle 6 at
angular field orientation of a=15° for two prolate spheroids having
the same aspect ratio (a:b=1:5) but different axis lengths a
=1 pum and a=5 pum. A 50 kV/cm, trapezoidal external pulse with
rise, fall, and on times of 1.5, 1.5, and 10 ns, respectively, was used
for these simulations.

IV. SUMMARY AND CONCLUSIONS

In summary, self-consistent evaluations of both the trans-
membrane potential and possible electroporation density
across membrane of spheroidal cells in response to ul-
trashort, high-intensity pulses have been reported and dis-
cussed. Most treatments in the literature on this subject have
been assumed spherical cells. However, in biology, examples
of such spherical shapes are rare, though many of the cells
deviating from the spherical shape do exhibit rotational sym-
metry. For this reason, spheroidal cells were chosen as the
logical first step. Though a few treatments of spheroidal cells
have recently been reported [63—66], the poration aspect and
its role in self-consistently modifying the TMP, including its
angular dependence, had been taken into account. The
present study coupled the Laplace equation with Smolu-
chowski theory of pore formation, to yield dynamic mem-
brane conductivities that influence the TMP. It may be men-
tioned though, that the present study was restricted to single-
shell models, with the focus being on the plasma membrane.
Extensions to double-shell models are underway, and com-
prehensive results will be reported elsewhere.

It has been shown here that the TMP induced by pulsed
external voltages can be substantially higher in oblate sphe-
roids, in comparison to both spherical and prolate spheroidal
cells. Flattening of the surface area in oblate spheroids leads
to both higher electric fields seen by the membrane, and
allows a great fraction of the surface area to be porated.
From a practical standpoint, this suggests that drug-delivery
and molecular or ionic uptake that is the basis for electro-
chemotherapy, could work best for flatter-shaped cells. In
addition, external fields could be applied to orient the cells
for optimal uptake based on field interactions with the in-
duced dielectric moment [75]. For example, based on energy
minimization considerations, spheroids can be oriented either
parallel or perpendicular to their symmetry axis by ac fields
depending on the applied frequency [76]. Results have also
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been obtained with electric field at arbitrary angular orienta-
tion to the semimajor axis. Finally, by probing cells with the
same shape but widely different sizes, a strong departure
from simple scaling of the TMP with dimension has been
shown.

The trends obtained are general, and the theory would
apply to periodic (e.g., harmonic) excitations from an exter-
nal source as well. The charging time constant of the plasma
membrane would then be expected to be in the microsecond
regime, with the maximum voltage in oblate spheroids being
larger than in spherical or prolate cells. For arbitrary orien-
tations of the external field with respect to the major axis of

PHYSICAL REVIEW E 79, 011901 (2009)

the spheroid, relative differences in the TMP, pore density
and formation times between the different shapes would be
expected to reduce somewhat.
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