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We present a thermodynamically guided, low-noise, time-scale-bridging, and pertinently efficient strategy
for the dynamic simulation of microscopic models for complex fluids. The systematic coarse-graining method
is exemplified for low-molecular polymeric systems subjected to homogeneous flow fields. We use established
concepts of nonequilibrium thermodynamics and an alternating Monte Carlo-molecular-dynamics iteration
scheme in order to obtain the model equations for the slow variables. For chosen flow situations of interest, the
established model predicts structural as well as material functions beyond the regime of linear response. As a
by-product, we present steady-state simulation results for polymers in general flow situations, including simple,
planar, and yet unexplored equibiaxial elongation. The method is simple to implement and allows for the
calculation of time-dependent behavior through quantities readily available from nonequilibrium steady states.
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I. INTRODUCTION

Systematic bridging the time- and length-scale gap be-
tween microscopic and macroscopic levels of description is
“of the greatest importance in theoretical science” �1�. In
many cases, this challenging task can be solved neither
purely analytically nor by brute force computer simulations
alone. This is true in particular for soft condensed matter
such as colloids, polymers, and liquid crystals, with their
internal structure leading to additional length and time
scales, intermediate between microscopic and macroscopic
scales �2�.

In recent years, effective interactions for coarse-grained
models of soft matter systems have been derived from inver-
sion procedures that are designed to reproduce chosen pair
correlation functions �3–7�. While the inversion procedures
often reproduce the static structure rather accurately, their
naive extension to dynamical phenomena clearly failed �4�.
This deficiency calls for a systematic approach that bridges
simultaneously the time- and length-scale gap between two
levels. For comparatively simple two-dimensional crystalline
solids, a simultaneous space-time coarse-graining procedure
was proposed recently in �8� based on renormalization group
techniques. There, temporal coarse graining is coupled via
the dynamical critical exponent to the degree of spatial
coarse graining. This approach is unfortunately not appli-
cable to the dynamics of complex fluids, since their internal
structures break the scale invariance—an essential prerequi-
site for renormalization group methods—and lead to the
emergence of slow, nonhydrodynamic modes. The latter are
typically described on an intermediate, mesoscopic level by a
set of “collective” or “structural” variables ��z�, which in
turn determine the macroscopic properties of complex fluids
�2�. Since many microstates z are compatible with given val-
ues of �, the mesoscopic level is necessarily stochastic in
nature. Thus, the emergence of entropy and irreversibility
from reversible dynamics is the hallmark of coarse graining.
Several coarse-graining approaches, in particular for solu-
tions and suspensions, have been suggested where the start-
ing level is already dissipative �see, e.g., �7,9� and references
therein�. In the context of polymer melts, promising work on

coarse-graining polymer chains starting from Hamiltonian
dynamics has been done, e.g., in �10,11�.

In this paper, we propose and explore a systematic, ther-
modynamically guided method which establishes the mesos-
copic model from the underlying microscopic level. The pro-
posed method is general enough to be applied to various soft
matter systems and valid in equilibrium as well as nonequi-
librium situations. Its strategy relies on the balance of revers-
ible and irreversible contributions to the dynamics and ex-
plicitly accounts for the entropy generated in the coarse-
graining step �12�. We use an alternating Monte Carlo �MC�
and molecular dynamics �MD� simulation scheme in order to
iteratively determine static and dynamic “building blocks”
�13� of the mesoscopic model self-consistently.

II. ORIGINAL AND COARSE-GRAINED MODEL SYSTEM

The algorithm is applicable to a wide range of soft matter
systems. In order to illustrate the basic idea and its worked-
out counterpart, let us consider a particular liquid, a classical
monodisperse bulk model polymer melt. The system consists
of Nch anharmonic multibead-spring �FENE� chains made of
N purely repulsive Lennard-Jones beads each �14–16�; Nb
=NchN particle positions and momenta are denoted as �r j�
and �p j�. The interaction energy between particle i and j is
Uij =Uij

LJ+Uij
FENE, where

Uij
LJ = 4��� �

rij
	12

− � �

rij
	6

+
1

4

 for rij � 21/6� �1�

and Uij
LJ=0 otherwise. The distance between particles i and j

is denoted by rij, � the bead diameter, and � the Lennard-
Jones interaction energy. Chain connectivity is ensured by
FENE springs that act between adjacent neighbors along the
chain,

Uij
FENE = −

1

2
�FENE ln�1 − � rij

r0
	2
 �2�

and Uij
FENE=0 for all other particle pairs. All model param-

eters and thermodynamic-state points are adopted from �14�:
temperature T=� /kB, density n=0.84�−3, finite extensibility
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of the springs r0=1.5�, and the strength of the chain poten-
tial, �FENE=67.5�, is large enough in order to prevent chain
crossings. In the following, we use reduced Lennard-Jones
units throughout �17�.

The simple FENE model system is very useful to describe
the general dynamical behavior of polymer melts
�14–16,18�. This system serves as our starting point, provid-
ing the microscopic �“atomistic”� level of description with-
out any irreversibility built in. Under the assumption that the
collective variables � capture all relevant physical processes
on the time scale of interest, the nonequilibrium state of the
system is characterized by the generalized canonical en-
semble

��z� = feq�z�e−�:��z�−�0, �3�

with phase-space coordinates z��r j ,p j� and the classical
feq�z��exp�−H�z� /kBT�, with H denoting the microscopic
Hamiltonian �1,13,19�. The Lagrange multipliers ��x� �cf.
Fig. 1� are determined by the values of the slow variables,
x= ���z�
, where the average is performed with �3�, and �0
a normalization constant. As structural variable, we here
choose x to be the mean tensor of gyration:

��z� =
1

NchN
�
a=1

Nch

�
j=ia+1

ia+N

�r j − rc
a��r j − rc

a� , �4�

where ia= �a−1�N and rc
a=N−1�i=ia+1

ia+N ri is the center of mass
of chain a. This choice of slow variables is appropriate for
low-molecular, unentangled polymeric systems, where x in-
deed varies slowly compared with fast relaxation processes
such as fluctuation of bond lengths and angles, intermolecu-
lar distances, or higher normal modes �2,13�. For a more
detailed justification of our choice of x, see Appendix A. We
can neglect the macroscopic hydrodynamic velocity field in
�3� since it equilibrates extremely rapidly on length scales of
individual polymers �20�. The same situation is encountered
in other complex fluids as long as the large relaxation time
scales of the collective variables are generated on relatively

short length scales. For a more complete treatment including
the hydrodynamic fields, see Ref. �21�.

The time evolution for the slow variables x can in general
be written as �13�

ẋ = ẋrev + M:
�S

�x
,

�S

�x
= kB� , �5�

where ẋrev denotes the reversible contribution in terms of a
Poisson bracket. Here, we have employed the expression for
the macroscopic entropy, S�x�=−kB�ln �
, corresponding to
the ensemble �3�. Entropy gradients drive the irreversible
contribution to �5�. Equation �5� is justified, e.g., from pro-
jection operator derivation �13,22�, which shows that the
symmetric friction matrix M�x� can be obtained from a
Green-Kubo type formula

M = �M„z�t�…
, M =
1

2kB	s

	s

��z�
	s
��z� , �6�

where 
	s
� denotes fast fluctuations of � on a time scale 	s

that separates the evolution of the slow variables x from the
rapid dynamics of the remaining degrees of freedom.

The reversible part of motion is obtained analytically by
considering the transformation behavior of �; cf. �13� for
worked out examples. Specifically, when x is a conformation
tensor such as the tensor of gyration and considering a mac-
roscopic flow field v�r�=� ·r, hence ����v�T, one finds the
so-called upper-convected behavior �21� ẋrev�x , ��=x ·�T

+� ·x. The remaining building blocks � and M needed to
complete the coarse-grained model �5� we obtain self-
consistently through a hybrid iteration scheme, as described
next.

III. SYSTEMATIC TIME-SCALE BRIDGING METHOD

In general, the space of admissible values for the slow
variable x is too large for a full parametrization of ��x� from
direct numerical integration. We choose to parametrize �
and M along one-dimensional paths x��̇�, where �̇ denotes
the value of the external control parameter—i.e., the flow
rate for chosen velocity gradients ���̇� in our case. Note that
this procedure is analogous to the experimental determina-
tion of rheological properties in viscometric flows �2�. While
errors in determining � can in principle violate the thermo-
dynamic integrability condition for S�x�, this problem is
avoided when working with one-dimensional paths which do
not cross. In order to calculate ��x� for relevant x �here,
relevant for given flow gradient ��, we investigate nonequi-
librium steady states, for which the left-hand side of �5� van-
ishes. The systematic time-scale-bridging method we pro-
pose is summarized in Table I.

The updated Lagrange multipliers obtained in step �v� can
potentially be used to reenter the procedure at �i� and follow
steps �ii�–�v� until � has converged. The whole procedure
�i�–�v� is then repeated for other choices of the control pa-
rameter �̇ in order to establish the model �5� for different
external fields.

Notice that the strategy does not require the implementa-
tion of flow-specific boundary conditions such as Lees-
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FIG. 1. �Color online� Components of gyration tensor x �left�
and Lagrange multiplier � �right panel� vs shear rate for a FENE
polymer melt �N=20�. Lagrange multipliers self-consistently enter
the anisotropy and stretching of polymer chains. Comparison with
standard nonequilibrium MD �NEMD� reference results �left panel�
shows that the generalized canonical distribution �3� provides a
good description of the nonequilibrium stationary state in shear
flow. We use Lennard-Jones units throughout this paper.
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Edwards �shear� �14� or Kraynik-Reinelt �planar elongational
flow� �18� conditions, which is a particularly useful feature
as it allows us to study arbitrary flow situations within ex-
actly the same approach. In the same spirit and in order to
not potentially falsify results for the friction matrix, the al-
gorithm also does not involve any constraints such as
thermo- or barostats. These advantages are built in our ap-
proach since the macroscopic variables do not change sig-
nificantly on the short time scale 	s of the MD simulations in
�iii�.

We now specify how to implement the steps �i�–�v� effi-
ciently and how to self-consistently determine the range of
validity of the underlying assumption �3�. We choose the
control parameter �̇ logarithmically equidistant, ln��̇�
� �a ,a+
a ,a+2
a , . . . ,b�. Before we start the procedure,
we initialize �=0 and ln �̇=a.

The loop starts at �i� with the current value of �. For �ii�
the same � is used in a MC scheme to generate microscopic
configurations distributed according to �3�. We have gener-
ated n realizations �typically, n=500� by slightly modifying
the procedure of �23�: For each realization, we generate
Nch� �Nch �infinitely thin� independent single FENE polymer
chains, each distributed according to exp�−� :�*�, where
�*=� /Nch is the tensor of gyration of the single chain.
Next, the diameter of chains is successively increased and
overlapping chains selectively removed. With this method,
we generate a polymer melt at the desired density, where the
anisotropy generated by � remains preserved. Subsequently,
Maxwellian-distributed velocities are assigned, in agreement
with �3�. For �iii� one chooses a symplectic integrator �we
have used a velocity-Verlet algorithm� to perform microca-
nonical equilibrium MD based on the microscopic Hamil-
tonian H�z�. We calculate and store trajectories z�t� during a
short time interval t� �0,	s�, which is small enough to not
significantly alter x during the course of the MD. For poly-
meric systems, the gyration tensor will relax towards equi-
librium on a time scale 	, which is known to be huge com-
pared with the Lennard-Jones time unit, 	=0.39�1
+N /78�N2 from �14� for melts under study—i.e., 	�200 for
N=20. As we carefully investigated, results are �as they

should for proper choice of 	s� insensitive on 	s in the regime
	 /	s� �5,50�. See also Fig. 2. We use 	s=	 /30
	 and N
� �10,20,30� for results to be presented. Notice that the MD
simulation time is thus very short compared to conventional
nonequilibrium MD �NEMD� at �the problematic� low field
strengths �flow rates�, where simulation times large com-
pared with the inverse rate ��̇−1� are required. �iv� With the n
sets of phase space trajectories z�t� at hand, one inserts them
into the definition of the slow variable �(z�t�) and then
evaluates the friction term M �in our case a 4�4 matrix�
from �6�, with 
�s

��z���*(z�	s�)−�*(z�0�). The average
in �6� is evaluated as an arithmetic mean over the n indepen-
dent trajectories—e.g., M= �1 /n��iM�i�, where we denote
the partial contribution from trajectory i� �1, . . . ,n� by a
bracketed subscript. The number of samples n has to be cho-
sen large enough to calculate M sufficiently accurate. In our
case, several components of M should vanish by symmetry
consideration, and one can choose n as large as to ensure
these components vanish within statistical uncertainty. No-
tice, further, that M possesses basic symmetries such as
M����=M����=M���� for arbitrary choices of indices be-
cause � is symmetric. �v� Repeating the procedure �i�-�v�-
�i�-¯ for each �̇ until convergence can be replaced by an
efficient reweighting scheme. This scheme relies on the
smallness of the change of increment 
a, which comes to-
gether with moderate changes of the distribution function �.
To this end we use Broyden’s method with standard settings
�24�, which does not require the Jacobian matrix, to solve the
nonlinear system

0 = �
i=1

n

�Ci + kBM�i�:���wi, wi �
e−��:��i�

�
j

e−��:��j�
�7�

for �matrix� ��, with mismatch Ci� ẋrev���i� ,��
+kBM�i� :�; cf. Eqs. �3� and �5�. For example, in a shear
flow, �7� stands for six equations and six unknowns. With the

TABLE I. Summary of proposed time-scale-bridging
method.

Step Description

�i� Choose initial values for the Lagrange multipliers
�

�ii� Generate n independent configurations distributed
according to the generalized canonical ensemble
�3�

�iii� Solve Hamilton’s unconstrained equations of
motion for all n systems during a short time
interval 	s

�iv� Calculate the friction matrix M from Eq. �6� and
x directly from the n trajectories produced in �iii�

�v� Calculate an updated value for � by solving �5�
for � with ẋ=0 �in terms of M, x, and �
the latter two quantities are “hidden” in ẋrev�
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FIG. 2. Different components of the friction matrix M as a
function of the separating time 	s obtained in step �iii� of our pro-
cedure. Solid and open symbols correspond to the integral formula
mentioned in the text and Eq. �6�, respectively. Results correspond
to a chain length of N=30 and a planar shear flow with dimension-
less shear rate �̇=0.00036.
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solution �� of �7� at hand, we directly calculate the re-
weighted slow variables and friction matrix, x=�iwi��i� and
M=�iwiM�i�, as well as updated Lagrange multipliers �
→�+��. A justification of the reweighting scheme is given
in Appendix B. Finally, we increase the control parameter
ln �̇→ ln �̇+
a and start over with step �i� of the procedure,
until we have swept through the control parameter space.

By then, we have recorded consistent sets x and M as
well as � for the whole range of parameters �̇. That is, we
have obtained ��x� and M�x� and therefore established the
coarse-grained model �5� for particular parametrized path
x��̇�. By choosing the control parameters appropriately, our
approach uses paths to explore those regions in state and
parameter space that correspond to driven nonequilibrium
situations of interest. For the system under study, the quan-
tity x��̇� itself is experimentally accessible by means of
small-angle neutron scattering �14�. Other particularly inter-
esting material functions are flow curves—i.e., stress tensor
� as function of the control parameter �̇. The macroscopic
expression for the polymer contribution to the stress tensor,

� = − 2npkBTx · � , �8�

where np is the polymer concentration, follows from both
nonequilibrium thermodynamics �13� and by evaluating the
microscopic expression for the stress tensor in the ensemble
�3�; see Appendix C. A more detailed discussion of the stress
tensor within this context is given in �21�.

Before presenting results obtained with the proposed
method, we briefly comment on the time and length scales
involved, already alluded to in the Introduction. The original,
microscopic model has as a characteristic length scale of the
bead diameter � and reference time 	LJ= �m�2 /��1/2, where
m is the mass and � the characteristic Lennard-Jones interac-
tion energy. On the coarse-grained level, the characteristic
length scale is the radius of gyration, Rg��N1/2. The corre-
sponding time scale estimated from the Rouse model �25� is
	R=��N��2 / �3�2kBT�, where � is the bead friction coeffi-
cient. Therefore, the bridging of length scale Rg /�=N1/2 is
associated with a bridging of time scales 	R /	LJ=cN2,
where c=5 / �16�3/2��� /�0��� /kBT�1/2, with �0=3� /
�16����mkBT�1/2 the friction coefficient of a hard-sphere
gas.

IV. RESULTS

Figure 2 shows different components of the M matrix �6�
as a function of the separating time 	s. As mentioned before,
the results for M are to a good approximation independent of
the precise value of 	s in a broad range 	s� �5,50�, which is
significantly smaller than the polymer relaxation time 	 �	
�200 for N=20�. Furthermore, the comparison in Fig. 2
shows that the simplified formula �6� approximates the more

accurate integral formula �13� M= 1
kB

�0
	sdt��̇�t��̇�0�
 quite

well.
Having established the thermodynamic building blocks

��x� and M�x�, we can use the evolution equations �5� to
study time-dependent flows. We have calculated transient dy-
namics in a startup of steady shear flow, or storage and loss

moduli G� and G�, as a function of frequency � upon using
an oscillating control parameter �̇�sin �t �graphs not
shown�. We note that, due to our choice of parametrization
x��̇�, the transient dynamics x�t� is readily calculated as long
as we do not leave the known subspace �x��̇��. Otherwise,
interpolation and extrapolation methods are needed for pa-
rametrizing the missing regions in x space.

There are several options to test the range of validity of
the coarse-grained model. As an internal consistency check,
we recommend comparing the macroscopic expression for
the stress tensor, Eq. �8�, with the standard microscopic
�virial� expression, Eq. �C1�. Both are available during the
course of the simulation. We have verified that the two ex-
pressions for � agree with each other for the range of flow
rates considered. Under strong flow conditions and beyond
the scope of the present study, higher-order modes and ki-
netic contributions to the stress tensor tend to become in-
creasingly important and need to be included suitably in x;
cf. �19�.

We apply the proposed method to the FENE polymer melt
described above, subjected to various flows �results for
mixed and elliptical elongational flow not shown�. For the
case of simple shear, Fig. 1 shows the shear rate dependence
of the chosen slow variable x �tensor of gyration in our case�
and the corresponding Lagrange multiplier �. Very good
agreement of x with NEMD reference results is obtained. As
a further consistency check, we have verified that the basic
identity �x11−x22�x12

−1= ��11−�22��12
−1, derived from Eq. �5�

�26� using our choice for x and �, holds within error mar-
gins. This quantity is related to the flow alignment angle �
by �x11−x22�x12

−1=2 cot�2��. Therefore, we show in Fig. 3 the
alignment angle � calculated from x as well as from �. The
very good agreement between those values shows the intrin-
sic consistency of our results. Furthermore, our results are
also in good agreement with standard NEMD simulation also
displayed in Fig. 3 for planar shear flow with N=30 �14�.
Figure 4�a� shows shear and extensional viscosities for dif-
ferent flow conditions. Our results confirm expectations from
a retarded motion expansion analysis for a comparable sys-
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of the logarithm of the shear rate �̇ for planar shear flow �chain
length N=30�. Diamonds correspond to NEMD reference results
taken from �14� obtained under the same conditions.
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tem, studied via extensive NEMD in �15�. In particular, Fig.
4�a� shows that the scaled viscosities all superimpose for
vanishing flow rates, in agreement with predictions from lin-
ear viscoelasticity theory. Also in agreement with previous
results, the viscosity in simple elongation exhibits a maxi-
mum around a dimensionless rate of order unity, while in
planar and equibiaxial elongation as well as in planar shear
flow the viscosity decreases monotonically with flow rate
�15,27�. The corresponding x11 components of the gyration
tensor, which characterize the polymer stretch, are plotted in
Fig. 4�b�. We observe that polymer stretching is much more
pronounced for planar and equibiaxial elongation compared
to that in the planar shear flow. We have further validated the
proposed algorithm for the rate ��̇� and chain length �N�
dependence of the shear viscosity �see Fig. 5, which offers a
quantitative comparison with available NEMD data from
�14� for an identical system�. Since our method does not

require flow-adapted boundary conditions, we are able to in-
clude here the first simulation results on steady-state equibi-
axial elongation. All results for the sample application, in-
cluding many beyond the scope of this paper and therefore
not reported here, reproduce available experimental findings
for gyration tensor and viscosities �shear thinning, strain
hardening only in simple elongation, alignment in shear
weaker than in elongation at same flow invariants, scaling
behavior, overshoots; cf. �2,27,28��. The results provided in
this section clearly demonstrate that the proposed simple
procedure outlined in Table I allows one to �i� recover known
results obtained via classical approaches, �ii� study flow ge-
ometries not accessible using alternate approaches, and �iii�
calculate the friction matrix and Lagrange multiplier—i.e.,
the irreversible part of the closed and low-dimensional time
evolution equation �5� for the coarse-grained variable—in a
straightforward manner.

V. CONCLUSIONS

Using an alternating MC-MD iteration scheme, our ap-
proach successfully bridges the time-scale gap between mi-
croscopic and macroscopic scales by establishing the coarse-
grained model within a nonequilibrium thermodynamics
framework. Since only short MD simulations are needed, our
method is very efficient �moreover, it is ideally suited for
parallelization� and particularly allows one to deal with arbi-
trary flow gradients, since neither special boundary condi-
tions nor other constraints are needed. To be specific, even
from the viewpoint of material property determination, our
method is more efficient than standard NEMD when �̇	
� �n0 /n��	 /	s�, where n0 denotes the number of strain units
needed for the NEMD. With 	 /	s=30, n=500 used here,
taking n0=10 from �15� and also the time for the MC step
into account �see �23��, our method is superior to NEMD for
�̇	�0.5 and m orders of magnitude faster at a value 10m

times smaller than that dimensionless rate.
The presented approach is very general, but the �a poste-

riori validated� success of the coarse-graining procedure de-
pends crucially on the proper choice of the slow variable. As
mentioned above in our illustrating example, conformation
tensors as slow variables for polymer melts are clearly re-
stricted to the unentangled regime because interchain effects,
entanglements or knots, hinder the relaxation of the confor-
mation tensor for high-molecular-weight polymers �14,16�.
Some promising candidates for other soft matter systems are
the tensorial order parameter for liquid crystals, the magne-
tization for magnetic liquids, and the path length of the en-
tanglement network for entangled polymer melts �2,14,29�.
The MC step is particularly challenging for dense polymeric
systems, but efficient schemes exist for FENE as well as for
atomistic models �26,30�.

For many complex fluids, Eq. �3� is known to serve as a
successful starting point to derive closure relationships
�14,19�. Therefore, our method establishes the coarse-
grained model all the way from equilibrium up to the validity
of �3� and complements standard NEMD methods, which
remain often well suited for the less challenging regime of
strong external forcing.
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tensor x11 for the same types of flow vs flow rate �N=20�.
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FIG. 5. �Color online� Polymer contribution to non-Newtonian
shear viscosity vs shear rate for various molecular weights. Exem-
plarily, reference results obtained via direct NEMD simulation �14�
are shown for N=30. The inset shows zero-rate shear viscosity �0

and first viscometric function �1,0 vs chain length N, both coincid-
ing with data from extensive NEMD �14�.
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APPENDIX A: CHOICE OF SLOW VARIABLES

The proper choice of appropriate slow �collective� vari-
ables is crucial not only for the method proposed here, but
for a broad class of nonequilibrium statistical-mechanics ap-
proaches based on projection operator techniques �13�.

In the present case of unentangled polymer melts, there is
ample evidence that single-chain conformation tensors are
promising candidates for slow variables �2,13,26�. Therefore,
we assume the slow variable x can be decomposed into an
average over single-chain �symmetric second-rank� confor-
mation tensors

x =
1

Nch
�
a=1

Nch

x�a�. �A1�

The latter can always be expanded in a series of Rouse
modes,

x�a� = �
p=1

N−1

cpXp
�a�Xp

�a�, Xp
�a� = �

j=1

N−1

�pjQ j
�a�, �A2�

where Xp
�a� is the pth Rouse mode of chain a, �pj

=�2 /N sin�p�j /N� an element of the Rouse matrix, and Q j
�a�

the connector vector of particles j+1 and j of chain a �2�.
As possible choice of weights cp in Eq. �A2�, we initially

implemented cp=�p1; i.e., only the first Rouse mode is in-
cluded. This choice is reasonable since the first Rouse mode
is the slowest and therefore a natural candidate for the slow
variable x. However, the resulting model is restricted to very
small deviations from equilibrium because there is no clear
time-scale separation to the higher modes, which are ne-
glected. In fact, the relaxation time of mode p in the Rouse
model is 	p=� / �8k sin2�p� /2N���	1 / p2 �� and k are the
bead friction coefficient and the spring constant in the Rouse
model, respectively� and therefore the second mode relaxes
only a factor of 4 faster than the first one. Thus, when driven
out of equilibrium like in a flow situation, several of the
lowest Rouse modes are typically excited. In order to address
this issue, we propose to include all Rouse modes in a single
quantity such that the increasing relaxation times of the
higher modes are reflected in a decreasing weight cp. Such a
choice can be motivated by the fact that, in a stationary flow
situation, the Lagrange multiplier is proportional to the prod-
uct of relaxation time and velocity gradient �see, e.g., Eq.
�8.52� in �13��. Thus, we use a single Lagrange multiplier �
in the nonequilibrium ensemble �3� in order to excite all
Rouse modes at the same time in a way that is consistent
with Rouse theory. With cp=N / ��p�2 decreasing for increas-
ing mode number p as the corresponding relaxation times, x
becomes the gyration tensor, at least to a very good approxi-
mation. Comparing different choices for x �gyration tensor
and the second-rank tensor formed by either the first Rouse

mode or the end-to-end vector�, we found the gyration tensor
to give the most accurate results.

APPENDIX B: REWEIGHTING SCHEME

We here describe the reweighting scheme employed in the
above described algorithm. The generalized canonical distri-
bution �3� is denoted by ���z�, in order to make explicit its
dependence on the values of the Lagrange multipliers �.
Corresponding averages of phase-space functions are �A
�

��dzA�z����z�. The analytical form of �3� allows one to
relate the distribution ��+���z� corresponding to different
Lagrange multipliers �+�� to ���z� by

��+���z� = ���z�
e−��:��z�

�e−��:��z�
�

. �B1�

Therefore, also the averages of phase-space functions corre-
sponding to different values of Lagrange multipliers are re-
lated by

�A
�+�� =
�Ae−��:��z�
�

�e−��:��z�
�

. �B2�

For small deviations ��, the latter expression simplifies to

�A
�+�� �
�A
� − ��:��A
�

1 − ��:��
�

. �B3�

Equation �B2� or �B3� for A=� and A=M is used in the
reweighting scheme in order to calculate the corrected values
for x and M, respectively, from recorded averages. In prin-
ciple, Eq. �B2� allows one to recalculate averages of A for
arbitrary ��. In practice, however, due to the finite ensemble
size, such estimates are accurate only if �� and ��+�� have
considerable overlap. This is the case for �� small enough
such that relevant states for averages at �+�� are suffi-
ciently well sampled with ��.

APPENDIX C: STRESS TENSOR IN GENERALIZED
CANONICAL ENSEMBLE

The point of departure is the microscopic expression for
the total stress tensor �2�, which can be inferred from the
term of second order in the expansion of the configurational
Helmholtz free energy with respect to the strain tensor �31�:

���
tot = −

1

V��
j

mjcj,�cj,�� −
1

V��
j

rj,�Fj,�� . �C1�

The first, kinetic contribution can be well approximated by
the ideal gas expression with p�nkBT. Deviations from this
expression are minor in polymer melts and show up only at
extremely high flow rates �14,32�.

We further assume �i� potential forces Fj,�=−�H /�rj,� and
�ii� a generalized canonical ensemble ��z�
= �1 /Z*�exp�−�H−Nch � :�� �cf. Eq. �3��, where Nch de-
notes the number of polymer chains.

Assumptions �i� and �ii� allow us to write

Fj,�� = −
�H

�rj,�
� =

1

�

�

�rj,�
� +

Nch

�
���

����

�rj,�
� . �C2�
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Inserting this into �C1� gives

���
tot = − p��� −

1

�V
�

j
� dzrj,�

�

�rj,�
��z�

=0

−
Nch���

V�
�

j
� dzrj,�

�	��

�rj,�
��z�

= − p��� − npkBT����� rj,�
�	��

�r � .
�C3�

For the special case of conformation tensor models, � can
be expressed as a bilinear form of the particle positions.

Then, we obtain from Eq. �C3� the final expression

�tot = − p1 − 2npkBTx · � . �C4�

Equation �C4� can independently be derived from non-
equilibrium thermodynamics �13�. It should be noted that Eq.
�C4� captures the polymer contribution to the stress tensor as
the Lagrange multipliers � describe nonequilibrium polymer
configurations. For short-chain polymer melts, a “simple
fluid contribution” has to be added in order to account for the
stress contribution to the total stress tensor that would be
present in the absence of chain connectivity �21,33�.
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