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The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are
analyzed using an expansion in the parameter �= �1−e�1/2, where e is the coefficient of restitution. It is shown
that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in
the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger
than the “conduction length.” In an inelastic fluid under shear, there are three coupled modes, the mass and the
momenta in the plane of shear, which have a decay rate proportional to k2/3 in the limit k→0, if the wave
vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity
plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms
of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an
expansion in �. The time dependence of the autocorrelation function in the long-time limit is obtained by
estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation
functions for the velocity in the flow and gradient directions decay proportional to t−5/2 in two dimensions and
t−15/4 in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to
t−3 in two dimensions and t−7/2 in three dimensions.
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I. INTRODUCTION

Flowing granular matter falls into an interesting class of
nonequilibrium phenomena involving dissipative processes,
where the laws of thermodynamics cannot be easily adapted.
The molecules in a molecular fluid are “fluidized” by thermal
fluctuations, and this facilitates rearrangement of molecules
and flow in response to external stresses. The density of
states of the equilibrium fluid is given by the Boltzmann
distribution. This also provides access to dynamical proper-
ties for a fluid near equilibrium, since the stress response can
be related to the correlations in the fluctuating fields at equi-
librium via the fluctuation-dissipation relations �1�. In a
granular material with grains of macroscopic size, the ther-
mal fluctuations are vanishingly small and the fluidization of
particles requires external forcing, either in the form of mean
shear or in the form of forcing at the boundaries. Conse-
quently, there is no “equilibrium” at which we have a pre-
scribed distribution of states. In the absence of a known equi-
librium distribution, it is also not possible to formulate
fluctuation-dissipation relations for dynamical properties.

An alternative approach, applied in the kinetic theory of
gases, is to use the Boltzmann equation to calculate both
equilibrium distribution and the dynamical properties near
equilibrium. This approach involves an important assump-
tion, the molecular chaos assumption, which states that the
two-particle distribution function is the product of the single-
particle distribution functions. Using this assumption, the
Boltzmann equation shows that the velocity distribution
function is a Maxwell-Boltzmann distribution. In effect, the
distribution of states is obtained as a result from the molecu-
lar chaos and is not an assumption of equilibrium thermody-
namics. Dynamical properties near equilibrium can be evalu-
ated quite easily by imposing an external stress or heat flux
and evaluating the resulting corrections to the distribution

function. However, because of the molecular chaos assump-
tion, this approach can be used only for very dilute gases
where binary collisions dominate and where molecules move
distances long compared to their diameter between succes-
sive collisions, so that the pre collisional velocities of a pair
of colliding molecules are uncorrelated.

Kinetic theories for granular materials �2–8� make use of
the analogy between the motion of molecules in a dilute gas
and the motion of particles in a granular flow, while recog-
nizing the important distinction that the collisions between
particles are inelastic and energy dissipating. The energy dis-
sipation in collisions enters through the coefficient of resti-
tution, e, which is the ratio of the magnitudes of the post-
and pre-collisional relative velocities along the line joining
the centers of the particles. For perfectly elastic collisions
�e=1�, energy is conserved and the distribution function is a
Maxwell-Boltzmann distribution. For inelastic collisions, an
asymptotic expansion is used in powers of �= �1−e�1/2,
where the leading-order distribution function is the Maxwell-
Boltzmann distribution. However, the temperature in this dis-
tribution is not determined from thermodynamic consider-
ations, but rather by a balance between the rate of supply of
energy �due to shear or forcing at the boundaries� and the
rate of dissipation of energy. Constitutive models have been
developed for granular flows using methods similar to those
used in the kinetic theory of gases, and these result in con-
servation equations similar to the Navier-Stokes equations,
with the important difference that there is a dissipation term
in the energy balance equation. An important assumption
made in these kinetic theory calculations is the molecular
chaos approximation, which neglects the effect of correlated
collisions between particles. Due to this, these theories are
generally assumed to be valid only in the dilute limit.

The stability analysis of an unbounded linear shear flow is
different from that for bounded parallel flows, because if the
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mean velocity profile is linear, the velocity profile tends to
infinity as the coordinate in the gradient direction goes to
infinity. Due to this, it is not possible to obtain a dispersion
matrix with constant coefficients for an unbounded linear
shear flow in which the perturbations are in the form of Fou-
rier modes. A dispersion matrix with constant coefficients
can only be obtained for the special case where the compo-
nent of the wave vector in the flow direction is zero. For
more general perturbations which are modulated in the flow
direction, the dispersion matrix contains a derivative with
respect to the component of the wave vector in the gradient
direction, and it is necessary to solve an ordinary differential
equation in wave vector space, as was done by Ernst et al.
�9�. It is possible to effect a transform where the wave vector
is a function of time and which rotates with the mean shear
�10�. With this transformation, the derivative with respect to
the wave vector is no longer present in the dispersion matrix,
but now the wave vector in the dispersion matrix is a func-
tion of time. Therefore, in contrast to the linear stability
analysis, the perturbations are not exponentially growing or
decaying in time. It is also difficult to obtain analytical solu-
tions for the growth rates and the eigenfunctions of the dis-
persion matrix, as discussed in the present work.

This difficulty was realized early on in the stability analy-
sis of sheared granular flows by Savage �11� and Babic �12�,
who analyzed continuum mass, momentum, and energy
equations. These authors realized that the dispersion relation
was a function of time and restricted attention to the evalu-
ation of the growth rates at the initial time �t=0� when the
perturbation is applied. While they reached the conclusion
that the initial growth rates are positive �perturbations are
unstable� for a wide range of wave numbers, these studies
are also careful to acknowledge that the development of dis-
turbances at later times could be affected by the turning of
the wave vector. The numerical calculations of Alam and
Nott �13� showed that the turning of the wave vector has a
stabilizing effect for perturbations with a nonzero wave vec-
tor component in the flow direction. Though the linear sta-
bility analysis predicts a growth of perturbations at the initial
time, this transient growth is followed by a decay as the
wave vector turns and gets aligned with the gradient direc-
tion in the long-time limit. Therefore, for unbounded linear
shear flows with a nonzero component of the wave vector
along the flow direction, there is initial transient growth of
perturbations. However, these decay in the long-time limit
due to the turning of the wave vector by the mean shear, thus
rendering the system stable in the long-time limit. It should
be noted that transient growth does not imply a change of
base state. The linear analysis does predict whether the sys-
tem is stable or unstable, but it does not predict what other
state the system goes to in case it is unstable. It is necessary
to do the nonlinear calculation to determine the change in
base state. This is not done in the present case, because the
linear analysis has predicted that the system is stable in the
long-time limit.

While the above results were mostly obtained using nu-
merical calculations designed to identify domains in param-
eter space where the flow is unstable, an asymptotic analysis
was carried out by the author �14� in the long-wave limit.
This was based on the rationale that the hydrodynamic equa-

tions are valid only when the length scale is large compared
to the microscopic scale �particle diameter or mean free
path�, and this provides the following physical insights into
the hydrodynamic modes of sheared inelastic fluids. In addi-
tion to the microscopic scale, there is another length scale of
relevance for a nearly elastic fluid, which is the conduction
length � / �1−e�1/2, where � is the microscopic scale and e is
the coefficient of restitution. This length scale arises from a
balance between the rates of conduction and dissipation of
energy in the energy balance equation, as discussed a little
later on. For length scales small compared to the conduction
length, the rate of conduction of energy is large compared to
the rate of dissipation and energy can be considered a con-
served variable. If the rate of dissipation �and production� is
neglected in the leading approximation, then we recover the
D+2 hydrodynamic modes �mass and D components of mo-
mentum and energy� for an elastic fluid, where D is the di-
mensionality of the system. When the length scale is large
compared to the conduction length, the rate of conduction of
energy is small compared to the rate of dissipation. Energy
is a nonconserved variable in this case, and there are only
D+1 hydrodynamic modes �mass and D components of the
momentum� whose growth rates decrease to zero in the long-
wave limit. Of, these, it was found that there are three modes
whose growth rate scales as k2/3 in the long-wave limit
k→0, where k is the wave number. This is very different
from the growth rates of the hydrodynamic modes in an elas-
tic fluid, for which the two propagating modes have a decay
rate with imaginary part proportional to k and real part pro-
portional to k2, while D diffusive modes �D−1 transverse
momenta and one energy mode� have real decay rate propor-
tional to k2 in the limit k→0. The transition from k�� /
�1−e�1/2 �where energy is a slow conserved variable� to
k�� / �1−e�1/2 �where energy is a nonconserved fast vari-
able� was analyzed numerically, and the scaling laws in the
two regimes were verified.

The small-wave-number analysis discussed above was
also carried out using a time-dependent wave vector which
rotates with the mean shear and aligns with the gradient di-
rection in the long-time limit. In the limit k�� / �1−e�1/2,
perturbations were found to have positive growth rates in the
short-time limit. However, the initial growth of perturbations
is followed by a decay in the long-time limit due to the
turning of the wave vector �14�. An identical conclusion was
obtained by Alam and Nott �13� for granular flows in the
dilute limit in the absence of friction. In our linear stability
analysis here, we obtain the same result.

For the special case where the wave vector is aligned in
the gradient direction �layering modes�, there is no rotation
of the wave vector. The perturbations are found to be stable
for an unbounded linear shear flow in the limit of small
volume fraction, both in the numerical calculations of Alam
and Nott �13� and in analytical calculations in the long-wave
limit �14�. This is different from the result of Lee and Dufty
�15�, who found the uniform shear flow to be unstable to
layering modes in the long-wave limit; the scaling of the
growth rate is also different from that obtained using the
small-wave-number asymptotic analysis by the author �14�.
We have examined the reasons for this, and we find that this
is due to a difference in the formulation of the hydrodynamic
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matrix in the two cases. Lee and Dufty �15� consider a linear
shear flow in which an external thermostat is used to enforce
the constant temperature condition. Due to this, the part of
their hydrodynamic matrix which is independent of k �Lee
and Dufty �15�, Eq. �4.8�� does not contain contributions
from the energy balance equation. In the present analysis, we
incorporate the energy dissipation due to inelastic collisions,
and therefore there is a nonzero contribution to the hydrody-
namic matrix in the limit k→0 due to the terms in the energy
balance equation �Eq. �31� below�. Using the formulation
presented here, we find that the layering modes are stable;
this is consistent with the conclusions of Alam and Nott �13�
for the frictionless case, as also with thus earlier studies of
Savage �11� and Babic �12�. Thus we can conclude that the
uniform shear flow of inelastic fluid is a well-defined stable
steady state.

There are instabilities in bounded channel flows, however,
due to the wall boundary conditions �16,17�. This is due to
the boundary conditions imposed at the walls, and this could
lead to layering either at the walls or at the center, depending
on the boundary conditions. All of these linear stability stud-
ies assume that the constitutive relations obtained from ki-
netic theory are applicable to real granular flows and that
correlation effects are not important. In elastic fluids, it is
well known that correlations do result in a diverging viscos-
ity in two dimensions and diverging Burnett coefficients in
three dimensions, as discussed below. If such divergences
carry over unaltered to sheared inelastic fluids, then the con-
tinuum approximations used in the above stability studies are
not valid. Therefore, it is important to examine the effect of
correlations to determine whether they result in a significant
modification of the constitutive relations.

It is well known that correlated collisions cause a signifi-
cant change in the form of the constitutive relations for fluids
at equilibrium. The seminal studies of Kawasaki and Gunton
�18� and Yamada and Kawasaki �19� using mode-coupling
theory, Ernst and Dorfman �20� and Ernst et al. �9� using the
ring-kinetic theory, and Lutsko and Dufty �10� using a gen-
eralized Langevin formulation showed that the shear viscos-
ity in a fluid of elastic particles is a nonanalytic function of
the strain rate. In two dimensions, the shear viscosity has the
form �=�0+�� ln��̇�, while in three dimensions the shear
viscosity has the form �=�0+����̇�1/2, where �0 is the shear
viscosity for a Newtonian fluid and �̇ is the strain rate. This
implies that the coefficient of viscosity diverges in a two-
dimensional fluid, while the Burnett coefficients diverge in a
three-dimensional fluid. It is well known that the viscosity
renormalization is caused by the long-time tails in the veloc-
ity autocorrelation functions �9,21�, where the autocorrela-
tion functions decay as a power law t−D/2 in the long-time
limit, where D is the dimension of the system �22–26�.

It is important to note that the calculation of Ernst and
Dorfman �20� and Ernst et al. �9� were carried out for the
sheared state of the fluid and the terms up to O��̇� were
included in the expansion in the limit �̇→0. When a fluid is
sheared, there is viscous heating, due to which there is a
continuous rise in temperature. This viscous heating, propor-
tional to the product of the stress and strain rate, was not
included because it is O��̇2�. The lack of a steady state when
the O��̇2� term is included implies that the next-higher-order

terms in the series may not exist for a steady shear flow.
Heating is prevented by imposing a thermostat on the system
of elastic particles or by energy dissipation due to the dissi-
pation by inelastic collisions. In either case, heating can be
prevented only if there is energy dissipation in the system.
This dissipation makes a difference in the energy conserva-
tion equation in the long wavelength limit and changes the
nature of the hydrodynamic modes. This because the rate of
dissipation of energy in the energy conservation equation is
proportional to DTk2, where DT is the thermal diffusivity and
k is the wave number, whereas the rate of dissipation is in-
dependent of k for k→0. Therefore, there is a range of wave
numbers for which the rate of dissipation of energy is large
compared to the rate of conduction and energy has to be
considered a nonconserved mode for this range of wave
numbers.

The distinction between the conserved and nonconserved
nature of energy can be explained in another manner
�14,27–32�. The rate of conduction of energy per unit volume
is proportional to 	DTT /L2, where L is a characteristic length
and DT, the thermal diffusivity, is proportional to T1/2�,
where 	 is the number density and � is the mean free path
�the mass of a particle is assumed to be 1 without loss of
generality�. The rate of dissipation of energy is proportional
to �1−e�	T3/2 /�, since the energy dissipation in a collision is
proportional to �1−e�T, and the frequency of collisions is
proportional to T1/2 /�. If we compare the rates of conduction
and dissipation, a balance between these is achieved only if
the length scale L�� /�, or k�� /�, where �= �1−e�1/2 is a
small parameter which quantifies the departure from elastic
collisions. For wave numbers k�� /�, the rate of conduction
is large compared to the rate of dissipation and energy can be
treated as a conserved field. For wave numbers k�� /�, the
rate of conduction of energy is small compared to the rate of
dissipation and it is necessary to treat energy as a noncon-
served variable. As expected, the conduction length is infin-
ity for a perfectly elastic system, since the energy is con-
served throughout the domain in this case.

The hydrodynamic modes for k�� /� are very different
from those for an elastic fluid. In an elastic fluid, the growth
rates of the conserved modes are as follows. There are two
propagating modes, whose growth rates have an imaginary
part proportional to the wave number k and a real negative
part proportional to k2 in the limit k→0. There are two trans-
verse shear modes and one energy diffusion mode, all of
which have decay rates proportional to k2. In an inelastic
fluid for k�� /�, we find that there are three modes, corre-
sponding to mass and momentum fluctuations in the plane of
shear, which have decay rates proportional to k2/3. There is
one transverse momentum mode with decay rate proportional
to k2, while energy perturbations have a finite decay rate in
the limit k→0. Thus, the decay of the linear hydrodynamic
modes in a sheared inelastic fluid is very different from that
in an elastic fluid. Recent work has suggested that the decay
of the velocity autocorrelation function in sheared granular
flows could be faster. For sheared dense granular flow, Os-
tuki and Hayakawa �33� used mode-coupling theory to ob-
tain the decay proportional to t−�D+2�/2, where D is the system
dimension. The analysis of Kumaran �31� was based on in-
corporating correlations using the ring-kinetic equation for a
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dense gas. This analysis suggested a faster decay in the ve-
locity autocorrelation function proportional to t−3D/2, though
the form of the autocorrelation function was not explicitly
calculated. Here, we examine the exact form of the autocor-
relation function from the decay rates of the hydrodynamic
modes in the limit where energy is treated as a nonconserved
variable.

It is important to note the following features of the hydro-
dynamic modes of the Boltzmann or Navier-Stokes equa-
tions for a sheared inelastic fluid �14�. Since the system is
under a linear shear flow, it is not possible to obtain an ei-
genvalue problem if the wave vector is time independent. It
is necessary to define a wave vector that rotates with the flow
and is a linear function of time in order to obtain an eigen-
value problem. Since the wave vector is dependent on time,
the growth rates that are calculated are also time dependent.
An asymptotic expansion in wave number can be used to
calculate the growth rates, and the resulting expressions con-
tain contributions proportional to k2/3, k4/3, and k2. The terms
proportional to k2/3 dominate in a small-k expansion only at
short times, and some of the modes have growth rates with
positive real parts, indicating that perturbations are unstable
in the short-time limit. However, since the wave number is
increasing with time, at long times the k2 terms become
dominant and exerts a damping effect on the perturbations.
This implies that hydrodynamic fluctuations are unstable at
short times, but are stable in the long-time limit. This enables
us to define a stable steady state as the base state for the
calculations. The calculation of the hydrodynamic modes,
which are the eigenfunctions of the linear hydrodynamic
equations, are complicated by the time dependence of the
eigenvalues. It is not possible to use simple exponential re-
laxations, and a more complicated iterative procedure has to
be used. This is outlined in the present calculation. Based on
the decay rates of the hydrodynamic modes, we estimate the
time decay of the velocity autocorrelation functions in the
long-time limit. These results are used in Part II to study the
effect of correlations on the dynamics of a dilute sheared
inelastic fluid.

II. ANALYSIS

The system consists of smooth, inelastic particles �disks
or spheres� of diameter d subject to a mean flow, in which
the rate of deformation tensor is given by �ui /�xj =Gij. The
mass of the particles is set equal to 1, so that mass dimension
in all dynamical variables is scaled by the particle mass. The
collision rules used here are those for smooth inelastic par-
ticles, where the post-collisional relative velocity along the
line joining centers is −e times the precollisional relative
velocity, while the post-collisional relative velocity perpen-
dicular to the line joining centers is unchanged. Here, e is the
normal coefficient of restitution. We consider a coordinate
system where the mean velocity is along the x direction, the
gradient is along the y direction, and the z direction is along
the vorticity axis perpendicular to the plane of flow. At
steady state, there is a balance between the rate of production
of energy due to mean shear, 
Gxy

2 , and the rate of dissipa-
tion of energy due to inelastic collisions. The rate of dissipa-

tion of energy is proportional to 	T3/2�1−e2� /�, since the
dissipation of energy in a collision is proportional to �1
−e2�T and the collision frequency is proportional to T1/2 /�,
where T1/2 is the magnitude of the fluctuating velocity, �
�1 /	dD−1 is the mean free path, 	 is the number density, the
mass of a particle is assumed to be 1, and D is the dimen-
sionality of the system. We consider the near elastic limit e
→1, where �= �1−e�1/2 is a small parameter. In this case, it
is easy to see that the strain rate is related to the temperature
by Gxy ���T1/2 /��. Since we scale all velocities in the analy-

sis by T̄1/2 and all lengths by 1 / 	̄dD−1, where T̄ and 	̄ are the
mean temperature and number density, respectively, we set
Gxy =��̇, where �̇ is O�1� in the limit �→0.

We next turn to the Boltzmann equation for the single-
particle distribution. In order to simplify the notation, Greek
subscripts � ,� ,
 are used for particle labels and capital Ro-
man subscripts I ,J ,K are used to denote components of ma-
trices a little later, so that they are not confused with the
small Roman superscripts in the indicial notation for vectors.
It is also useful to note at this stage that the number of
subscripts in the joint distribution function f indicates the
order of the distribution; for example, f� is the single-particle
distribution function for finding a particle at �x� ,u��, f�� is
the two-particle distribution function, which gives the simul-
taneous probability of finding two particles at the locations
�x� ,u�� and �x� ,u��, and so on.

It is convenient to express the particle velocity as the sum
of the mean velocity U which is a function of position and
the fluctuating velocity c�=u�−U�x��. The distribution func-
tion f� then becomes a function of �x� ,c� , t�, and the equa-
tion for the single-particle distribution is given by �34�

Df�

Dt
+

��c�f��
�x�

− G:c�

�f�

�c�

= �
�

C���f��� , �1�

where the substantial derivative D /Dt�� /�t+U ·�, and G
= ��U /�x� is the rate of deformation tensor. In the above
equation, the first term on the left is the rate of change of the
distribution function in a reference frame moving with the
local mean velocity, while the second term on the left is the
rate of change of the distribution function due to the accel-
eration acting on the particle minus that due to the accelera-
tion of the mean flow. The third term on the left accounts for
the variation in distribution function due to particle transla-
tion, wherein the fluctuating velocity of the particle changes
when a particle translates from one position to another be-
cause the mean velocity at the two locations is different even
though the absolute velocity of the particle has not changed.
The form of the collision integral on the right-hand side of
Eq. �1� is

C���f��� = �
n

�e−2f���c�� ,c�� ,− x���

− f���c�,c�,x�����u� − u�� · ndD−1, �2�

where n is the unit vector along the line joining the centers
of the particles at contact, directed from particle � to particle
�, and d is the particle diameter. The integral 	n is an inte-
gral over all possible orientations of n, chosen in such a
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manner that �u�−u�� ·n�0 for colliding particles. The ve-
locities c�� and c�� are the velocities of the particles for the
inverse “restituting” collision, which results in a gain of par-
ticles with velocities c� and c�, and the velocities c�� and c��
are determined, for a given value of n, using the collision
rules. The factor 1 /e2 incorporates the Jacobian for the trans-
formation from �c�� ,c��� to �c� ,c��, as well as the ratio of the
relative normal velocities of the restituting and direct colli-
sions. The collision integral can be separated into two parts:
the first is the collision integral for elastic collisions, and the
second is the correction to the collision integral due to the
inelasticity of the particles:

C���f��� = C��
E �f��� + C��

I �f��� , �3�

where the elastic part of the collision integral is

C��
E �f��� = �

n
�f���c�� ,c�� ,− x���

− f���c�,c�,x�����u� − u�� · ndD−1, �4�

where c�� and c�� are the velocities of the elastic inverse “res-
tituting” collision, which are determined, for a given value of
n, using the collision rules with e=1. The inelastic part of
the collision integral is

C��
I �f��� = �

n
��1/e2�f���c�� ,c�� ,− x��� − f���c�� ,c�� ,− x����

��u� − u�� · n . �5�

While the elastic part of the collision operator is inherently
nonlocal in the velocity co-ordinates, the inelastic part can be
expressed in a gradient expansion, since the differences �c��
−c�� ���2�c�� � and �c�� −c�� ���2�c�� �. Therefore, C��

I is O��2�
smaller than C��

E .
In the present analysis, we use the molecular chaos

approximation to write f���x� ,x� ,c� ,c� , t�= f��x� ,c� , t�
�f��x� ,c� , t�. This assumption is relaxed in Part II, where
we consider the effects of correlations. The steady solution
for the Boltzmann equation is obtained using an expansion in
the small parameter �. In the leading approximation, the col-
lision integral is set equal to zero and the solution for the
distribution function is the Maxwell-Boltzmann distribution

F��c�� =
1

�2�T̄D/2�
exp
−

c�
2

2T̄
� , �6�

where T̄ is the mean temperature. The steady distribution is
expanded in a series in the small parameter � as

f�
s �c�� = F��c���1 + h��c��� . �7�

We define the stress tensor as G=��̇exey, and the first cor-
rection to the Boltzmann equation becomes

− ��̇cx
�F

�cy
= �

�

F�F�C���h� + h�� . �8�

Note that the effect of the inelasticity in the collision opera-
tor appears only in the O��2� correction to the Boltzmann
equation.

The hydrodynamic modes are obtained by perturbing the
distribution function:

f��c�� = f�
s �c���1 + f���c��� , �9�

where f��c� is a small perturbation. The contributions to
f��c�� can be separated into two parts, the first of which are
the “conserved variables” which are collisional invariants
�the sum of the conserved variables of the two particles re-
mains unchanged in a collision� and the “nonconserved vari-
ables.” Since the conserved variables are unchanged in a
collision, perturbations to the macroscopic fields correspond-
ing to these variables do not decay in the long-wave limit
and the decay rates of these perturbations goes to zero for
k→0. In contrast, the macroscopic fields corresponding to
the nonconserved variables decay over times scales compa-
rable to the inverse of the collision frequency. There are five
conserved modes in three dimensions for a system with elas-
tic interparticle collisions: the mass, the three components of
the momentum, and the energy. The Navier-Stokes equations
are obtained by multiplying the Boltzmann equation by the
particle mass, momentum, and energy and integrating over
the velocities of the particles. For definiteness, we define the
vector of conserved variables as

� = „1,�c�x/�T̄�,�c�y/�T̄�,�c�z/�T̄�,�D/2��c�
2 /T̄D� − 1�… ,

�10�

where D is the dimensionality. Equation �10� is applicable
for three dimensions; the vector of conserved variables for
two dimensions is obtained by removing the fourth element

�c�z /�T̄�. Note that the basis vector is defined to be ortho-
normal, so

�
�

F���I��J = �IJ. �11�

Here and in the following analysis, capital subscripts such as
I ,J , . . . denote elements of a matrix and repeated subscripts
imply a summation.

The dispersion relations for the conserved modes can be
evaluated in two ways. One is from the linearized Boltzmann
equation, which involves inserting Eq. �9� into the Boltz-
mann equation �1� and linearizing in the perturbation f�� . The
resultant equation is multiplied by the conserved modes and
integrated over velocity space to obtain the dispersion rela-
tions. The second is to use the Navier-Stokes equations,
which are obtained by multiplying the Boltzmann equation
by mass, momentum, and energy and integrating over the
particle velocity. Both of these give identical results for the
dispersion relations. Here, we use the linearized Navier—
Stokes equations to evaluate the growth rate of the hydrody-
namic modes, since the physical interpretation is easier. The
Navier-Stokes equations are

�	

�t
+ � · �	u� = 0 , �12�

	
 �u

�t
+ u · �u� = − �p + � · � , �13�
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	Cv
 �T

�t
+ u · �T� = � · �K � T� − p�� · u� + �:��u� − D ,

�14�

where 	, u, and T are the density, mean velocity, and tem-
perature fields, p is the pressure which is related to the den-
sity and temperature through an equation of state, K is the
thermal conductivity, and the specific heat Cv= �D /2�, where
D is the spatial dimension. The stress tensor � is

� = 
��u + ��u�+� + �
b − �2
/3��I�� · u� , �15�

where 
 and 
b are the shear and bulk viscosities, and the
superscript � denotes the transpose. The last term on the
right-hand side of the energy equation �14� is the rate of
dissipation of energy due to inelastic collisions, which is not
present for an elastic fluid. In the linear analysis, small per-
turbations are imposed on the density, mean velocity, and
temperature fields,

	 = 	̄�1 + 	�� ,

ux = T̄1/2���̇y + ux�� ,

uy = T̄1/2uy�,

uz = T̄1/2uz�,

T = T̄�1 + T�� , �16�

and the equations are linearized in the perturbations denoted
by the primes. The perturbations to the density, velocity, and
temperature fields also result in perturbations to the pressure,
viscosity, conductivity, and the rate of dissipation of energy.
The expressions for these can be simplified by realizing that
for a gas of hard particles, there is no intrinsic energy scale
for interparticle interactions. Consequently, the pressure has
to be proportional to the temperature, the viscosity and ther-
mal diffusivity are proportional to the square root of tem-
perature, and the rate of dissipation or energy is proportional
to the 3 /2 power of the temperature. Therefore, these can be
expressed as

p = 	̄T̄�p̄† + p	
†	� + p̄†T�� ,


 = �T̄1/2/dD−1��
̄† + 
̄	
†	� + �
̄†/2�T�� ,


b = �T̄1/2/dD−1��
̄b
† + 
̄	

†	� + �
̄†/2�T�� ,

K = �T̄1/2/dD−1��K̄† + K̄	
†	� + �K̄†/2�T�� ,

D = �	̄2dD−1�2T̄3/2��D̄† + D̄	
†	� + �3D̄†/2�T�� , �17�

where the overbar denotes the value of the variable in the
base flow and �	� 	̄���� /�	��	=	̄.

Some general comments can be made about the nature of
the coefficients in Eq. �17�, which is independent of whether
the system is two dimensional or three dimensional. For an

dilute gas of spherical monoatomic particles in both two and
three dimensions, the coefficients for the pressure assume
equal values, p̄†=1 and p̄	

†=1. In addition, the bulk viscosity
is zero, 
̄b

†=0, and the shear viscosity and thermal conduc-

tivity are independent of volume fraction, 
̄	
†= K̄	

†=0. From

energy balance at steady state, we find that D̄†= 
̄†�̇2. In
addition, since the dissipation is due to inelastic collisions,
the derivative of the dissipation rate with density is given by

D̄	
†=2D̄†. The values of coefficients in the dynamical coeffi-

cients obtained by truncating the Sonine polynomial expan-
sion at the first term differ in two and three dimensions. In
three dimensions, the values of the coefficients are 
̄†

= �5 /16���, 
̄	
†=0, 
̄b

†=0, 
̄b	
† =0, K̄†= �75 /64���, K̄	

†=0,

D̄†=4��, and D̄	
†=8��. These will be used for the numerical

calculations of the correlation functions a little later.
Before proceeding, we prescribe a nondimensionalization

procedure which considerably simplifies the notation. All ve-

locities are nondimensionalized by �T̄, and all lengths are
scaled by the mean free path �	̄dD−1�−1, where 	̄ is the mean
number density. These are the relevant velocity and length
scales in a dilute gas; the particle diameter enters the formu-
lation only indirectly through the mean free path. Dimen-
sional expressions for the transport coefficients can be recov-
ered at a later time by restoring suitable powers of the length
and velocity scales. The above equations �12�–�14� are lin-
earized in the perturbations and transformed into Fourier
space using the Fourier transform

�̃�k� =� dx exp�− ık · x����x� . �18�

The inverse Fourier transform is defined as

���x� = �
k

exp�ık · x��̃�k� , �19�

where the short form 	k is used for �2��−D	dk, where D is
the dimensionality. The dispersion relations for the density,
velocity, and temperature fields are

D	̃

Dt
+ ı�kxũx + kyũy + kzũz� = 0, �20�

Dũx

Dt
+ ��̇ũy = − p̄	

†ıkx	̃ − p̄†ıkxT̃ − 
̄†k2ũx − �̄kx�kxũx + kyũy

+ kzũz� + �1/2���̇
̄†ıkyT̃ , �21�

Dũy

Dt
= − p̄	

†ıky	̃ − p̄†ıkyT̃ − 
̄†k2ũy + �̄ky�kxũx + kyũy + kzũz�

+ �1/2���̇
̄†ıkxT̃ , �22�

Dũz

Dt
= − p̄	

†ıkz	̃ − p̄†ıkzT̃ − 
̄†k2ũz + �̄kz�kxũx + kyũy + kzũz� ,

�23�
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Cv
DT̃

Dt
= − K̄†k2T̃ + 2�
̄†�̇�ıkxũy + ıkyũx� + �1/2��2
̄†�̇2T̃

− �2D̄	
†	̃ − �3/2��2D̄†T̃ , �24�

where �̄= �
̄b
†+ 
̄† /3� and �D /Dt�= �� /�t�+��̇kx�� /�ky�. Note

that the wave vectors in the above equation are scaled by

	̄dD−1, and time is scaled by �T̄1/2	̄dD−1�−1. The above equa-
tions contain derivatives with respect to the wave vector in
the substantial derivative on the left-hand side. These can be
simplified by taking into account the turning of the wave
vector due to the mean flow. We define a time-dependent
wave vector in the y direction as

ky�t� = ky�0� − ��̇tkx, �25�

while the other two components of the wave vector are time
independent. When expressed in terms of the time-dependent
wave vector, the substantial derivatives on the left-hand side
of Eqs. �20�–�24� reduce to partial derivatives, thus removing
all derivatives with respect to the wave number in the con-
servation equation. However, this simplification comes at a
price, because the wave number is now a function of time.
With the definition of a time-dependent wave vector, the con-
servation equations can be reduced to the form

�

�t
�̃ + L · �̃ = 0, �26�

where the 5�1 matrix � is

�̃ =

	̃

ũx

ũy

ũz

�CvT̃

� �27�

and the 5�5 dispersion matrix L is a function of the wave
numbers and is also a function of time due to the dependence
of the wave vector on time. Note that the eigenvectors �̃ of
the macroscopic fields correspond to an average over the
distribution function of the eigenvectors of the microscopic
conserved variables,

�̃I = �
�

f���I, �28�

for all values of I, where the elements ��I are given in Eq.
�10�. The matrix L can be written as the sum of two parts,

L = Lelastic + Linelastic, �29�

Lelastic being the hydrodynamic matrix for an elastic fluid,
while Linelastic is the additional contribution for an inelastic
fluid. The two components are

Lelastic =

0 ıkx ıky ıkz 0

ıkx 
̄†k2 + �̄kx
2 �̄kxky �̄kxkz �ıkx/�Cv�

ıky �̄kxky 
̄†k2 + �̄ky
2 �̄kykz �ıky/�Cv�

ıkz �̄kxkz �̄kykz 
̄†k2 + �̄kz
2 �ıkz/�Cv�

0 �ıkx/�Cv� �ıky/�Cv� �ıkz/�Cv� �K̄†k2/Cv�
� , �30�

Linelastic =

0 0 0 0 0

− ı
̄	
†�̇ky 0 ��̇ 0 − �ı�/2�
̄†�̇ky

− ı
̄	
†��̇kx 0 0 0 − ��ı�/2�kx
̄

†�̇�
0 0 0 0 0

��2/�Cv��D̄	
† − 
̄	

†�̇2� �− 2ıky�
̄†�̇�/�Cv �− 2ıkx�
̄†�̇�/�Cv 0 �2�D̄† − 
̄†�̇2�
� . �31�

It should be noted that Eqs. �27�, �30�, and �31� are obtained
for a three-dimensional system; the equivalent expressions
for a two-dimensional system are obtained by removing the
fourth element in Eq. �27� and the fourth row and column in
Eqs. �30� and �31�.

A. Hydrodynamic modes for kš�

The O��0� solutions for the eigenvalues and eigenfunc-
tions are identical to the decay rates of the conserved modes

in a fluid of elastic particles. For an elastic system, there are
two propagating modes, for which the imaginary part of the
growth rate is proportional to k, while the real part is nega-
tive and proportional to k2. The other three modes are diffu-
sive, with real negative eigenvalues proportional to k2. Of
these two correspond to momentum diffusion perpendicular
to the direction of the wave vector, while the other corre-
sponds to thermal diffusion. Using an expansion in the pa-
rameter �, the eigenvalues correct to O��� are
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�1 = ıcsk +
1

2
��k2 + ��̇�kxky/k2�� ,

�2 = − ıcsk +
1

2
��k2 + ��̇�kxky/k2�� ,

�3 = 
̄†k2 − ���̇kxky/2k2� ,

�4 = 
̄†k2,

�5 =
K̄†p̄	

†k2

Cvcs
2 , �32�

where the speed of sound cs is

cs =� p̄†2 + p̄	
†Cv

Cv
�33�

and the sound damping constant � is

� =
1

2

 K̄†�Cp − Cv�

CpCv
+ �̄ +

4
̄†

3
� . �34�

In Eq. �32�, �1 and �2 are the growth rates of the propagating
modes, �3 and �4 are the growth rates for the transverse
momentum, and �5 is the growth rate for energy.

The calculation of the eigenfunctions of Eq. �26� is a little
more complicated, because the matrix L is a function of
time. Therefore, it is necessary to solve the implicit equation

LE = E� −
�E

�t
, �35�

where E is the n�n matrix of generalized eigenvectors of
the matrix L, which contains the eigenvectors as its columns,
and � is the n�n diagonal matrix which contains the eigen-
values of L as its diagonal elements. If we insert Eq. �35�
into the differential equation �26�, we obtain

�

�t
�̃ + ��̃ = 0, �36�

where the vector �̃ is related to the vector �̃ by

�̃ = E−1�̃ , �37�

where �̃ is given in Eq. �27�. Equation �36� can now be
solved explicitly, since � is a diagonal matrix, and the varia-
tion of the density, velocity, and temperature with time can
be obtained using Eq. �37�. Equation �35� is best solved us-
ing an iterative procedure, which is outlined in the Appendix.
This is designed to ensure that Eq. �35�, which is a matrix
equation, is a well-posed equation and satisfies all the solv-
ability conditions. If we attempt to solve the matrix equation
�35� as a set of differential equations, then the time deriva-
tive of one element of the matrix would depend on other
elements, and it would be difficult to disentangle these and
ensure that the solvability condition is satisfied. Using the
expansion, we have ensured that the solvability conditions
for both the diagonal and off-diagonal elements are satisfied

at each order in the expansion, so that a solutions for the
eigenfunctions exist and they are unique �subject to specified
initial conditions�.

B. Hydrodynamic modes for k™�

Implicit in the calculation of the eigenvalues �32� and
eigenvectors �A7� has been the assumption that ��k. How-
ever, k is a variable in the above calculation and it varies
from 0 to the upper cutoff �inverse of the microscopic scale�.
One important wave vector domain, from the perspective of
the present calculation, is the limit k→0 at finite but small �.
Note that the first correction to the eigenvalues �1, �2, and �4
is proportional to � and this correction becomes large com-
pared to the leading-order solution for k��. In addition, the
first correction to the eigenvectors in Eqs. �A8� and �A9� is
O�� /k� in the small-wave-number limit and this term be-
comes large compared to the leading-order contribution for
k��. The procedure adopted to obtain the eigenvalues �32�
was to first expand in k after setting �=0, to calculate the
leading-order solutions, and then to insert these into the gov-
erning equations to obtain the first correction. For the limit
k��, it is necessary to first take the limit k→0 at a fixed
value of � and then expand the solutions in a series in �. This
procedure is outlined in the reminder of this section.

This expansion is facilitated by realizing that for k��, the
rate of conduction of energy in the energy balance equation
�proportional to k2�, is small compared to the rates of pro-
duction and dissipation �proportional to �2�. In this case, en-
ergy is no longer a conserved variable and the temperature
perturbations are enslaved to the density and the velocity
perturbations. This can be understood by returning to exam-
ine the energy balance equation for the fluctuations, Eq. �24�,
in the limit k→0. If we retain only linear terms in the equa-
tion, we obtain

Cv
�T̃

�t
= ��1/2��2
̄†�̇2 − �3/2��2D̄†�T̃ − �2D̄	

†	̃ . �38�

From energy balance for the mean flow, the rates of shear

production and inelastic dissipation are related by 
̄†�̇2= D̄†.
Therefore, the energy balance equation �38� reduces to

Cv
�T̃

�t
+ �2D̄†T̃ = − �2D̄	

†	̃ . �39�

The above equation can be solved to obtain T̃ as a function
of 	̃ in the limit k��:

T̃�t� = exp�− sTt�T̃�0� + �
0

t

dt� exp�− sT�t − t���

��− Cv
−1�2D̄	

†	̃�t��� , �40�

where the relaxation rate sT for the temperature fluctuations

is given by ��2D̄† /Cv�. It should be noted, from Eq. �40�, that
the relaxation rate for temperature fluctuations is finite and
does not decay to zero in the limit k→0. This is because
energy is a nonconserved �fast� variable in this limit. In con-
trast, the relaxation rate for the density fluctuations does go
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to zero in the limit k→0 and the results obtained a little later
in Eq. �44� below indicates that it decreases proportional to
k2/3. Therefore, the relaxation rate for the energy fluctuations
is fast compared to that for density fluctuations in the limit
k→0.

When the relaxation rate for temperature fluctuations is
fast compared to that for density fluctuations, Eq. �40� can be
simplified when we are considering time scales comparable

to the time scale for density fluctuations �the slow time�.
Over time scales comparable to the relaxation time of the
density fluctuations, sTt�1, because the relaxation time for
density fluctuations is large compared to sT

−1. In this case, the
first term on the right-hand side of Eq. �40� is negligible. In
the second term on the right, we use a Taylor series expan-
sion in time for 	̃ to obtain

T̃�t� = −
�2D̄	

†

Cv
�

0

t

dt� exp�− sT�t − t���
	̃�t� + �t� − t��d	̃�t*�
dt*

�
t*=t

+
�t� − t�2

2
�d2	̃�t*�

dt*2 �
t*=t

+ ¯ �
= −

�2D̄	
†

Cv

	̃�t��

0

t

dt� exp�− sT�t − t��� + �d	̃�t*�
dt*

�
t*=t
�

0

t

dt�t� − t�exp�− sT�t − t��� + �d2	̃�t*�
dt*2 �

t*=t

��
0

t

dt
�t� − t�2

2
exp�− sT�t − t��� + ¯ � . �41�

When the relaxation time for density perturbations is large
compared to that for temperature relaxation—that is,
sTt�1—the terms proportional to exp�−sTt� can be neglected
in Eq. �41� and the result is

T̃�t� = −
�2D̄	

†

Cv

 	̃�t�

sT
+

1

sT
2�d	̃�t*�

dt*
�

t*=t
+

1

sT
3�d2	̃�t*�

dt*2 �
t*=t

+ ¯ � . �42�

Since the perturbation to the density changes over a time
scale large compared to sT

−1, the first term on the right in Eq.
�42� is the largest term and the others can be neglected. In
this case, the equation for the temperature perturbation is

T̃�t� = −
�2D̄	

†Cv
−1	̃

sT
= −

D̄	
†	̃

D̄†
= − 2	̃ , �43�

where the last step follows from the relation D̄	
†=2D̄† be-

cause the rate of dissipation of energy is proportional to 	2 in
the dilute limit. It should be noted that Eq. �43� does not
imply that temperature has the same relaxation rate as den-
sity or that temperature is a slow variable. On the contrary,
Eq. �43� was obtained as an approximation of Eq. �40� in the
limit where the relaxation rate for the temperature is fast
compared to that for the density perturbations, so that the
temperature perturbation relaxes to the value required to sat-
isfy the right side of Eq. �39� over a short time comparable to
the inverse of the relaxation rate sT. Finally, it should be
noted that Eq. �43� is an approximation correct to leading
order in the limit k→0; there are higher corrections which
are incorporated in the calculation when we evaluate the
higher-order contributions to the eigenvalues, but these are
not specified here.

The four solutions for the eigenvalues of the hydrody-
namic matrix, obtained using an expansion in k in the limit
k��, are as follows:

�1 = k2/3s0 +
k4/3

3s0
�1 + ��̇�kxky/k2���̄ − 2
̄†�� +

k2��̄ + 2
̄†�
3

,

�2 = �− 1�2/3k2/3s0 +
k4/3

3�− 1�2/3s0
�1 + ��̇�kxky/k2���̄ − 2
̄†��

+
k2��̄ + 2
̄†�

3
,

�2 = �− 1�4/3k2/3s0 +
k4/3

3�− 1�4/3s0
�1 + ��̇�kxky/k2���̄ − 2
̄†��

+
k2��̄ + 2
̄†�

3
,

�4 = 
̄†k2, �44�

where

k2s0
3 − �kxky��D̄	

†p̄†/
̄†�̇� − �p̄†
̄	
†�̇/
̄†� − p̄	

†�̇�

− �2kx
2��3
̄	

†�̇2/2� − �D̄	
†/2�� = 0. �45�

For a dilute granular gas, in the near elastic limit, using the
numerical coefficients provided after Eq. �17�, the equation
for s0 is

k2s0
3 − �kxky�̇ + �2kx

2
̄†�̇2 = 0. �46�

The fifth eigenvalue, which corresponds to energy fluctua-
tions, has a finite value sT in the limit k→0, as given in Eq.
�40�.
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It is of interest to examine whether the eigenvalues calcu-
lated in Eq. �44� are unchanged by a reduction of the type
given in Eq. �43�—that is, whether the eigenvalues of the
conserved modes obtained using the reduction in Eq. �43� are
identical to those which would have been obtained using the
complete hydrodynamic matrix in Eqs. �30� and �31�. This
issue has been examined earlier by the author �14�, and it has
been found, by numerical solution of the complete hydrody-
namic equations �30� and �31�, that the leading-order solu-
tions for the eigenvalues for the conserved modes are iden-
tical to those obtained using a reduction of the type given in
Eq. �43� in the limit k��. In addition, the transition from the
regime k�� �where it is appropriate to treat energy as a
conserved variable� to the regime k�� �where it is appropri-
ate to treat energy as a nonconserved variable� has also been
studied by a numerical solution of the complete hydrody-
namic equations.

There are several important aspects of the eigenvalues in
Eqs. �44� which merit further discussion.

�i� There are three coupled modes, whose growth rate is
proportional to k2/3 in the small-k limit. These correspond to
a combination of the density, the longitudinal momentum,
and the transverse momentum in the plane of shear. The
fourth mode, which is diffusive, has the same growth rate as
that for the transverse shear modes in an elastic fluid; from
the eigenvector for this mode evaluated a little later, it can be
inferred that this mode corresponds to the transverse momen-
tum in the velocity-vorticity plane.

�ii� The three coupled modes s1, s2, and s3 have contribu-
tions proportional to k2/3, k4/3, and k2 in the limit k→0.

�iii� For the three coupled modes, the leading-order
growth rates have equal magnitudes and their values are ro-
tated by an angle 2� /3 in the complex plane. If s0 is posi-
tive, then there is one mode with growth rate on the positive
real axis which grows exponentially at short time, while the
other two modes decay exponentially and oscillate at short
times. If s0 is negative, there is one mode on the negative real
axis which decays exponentially, while the other two have
positive real components and exhibit an oscillatory growth.

�iv� However, it turns out that the contribution propor-
tional to k2 is always negative, and so this damps out pertur-
bations in the long-time limit in a rotating reference frame in
which the wave vector is given by Eq. �25�.

�v� The k2/3 behavior of the growth rate can be justified as
follows. If we retain terms up to leading order in O�k� and
O���, the mass and momentum conservation equations re-
duce to

�t	̃ + ıkxũx + ıkyũy + ıkzũz = 0, �47�

�tũx + ��̇ũy + �− �2p̄† − p̄	
†�ıkx + ı��̇ky
̄

†�	̃ = 0, �48�

�tũy + �− �2p̄† − p̄	
†�ıky + ı��̇kx
̄

†�	̃ = 0, �49�

�tũz − ıkz�2p̄† − p̄	
†�	̃ = 0. �50�

From the above equation, the dispersion relation for the ei-
genvalues � can easily be obtained as

�3 + �2D2 + �D1 + D0 = 0, �51�

where the coefficients in the dispersion relation are

D2 = − �2
̄† + �̄�k2,

D1 = − �k2�2p̄† − p̄	
†� − kxky��̇�2
̄† − �̄�� ,

D0 = − ��̇�kxky�2p̄† − p̄	
†� − kx

2��̇
̄†� . �52�

It is easy to verify that there are three solutions for the
growth rates of the above equations which are proportional
to k2/3 in the limit k→0, and the solutions for these three are
the leading-order solutions in Eqs. �44�.

In fact, the k2/3 behavior results from a coupling between
the density and the x and y momentum equations in Eqs.
�47�–�49�. If we retain only the time derivatives and the
terms that are lowest order in the wave number in these
equations, we obtain, for perturbations along the x-y plane,

�t	̃ + ıkxũx + ıkyũy = 0, �53�

�tũx + ��̇ũy = 0, �54�

�tũy + �− �2p̄† − p̄	
†�ıky + ı��̇kx
̄

†�	̃ = 0. �55�

In the above equations, the streamwise velocity ũx is coupled
to the cross-stream velocity ũy only due to the advection term
caused by the mean flow. Therefore, pressure and viscous
effects are small in the x momentum equation to leading
order in the wave number, so the rate of change of momen-
tum in the x direction is due to advection alone. In the y
direction, the rate of change of momentum is due to the
dependence of the pressure and viscosity on the density. If
we combine Eqs. �54� and �55�, we obtain the x momentum
equation as

�2ũx

�t2 + ��̇�− �2p̄† − p̄	
†�ıky + ı��̇kx
̄

†�	̃ = 0 �56�

and we obtain a third-order equation for the density of the
form

�3	̃

�t3 + ��̇�− �2p̄† − p̄	
†�kxky + �2�̇2kx

2
̄†�	̃ = 0. �57�

Clearly, the above equation provides a growth rate that scales
as k2/3. The critical difference between a sheared and an un-
sheared fluid is that there is the advective term in the x mo-
mentum equation of a sheared fluid that is independent of k
in the limit k→0; in contrast, in an unsheared fluid, the
coefficients of all terms �apart from the time derivative� are
O�k� or O�k2�. Due to the advective term, the coefficient of
the second term on the left-hand side of Eq. �57� is k2; in
contrast, the coefficient would be k3 or a higher power of k if
all terms in the matrix had coefficients of O�k� or O�k2�.
Therefore, we find that the growth rate is proportional to k2/3

for k→0.
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C. Modes with kx=0

It should be noted that the solutions for the eigenvalues in
Eqs. �44� are not valid for kx→0. This is because s0 goes to
zero in this limit and the O�k4/3� corrections to �1−�3 di-
verge. The origin of the singularity can be traced back to the
leading-order solution of the dispersion relation �51�, where
we had neglected the second and third terms proportional to
s2 and s, respectively, on the left-hand side, since these are
subdominant for s�k2/3. For kx=0, we find that the fourth
term on the left is also equal to zero, resulting in the solution
s0=0 in Eqs. �44�. In order to rectify this, it is necessary to
return to the hydrodynamic matrix, Eqs. �30� and �31�, and
set kx=0. The resulting dispersion matrix is solved in order
to obtain the growth rates as a function of ky and kz. The
solutions obtained in this manner, correct to O�k2�, are

�1 = +�
− 2p̄†ky
2 +

�ky
2 + kz

2��D̄	
†p̄† − �̇2�p̄	

†
̄† + 
̄	
†p̄†��


̄†�̇2 � ,

�1 = −�
− 2p̄†ky
2 +

�ky
2 + kz

2��D̄	
†p̄† − �̇2�p̄	

†
̄† + 
̄	
†p̄†��


̄†�̇2 � ,

�3 = − 
̄†�ky
2 + kz

2� ,

�4 = − 
̄†�ky
2 + kz

2� . �58�

The roots �1 and �2 are imaginary for kz=0—i.e., for pertur-
bations along the gradient direction—indicating that there
are propagating modes in this direction, which are stabilized
by viscous effects. In three dimensions, there is one unstable
and one stable mode for perturbations in the vorticity direc-
tion �kx=ky =0�. The solutions �58� are applicable only in the
wave number domains where they are large compared to the
solutions �45�. It is easily verified that �1 and �2 in Eq. �58�
are larger than the equivalent solutions in Eq. �45� only for

kx
1/3ky

1/3��ky
2+kz

2 or for k̂x�k, where k̂x is the x component

of the unit vector k̂ along the direction of the wave vector k.
Similarly, the solution �3 in Eqs. �58� is larger than the
equivalent solution in �45� only for kx

1/3ky
1/3� �ky

2+kz
2� or for

k̂x�k4. The eigenvectors corresponding to the eigenvalues
�58� can be easily evaluated correct to leading order in an
expansion in the wave number:

E = �

0

�1

��̇

0
�


0

�2

��̇

0
�


0

0

− kz

ky

�

1

0

0

0
�� . �59�

This completes the calculation of the eigenvalues and
eigenvectors of the hydrodynamic equations for both k��
�where energy is a conserved variable� and k�� �where en-
ergy is treated as a nonconserved variable�. In Part II, we

will calculate the renormalization of the transport coeffi-
cients from the ring-kinetic equation using these hydrody-
namic modes. Before this, we analyze the autocorrelation
functions for the conserved variables in a linear shear flow.

D. Time correlation functions

The time correlation functions of the conserved variables
are evaluated in the present section in order to illustrate the
differences between an elastic fluid and a sheared inelastic
fluid. In an elastic fluid, there are five conserved modes: the
density, the three components of the momentum, and the
energy. The eigenvalues for these modes are given in Eq.
�32� with �=0, while the eigenfunctions are given in Eqs.
�A7� and �A8� in the Appendix. For a sheared inelastic fluid
with k��, there are four hydrodynamic modes: the mass and
the three components of the momentum. Energy is not con-
served, since there is a local balance between the rates of
production and dissipation of energy. The eigenvalues in this
case are given by Eqs. �44�, and the eigenfunctions are given
by Eqs. �A10� and �58�. If we know the initial value of the
set of hydrodynamic variables at the initial time t=0, then
the system can be propagated forward in time to determine
the values of the hydrodynamic variables at a later time t,
using the eigenvalues and eigenvectors derived here. So the

value of any of the hydrodynamic variables �̃I in Eq. �27�, at
time t, can be written as

�̃I„k�t�,t… = EIK„k�t�,t…
̃K„k�t�,t… , �60�

where 
̃(k�t� , t) is defined in Eq. �37� and E, the array of
eigenvectors, are defined in the Appendix in Eqs. �A7� and
�A8� for k�� and in Eqs. �A10� and �A11� for k��. The

functions 
̃K(k�t� , t) satisfy Eq. �36�, where � is a diagonal

matrix. Therefore, the time propagation of 
̃K(k�t� , t) can be
expressed as


̃K„k�t�,t… = exp
�
0

t

dt��K„k�t��,t�…�
̃K„k�0�,0…

= exp
�
0

t

dt��K„k�t��,t�…�EKL
−1
„k�0�…�̃L„k�0�,0… ,

�61�

where the function 
̃K(k�0� ,0) is once again be expressed in

terms of �̃L(k�0� ,0) using Eq. �37�. Inserting Eq. �61� into

Eq. �60�, we obtain evolution equation for �̃I(k�t� , t) as

�̃I„k�t�,t… = EIK„k�t�,t…exp
�
0

t

dt��K„k�t��,t�…�
�EKL

−1
„k�0�,0…�̃L„k�0�,0… . �62�

The time correlation for �I can be written, using Eq. �62�,
as
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��̃I„k�t�,t…�̃J„k��0�,0…� = �EIK„k�t�,t…
̃K„k�t�,t…�̃J„k��0�,0…�

=�EIK„k�t�,t…exp
�
0

t

dt��K„k�t��,t�…�
̃K„k�0�,0…�̃J„k��0�,0…�
= EIK„k�t�,t…exp
�

0

t

dt��K„k�t��,t�…�EKL
−1
„k�0�,0…��̃L„k�0�,0…�̃J„k��0�,0…�

= EIK„k�t�…exp
�
0

t

dt��K„k�t��,t�…�EKL
−1 �„k�0� + k��0�…�LJ, �63�

where 
̃K is the Kth component of the vector �̃ in Eq. �37�
and ��̃L(k�0� ,0)�̃J(k��0� ,0)� represents the equal-time cor-

relation function. Since the basis functions �̃I are defined to
be orthonormal, the equal-time correlation function is an
identity matrix. In the above equation, capital subscripts are
used to denote the components of a matrix and repeated in-
dices denote a summation. In the leading approximation,
where the distribution function is a Maxwell-Boltzmann dis-
tribution, the equal-time correlation function matrix is an
identity matrix, since the functions �I are normalized. Using
this and from a knowledge of the eigenvalues �K and eigen-
vectors EIK, the autocorrelation functions can be obtained.
We do not provide the details, because the algebra is tedious
but straightforward. The final results for the autocorrelation
functions for the velocity in the flow and gradient directions,
in the leading approximation in small �, are

�ũx„k�t�,t…ũx„− k�0�,0…� = �1/3��exp�− S0 − S1 − S2�

+ exp��− 1�2/3S0 + �− 1�4/3S1 + S2�

+ exp��− 1�4/3S0 + �− 1�2/3S1 + S2��

�ũy„k�t�,t…ũy„− k�0�,0…�

= �s0„k�0�…/3s0„k�t�…��exp�− S0 − S1 − S2�

+ exp��− 1�2/3S0 + �− 1�4/3S1 + S2�

+ exp��− 1�4/3S0 + �− 1�2/3S1 + S2�� ,

�ũz„k�t�,t…ũz„− k�0�,0…� = exp�− 
̄†dk2t� �64�

where s0 is given as a function of k�t� in Eq. �45� and

S0�t� = �
0

t

dt�s0�t�� ,

S1�t� = �
0

t

dt�
1

3s0�t��
�k�t��2 + ��̇kxky�t����̄ − 2
̄†�� ,

S2�t� = �
0

t

dt�
k�t��2��̄ + 2
̄†�

3
, �65�

and ky�t� is given in Eq. �25�. It should be noted that the
correlation functions in Eqs. �64� are the largest contribu-

tions in the limit k→0, and there are additional terms which
are higher order in k not included in Eqs. �64�.

The decay of the z component of the velocity autocorre-
lation function in Eqs. �64� is the same as that in an elastic
fluid, and so we do not examine this further. The Fourier
transforms of the velocity autocorrelation functions in the
flow and gradient directions, �ux(k�t� , t)ux(−k�0� ,0)� and
�uy(k�t� , t)uy(−k�0� ,0)�, are shown as a function of time for
specific values of the wave numbers kx and ky in Fig. 1. It
should be noted that this calculation, using Eqs. �64�, is cor-
rect only to leading order in the parameter �. In addition, this
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FIG. 1. The scaled Fourier transform of the velocity autocorre-
lation function, �ux(k�t� , t)ux(−k�0� ,0)� �a� and �uy(k�t� , t)
�uy(−k�0� ,0)� �b� as a function of scaled time t*= t��̇k2/3 for �

=0.1, k=0.01 �solid line� and k=0.001 �dashed line�, for k̂x

= �1 /�2�, k̂y = �1 /�2� ���; k̂x= �1 /�2�, k̂y = �−1 /�2� ���; k̂x=1, k̂y

=0 ���.
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calculation is carried out using a time-dependent wave vector
k, as shown in Fig. 1. In Fig. 1�b� for the velocity autocor-
relation function in the gradient direction, the initial sharp
increase is because of the factor s0(k�t�) in the denominator
of Eqs. �64� is going through zero. This is an artifact of our
use of the leading-order approximation for the eigenvalue
matrix in Eqs. �64�; a more careful analysis would involve a
matched asymptotic approximation in which a different ap-
proximation is used for the regions where s0(k�t�) passes
through zero. However, the singularity is integrable, since
s0(k�t�)� t1/3, and so we do not use a more refined approxi-
mation here.

There are several interesting features in Fig. 1. The first is
that there are large fluctuations in the autocorrelation func-
tion for ux. In contrast to an equilibrium fluid, where the
autocorrelation function has a maximum value of 1 at t=0,
the autocorrelation function has a magnitude larger than 1 in
the present case. This is because, as noted below Eq. �45�,
there are one or two unstable modes at short time in the
present system, which cause a transient growth of perturba-
tions in a reference frame rotating with the wave vector. In
addition, two of the roots for the growth rate have imaginary
parts, leading to the oscillatory nature of the autocorrelation
function. It is important to note that the amplitude of fluc-
tuations increases as the wave number is decreased, indicat-
ing that the modes that experience the largest transient
growth are those with the largest wavelength. There are os-
cillations in the autocorrelation function for uy as well, but
these are much smaller in magnitude. This indicates that the
fluctuations are highly anisotropic, with the fluctuations in
the flow direction having the largest magnitude in the long-
wave limit.

In order to quantify the growth of fluctuations, we can
define an integral time for the decay of fluctuations as

Iij�k� = �
0

�

dt�ui„k�t�,t…uj„− k�0�,0…� . �66�

The integral times for the fluctuations in the flow and gradi-
ent directions are shown in Fig. 2. It is obvious that the
integral time is the largest for the fluctuations in the flow
directions, while that for fluctuations in the gradient direction
is much smaller. The scaling for the integral time in the limit
k→0 can be inferred as follows. Naively, we would expect
the fluctuation amplitude to attain a maximum for k2/3t
�k2t3, because s0 in Eqs. �44� is proportional to k2/3 in the
short-time limit, whereas the decay rates are proportional to
�̇2k2t2 in the long-time limit in Eqs. �44�. This balance would
give Ixx�k−2/3 for k→0. However, the autocorrelation func-
tions in Fig 2 shows an increase closer to k−4/5. This is be-
cause s0 in Eq. �45� contains a contribution proportional to
�kxky�1/3, which is increasing with time due to the linear in-
crease of ky with time in Eq. �25�. Therefore, the initial
growth rate is proportional to k2/3t1/3, while the decay rate in
the long-time limit is proportional to k2t2. A balance between
these two provides the scaling Ixx�k−4/5, as observed in Fig.
2. The integral time Iyy shows a smaller increase, because the
magnitude of the autocorrelation function does not show

large fluctuations in Fig. 1, but this is also consistent with the
k−4/5 scaling law.

The long-time decay of the velocity autocorrelation func-
tion can be determined by inverting the Fourier transform
shown in Fig. 2. We do not carry out the above integrals
numerically, but rather restrict our attention to determining
the scaling of the autocorrelation functions in the long-time
limit. For the purposes of the calculation, we can divide the
wave number space into two domains: the first for kx�1
where the growth rates of the hydrodynamic modes are given
by Eq. �45� and the second along the gradient-vorticity plane
where kx→0, and the solutions for the growth rate are given
by Eq. �58�. In the first region, the dominant terms in the
exponentials in Eqs. �64� have the asymptotic behavior
exp�const�k2/3t4/3� in the short-time limit and
exp�−
̄†�̇2k2t3� in the long-time limit, where const is a con-
stant. Due to the rapid decay in the long-time limit, an esti-
mate of the integral over the wave number can be obtained
by using the short-time limit and cutting off the integral at
the point where there is a crossover. There is a crossover
between these two limiting behaviors for k���̇t�−5/4, as
shown in Fig. 2. If we use this crossover as the cutoff, it can
easily be verified that

�ux„x�t�,t…ux„x�0�,0…� � ��̇t�−5D/4. �67�

In three dimensions, the growth rate perpendicular to the
plane of flow, �4 in Eq. �45�, is proportional to k2. In this
case, the decay of the Fourier transform of the autocorrela-
tion function for the velocity component uz decays propor-
tional to exp�−
̄†k2t� at short time and proportional to
exp�−�
̄†k2�̇2t3 /3�� in the long-time limit; there is no cross-
over in wave number space in this case. Therefore, the auto-
correlation function for the component uz also has the decay

�uz„x�t�,t…uz„x�0�,0…� � ��̇t�−3D/2 �68�

in the long-time limit.
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I x
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I y
y

FIG. 2. The integral times Ixx �solid lines� and Iyy �dashed lines�
as a function of wave number k for k̂x= �1 /�2�, k̂y = �1 /�2� ���;
k̂x= �1 /�2�, k̂y = �−1 /�2� ���; k̂x=1, k̂y =0 ���. The dotted line
shows a slope of −4 /5.
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The estimation in Eq. �67� has not incorporated the do-
mains in wave number space where the decay rate is given
by Eq. �58�. These can be estimated as follows. If we use Eq.
�63� for the autocorrelation function, along with Eqs. �58�
and �59� for the growth rates and eigenvectors, we obtain the
following expressions for the Fourier transforms of the auto-
correlation functions:

�ũx„k�t�,t…ũx„− k�0�,0…� = �1/2��exp��1t� + exp��2t�� ,

�ũy„k�t�,t…ũy„− k�0�,0…� = �1/2��exp��1t� + exp��2t�� ,

�ũz„k�t�,t…ũz„− k�0�,0…� = exp�− 
̄�ky
2 + kz

2�t� . �69�

The value of the autocorrelation function is obtained by in-
tegrating the above functions over the wave number space
over which these are the dominant terms. The autocorrelation
functions in the x and y directions are proportional to
	k exp��const� ı�ky

2+kz
2t�, where const is a constant. While

the integration is carried out over the entire ky-kz plane, there

is a cutoff for the integration in the kx coordinate for k̂x�k.
Due to this, the integral for the autocorrelation func-
tion over wave number space is of the form
	kD+1dk exp��const� ıkt�, which decreases proportional to
t−�D+1�, where D is the dimensionality of the system. There-
fore, for the autocorrelation functions along the flow and
gradient directions, we obtain

�ux„x�t�,t…ux„x�0�,0…� � �uy„x�t�,t…uy„x�0�,0…� � ��̇t�−�D+1�.

�70�

This decrease is proportional to t−3 in two dimensions which
is identical to Eqs. �67� and �68�, and is proportional to t−4 in
three dimensions, which is slightly slower than that in Eqs.
�67� and �68�. The autocorrelation function in the z direction
in Eq. �69� decays proportional to exp�−
̄†k2t�. The cutoff in

the wave number space for this mode is k̂x�k4. Therefore,
when the autocorrelation function for this mode is integrated
over wave number space, we obtain an integral of the form
	kkD+3dk exp�−
̄†k2t�, which is proportional to t−�D+4�/2.
Therefore, the equivalent of Eq. �68� for this case is

�uz„x�t�,t…uz„x�0�,0…� � ��̇t�−�D+4�/2. �71�

In two dimensions, this contribution to the autocorrelation
function decays as t−3, which is identical to Eqs. �67� and
�68�, while in three dimensions, the decay is proportional to
t−7/2, which is slightly slower than that in Eq. �68�.

III. CONCLUSIONS

The growth rates and eigenvectors for the linear hydrody-
namic modes of a sheared inelastic fluid were calculated in
Sec. III. It was found that the solutions for the growth rate
depend on the relative magnitudes of the wavelength of the
fluctuations and the “conduction length” � / �1−e�1/2, where
� is the mean free path and e is the coefficient of restitution.
If the wavelength is small compared to the conduction
length, then the rate of conduction of energy is large com-
pared to the rate of dissipation, and it is appropriate to treat

energy as a conserved variable. In this case, we recover the
solutions of Lutsko and Dufty �10� for the growth rates of the
hydrodynamic modes. The eigenvectors of the collision op-
erator are also identical to Lutsko and Dufty �10� in the lead-
ing approximation in the small-k limit and are found to be
form an orthonormal basis set. However, for the higher cor-
rections, the eigenvectors are obtained by solving a differen-
tial equation in time; this is because the wave vector in the
linear hydrodynamic matrix is time dependent. The proce-
dure for obtaining the higher corrections was formulated, and
the first correction for the eigenvector was also explicitly
calculated.

In the limit where the wavelength of fluctuations is large
compared to the conduction length, the rate of conduction in
the energy balance equation is small compared to the rates of
production and dissipation. In this case, energy is a noncon-
served variable and the only conserved variables are the
mass and the three components of the momentum. The scal-
ing of the growth rates with wave number turns out to be
very different in this case. As was shown earlier �14�, there
are three coupled modes for fluctuations in density and mo-
mentum in the plane of the shear. The growth rates of these
modes are proportional to k2/3 in the limit k→0. Either one
or two of these modes are unstable in the short-time limit;
however, these modes are stabilized at long times due to the
turning of the wave vector. The fourth mode is a transverse
diffusion mode, with decay rate proportional to k2 in the
limit k→0. The eigenvectors for these modes were also
evaluated; in contrast to the eigenvectors for an elastic fluid,
the leading-order eigenvectors in this case are not orthonor-
mal. In an elastic fluid, the k2 dependence of the decay rates
of the hydrodynamic modes results in the long-time tails in
the velocity autocorrelation functions, which decay propor-
tional to t−1 and t−3/2 in two and three dimensions, respec-
tively. In an inelastic fluid, in contrast, the k−4/5 dependence
of the growth rates implies that the velocity autocorrelation
function for the velocity in the flow and gradient directions
decays proportional to t−5/2 in two dimensions and propor-
tional to t−15/4 in three dimensions. The only exception is for
perturbations with kx=0 �along the gradient-vorticity plane�
for which the decay rates are proportional to t−�D+1�. The
autocorrelation function for the velocity in the vorticity di-
rection shows a decay proportional to t−3 in two dimensions
and t−7/2 in three dimensions.

An earlier study �31� predicted a scaling of t−3D/2 for the
long-time tails of the velocity autocorrelation function. This
was erroneous because of the assumption that the crossover
from the short-time growth to the long-time decay would
occur at k2/3�k2t2 for the growth rates in Eqs. �44�. How-
ever, Eq. �45� shows that the growth rate in the short-time
limit is actually k2/3t1/3, due to the dependence of ky on time.
Due to this, the crossover occurs at k2/3t1/3�k2t2, resulting in
a long-time decay proportional to t−5D/4. This has been veri-
fied from the scaling of the wave-number-dependent integral
time in Fig. 2. In experiments or simulations, the distinction
between these two scalings would be difficult to distinguish
because it would be necessary to track the decay of the au-
tocorrelation function over three to four orders of magnitude,
which would require an unrealistically large number of
samples for statistical averaging.
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While the calculations have provided us with expressions
for the eigenvalues and eigenvectors, the calculation has in-
volved an expansion in the parameter �. In addition, it is
necessary to calculate the eigenvectors iteratively, since the
dispersion matrix is dependent on time. Due to these disad-
vantages, the procedure adopted here is not suitable for ob-
taining quantitative results, and more work has to be done to
obtain better formulations. Another disadvantage is that the
solutions for the eigenvalues and eigenvectors are not uni-
formly valid throughout the domain. The expressions for the
growth rates obtained for kx /k�1 diverge in the limit kx /k
→0, and it is necessary to carry out a different asymptotic
analysis in the latter regime. Another issue that needs further
investigation is the dynamics of perturbations with kx=0.
The solutions obtained here, as well as earlier solutions �14�,
indicate that perturbations in the vorticity direction are un-
stable in the long-time limit while the integral over the wave
vector space for these unstable modes was found to yield a
finite result for the autocorrelation function based on scaling
arguments. This result needs to be examined by further cal-
culations where uniform approximations for the dispersion
relations valid throughout the wave number domain are used.
Matched asymptotic expansions may be one way to proceed.

The present results are used to determine the effect of
correlations on the dynamics of a dilute sheared inelastic
fluid in Part II.
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APPENDIX: EIGENVECTORS OF THE HYDRODYNAMIC
MATRIX

Here, we discuss the solution of the matrix differential
equation �35� for a system where the eigenvalue matrix L is
a function of time due to the time dependence of the wave
vector. In this case, the eigenvalue matrix � is also depen-
dent on time.

It is difficult to solve Eq. �35�, in general, to obtain the
matrix E. Progress can be made by realizing �� /�t�
���̇kx�� /�ky�, since the dependence of E on time is only
through the dependence of ky on time in Eq. �25�. Therefore,
we can use an expansion of E=E�0�+E�1�+¯ and expand
Eq. �35� to write

LE�0� = E�0�� ,

LE�i� = E�i�� −
�E�i−1�

�t
, �A1�

for all i�1. While the above expansion appears uncon-
trolled, it should be noted that �� /�t����̇kx�� /�ky�, and so
the above expansion is a asymptotic in the parameter �,
though not in wave number. However, we prefer not to ex-
pand L and � in �, as one would do in an asymptotic expan-
sion, since Eqs. �A1� can be solved using the complete forms
of L and �.

Equations �A1� are inhomogeneous equations which have
to be solved for E�i� at each order i. In order to solve these, it
is first necessary to establish that the equations satisfy the
solvability criteria. We first consider the solution for the first
correction �i=1� in Eqs. �A1�:

LE�1� = E�1�� − �tE
�0�. �A2�

If we rewrite the first correction to the generalized eigenvec-
tor as

E�i� = E�0�E*
�i�, �A3�

we obtain

E*
�i�� − �E*

�i� = ��E�0��−1�tE
�0��E*

�i−1� + �tE*
�i−1�. �A4�

The above equation is an inhomogeneous equation, which
has to be solved for E*

�i�. The following points should be
noted about solving the equation.

�i� The left-hand side of Eq. �A4� is symmetric if E*
�1� is

antisymmetric and it is antisymmetric if E*
�1� is symmetric.

Therefore, the symmetric part of the solution for E*
�1� de-

pends on the antisymmetric part of the inhomogeneous term
��E�0��−1�tE

�0��E*
�i−1�+�tE*

�i−1� and vice versa.
�ii� In either case, it can easily be verified that the diago-

nal elements of the left-hand side of Eq. �A4� are zero.
Therefore, a solution exists only if the diagonal elements of
the inhomogeneous term on the right-hand side are zero. In
the calculation for an elastic fluid, the eigenvectors are or-
thogonal, so �E�0��−1= �E�0��†, where the superscript † is used
for the transpose. In this case, it can easily be verified that
�E�0��†�tE

�0� is an antisymmetric matrix, and so the solvabil-
ity condition is satisfied. In the calculation for an inelastic
fluid, we verify that �E�0��−1�tE

�0� is an antisymmetric matrix,
so that Eq. �A4� is solvable.

�iii� It should also be noted that the matrix elements on
the left-hand side do not depend on the diagonal elements of
E*

�i�. Therefore, these diagonal elements cannot be evaluated
by solving Eq. �A4�. However, they can be evaluated from
the solvability condition for the second correction to the
eigenvectors, E�i+1�, as follows.

The equation for the second correction to the eigenvectors
E�i+1� is

E*
�i+1�� − �E*

�i+1� = ��E�0��−1�tE
�0��E*

�i� + �tE*
�i�. �A5�

As in the case of the equation for E*
�i� �Eq. �A4��, the diago-

nal elements of the matrix on the left-hand side of the above
equation are identically zero. Therefore, the above equation
is solvable only if all the diagonal elements of the matrix on
the right-hand side are equal to zero:

diag���E�0��−1�tE
�0��E*

�i� + �tE*
�i�� = 0. �A6�

Since the diagonal elements of �E�0��−1�tE
�0� are zero, the

diagonal elements of the first term on the left do not depend
on the diagonal elements of E*

�i�. Therefore, we obtain a set
of first-order differential equation to be satisfied by the diag-
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onal elements of E*
�i�. These are solved in order to obtain the

diagonal components of the matrix E*
�i�.

The eigenvectors of Eq. �A1� E�0� can be calculated to
leading order in k. If we substitute �1= ıkcs, �2=−ıkcs, �3
=�4=�5=0, and retain terms only to leading order in k, the
matrix L can be reduced to a real symmetric matrix by di-
viding throughout by ı. For this real symmetric matrix, the
eigenvectors are orthonormal:

E�0� =�

��2cs�−1

�kx/�2k�

�ky/�2k�

�kz/�2k�

�1/�Cv�
�


��2cs�−1

�− kx/�2k�

�− ky/�2k�

�− kz/�2k�

�1/�Cv�
�


0

�kxky/k�kx
2 + kz

2�

− �kxkz/�kx
2 + kz

2�

�kykz/k�kx
2 + kz

2�
0

�



0

− �kz/�kx
2 + kz

2�
0

�kx/�kx
2 + kz

2�
0

�

�cs

�Cv�−1

0

0

0

− cs
−1
�� . �A7�

However, it should be noted that the O�k� contribution to L
is not Hermetian, and so the orthonormality of the eignevec-
tors is valid only in the leading approximation in the small k
limit.

The matrix E*
�1� in the solution �A3� for the first correction

E�1� can be calculated using Eq. �A5� and �A6�. The matrix
E*

�1� is symmetric because the inhomogeneous term in the
right-hand side of Eq. �A5� is symmetric. The solution is of
the form

E*
�1� = �


e11

0

e13

0

0
�


0

e22

e23

0

0
�


e13

e23

0

0

0
�


0

0

0

0

0
�


0

0

0

0

0
�� , �A8�

where

e11 = − e22 = −
ı�2�̇2

2cs
�

−�

t

dt�
kx

2�kx
2 + kz

2�
k5 ,

e13 = e23 =
ı��̇

�2cs

kx
�kx

2 + kz
2

k3 . �A9�

It should be noted that both the diagonal and off-diagonal
terms in Eqs. �A9� are of equal magnitude. This is because
when we integrate with respect to time for the diagonal
terms, the only time-dependent term in the integrand is the
component ky through Eq. �25�. This integration results in a
factor 1 /��̇ in the solutions for e11 and e22, and the resultant
expressions are linear in ��̇. Hence e11 and e22 are of the
same magnitude as e13 and e23 in Eqs. �A9�.

The eigenvectors can be obtained in a similar manner for
the case k��, for which the eigenvalues are given in Eqs.

�44�. Since the hydrodynamic matrix L is not symmetric for
k��, it is not possible to obtain an orthonormal set of eigen-
vectors. In the leading approximation, the basis vectors E�0�

can be determined by solving the equation LE�0�=E�0��, and
the solutions for the basis vectors correct to leading order in
a small-k expansion are obtained. The matrix E�0�, whose
columns are the eigenevectors corresponding to the eigenval-
ues �1 to �4, is

E�0� = �

�k2/3s0/��̇�

1

− �ık1/3/s0�
�kxkz/k4/3s0

2�
�


− ��− 1�2/3k2/3s0/��̇�
1

− �ık1/3/�− 1�2/3s0�
�kxkz�/���− 1�2/3k2/3s0�2�

�



− ��− 1�4/3k2/3s0/��̇�
1

− �ık1/3/�− 1�4/3s0�
�kxkz/��− 1�4/3k2/3s0�2�

�

0

− �kz/�kx
2 + kz

2�
0

�kx/�kx
2 + kz

2�
�� .

�A10�

Since the eigenvectors are not orthonormal, the duals of the
eigenvectors are the rows of the matrix �E�0��−1. As intu-
itively expected, the transverse eigenvector corresponding to
the growth rate �4 in Eqs. �44�, which is the fourth column of
E�0�, is identical to that for an elastic system, Eq. �A7�.

The matrix E*
�1� in the solution �A3� for the first correction

E�1� can be calculated using Eqs. �A5� and �A6�. The matrix
E*

�1� is symmetric because the inhomogeneous term in the
right-hand side of Eq. �A5� is symmetric. The solution is of
the form

E*
�1� = �


e11

e12

e13

0
�


e12

e22

e23

0
�


e13

e23

e33

0
�


0

0

0

0
�� , �A11�

where

e11 = �− 1�2/3e22 = �− 1�4/3e33 = −
�2�̇2

3
�

−�

t

dt�
kx

2

s0
3
 ds0

dky
�2

,

e23 = �− 1��2/3�e13 = �− 1��4/3�e12 =
��̇

3s0
2
kx

�s0

�ky
� . �A12�

Finally, we note that though Eq. �35� could also be solved
by expanding out the hydrodynamic matrix L in a series in
the �, it is more difficult to obtain the completeness and
solvability conditions in this case. Consider an expansion of
the hydrodynamic matrix as

L = L�0� + L�1� + L�2� + ¯ . �A13�

Using the same procedure as that used in at the beginning of
the Appendix, the equivalent of Eqs. �A1� is

L�0�E�0� = E�0�� ,
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L�0�E�i� = E�i�� −
�E�i−1�

�t
− �

j=1

i

L�j�E�i−j�, �A14�

where the last term on the right-hand side of Eq. �A14� ac-
counts for the expansion of the matrix L. If Eq. �A3� is used
for E�i�, then Eq. �A14� becomes

E*
�i�� − �E*

�i� = ��E�0��−1�tE
�0�� + �tE*

�i−1� − �
j=1

i

L�j�E�0�E*
�i−j�.

�A15�

The above equation is identical in form to Eq. �A4�, except
that it has additional inhomogeneous terms on the right-hand
side. The left-hand side of Eq. �A15� does not depend on the
diagonal elements of the matrix E*

�i�, and so the off-diagonal
terms in the matrix can be obtained by solving Eq. �A15�.
The diagonal elements of the matrix E*

�i−1� are obtained by

the condition that the diagonal elements of the right-hand
side of Eq. �A15� are zero:

diag���E�0��−1�tE
�0��E*

�i� + �tE*
�i� − �

j=1

i

L�j�E�0�E*
�i−j�� = 0.

�A16�

Equation �A16� is more difficult to solve than Eq. �A6�, since
the latter contains the additional inhomogeneous terms on
the left, whereas Eq. �A6� depends only on E*

�i� and E�0�.
Therefore, Eq. �A6� can be solved from just the off-diagonal
terms of E*

�i� and the leading-order eigenvector E�0�, whereas
it is necessary to include additional inhomogeneous terms on
the right-hand side to solve Eq. �A16�. In addition, the solu-
tions of Eqs. �A4� and �A6� contain the complete L matrix,
and so the solutions at order i contain additional terms which
are higher order in the � expansion, even though the are
accurate only up to �i.
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