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To enable the study of criticality in multicomponent fluids, the standard spherical model is generalized to
describe an S-species hard-core lattice gas. On introducing S spherical constraints, the free energy may be
expressed generally in terms of an S�S matrix describing the species interactions. For binary systems,
thermodynamic properties have simple expressions, while all the pair correlation functions are combinations of
just two eigenmodes. When only hard-core and short-range overall attractive interactions are present, a choice
of variables relates the behavior to that of one-component systems. Criticality occurs on a locus terminating a
coexistence surface; however, except at some special points, an unexpected “demagnetization effect” sup-
presses the normal divergence of susceptibilities at criticality and distorts two-phase coexistence. This effect,
unphysical for fluids, arises from a general lack of symmetry and from the vectorial and multicomponent
character of the spherical model. Its origin can be understood via a mean-field treatment of an XY spin system
below criticality.
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I. INTRODUCTION

Criticality in liquid-vapor or fluid-fluid phase separation
still warrants study: even after the advent of renormalization
group theory, and its successful comparisons with experi-
ment, open questions remain. One example is criticality in
charged fluids such as electrolytes, molten salts, ionic solu-
tions, etc. The long range of the Coulomb interactions im-
pedes the application of most established methods and the
interplay between electrostatic effects and long-range critical
fluctuations is not fully understood theoretically. Indeed, the
basic issue of the universality class of ionic fluids has been
under debate for many years �1� and some questions still
remain open. To gain insight into this and related problems,
exactly soluble models can be valuable. Indeed, even if a
model needs to be considered with circumspection in light of
unavoidable simplifications, it may reveal significant features
of criticality beyond those established by scaling and renor-
malization group analyses.

In the history of models in statistical mechanics, the
spherical or, equivalently, the mean spherical model �2,3�,
has played a special role. This “poor man’s” Ising model
�4,5� has proved to be a mine of information because of its
mathematical tractability: Thus only as regards criticality,
one can readily investigate �4–6� the role of dimensionality,
scaling relations, finite size effects �7�, and the influence of
long-range integrable interactions �such as 1 /rd+�, where d is
the dimension of the space and ��0�. Consequently the
spherical model has been applied in many physical situa-
tions, initially ferromagnets and later spin glasses �8�, quan-
tum transitions �9�, spin kinetics �10�, actively mode-locked
lasers �11�, critical Casimir forces �12�, etc. The model be-
came all the more interesting when it appeared �13� that it
belongs as a limiting case, n→�, to the important class of

spin systems in which n is the dimension of the order param-
eter �with n=1,2 ,3 , . . . for Ising, XY, Heisenberg, … mod-
els�.

It is natural, therefore, to consider spherical models with
long-range Coulombic coupling. A pioneering investigation
of a one-component plasma �OCP� spherical model has been
undertaken by Smith �14�; but the limitations of an OCP
model are well known and, in particular, a gas-liquid transi-
tion and corresponding critical behavior cannot be realized.
Conversely, to treat electrolyte solutions a realistic model
should first represent the neutral solvent, typically water;
then two further species, namely, positive and negative ions,
must be accounted for. Even if the solvent is appoximated by
a uniform, structureless dielectric medium, a colloidal sys-
tem, for example, requires not only the macroions and their
microscopic counterions but also the representation at some
level of an ionic salt; thereby a ternary or quaternary system
is called for. Accordingly it is desirable to develop spherical
models for multicomponent systems. That is the aim of this
paper. The investigation of the multicomponent model
proves interesting in itself although we will focus on the
conclusions that can be drawn for simple binary fluids with
short-range attractive interactions; applications to ionic fluids
are presented elsewhere �15–17�.

Explicitly, we address a lattice gas with S species of par-
ticles, labeled �=1,2 , . . . ,S, in the grand canonical en-
semble. Particles of a given species may occupy or leave
vacant sites of only one sublattice so that the displacements
separating the different interlaced sublattices introduce the
crucial hard-core effects in a direct and transparent manner:
see Fig. 1. We will use the vectors �= ����, m, �, h, etc., to
denote the corresponding sets of densities, magnetizations,
chemical potentials, magnetic fields, etc., for the S species.
Using the correspondence between lattice-gas and Ising spin
models, and enforcing the S distinct spherical conditions
with Lagrange multipliers, we extend to this multicomponent
situation, the usual spherical model approach. This yields the
free energy in terms of an S�S matrix that describes the*Also at: École Centrale Marseille.
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pairwise interactions between the different species: see Sec.
II below and Eqs. �22�–�28�. It transpires that the singular
part displays a form similar not only to one-component
spherical models but also to Onsager’s exact expression for
the two-dimensional �2D� Ising model �4,5�.

In the case of binary fluids �S=2�, considered in Sec. III,
major simplifications allow us to obtain explicitly all the
thermodynamic and correlation properties in terms of the
eigenvalues of the interaction matrix. The density correla-
tions or �for charged fluids� charge correlations for the dif-
ferent species, appear as combinations of two eigenmodes.
These contributions become uncoupled only in the often con-
sidered but usually unrealistic fully symmetric case.

To study critical behavior we go on in Sec. IV to consider
systems with only hard cores and sufficiently attractive
short-range interactions. With a proper choice of mixing co-
efficients, one can define m̌ and m̌†, two linear combinations
of the species mean magnetizations or local densities, so that
the usual spherical model critical singularities occur in the
�T , m̌� plane at fixed m̌†. Thence, a critical locus emerges in
the full �T , m̌ , m̌†� space which, together with a first-order
surface, describes the influence of composition on the loca-
tion of phase separation in the system. Via standard geomet-
ric arguments, criticality in the multicomponent model can
then be deduced from corresponding one-component sys-
tems. Precisely, the same critical universality classes are re-
alized as in short-range �attractive� spherical models.

Nevertheless, a significant difference arises in the equa-
tion of state where a new, unexpected mixing term appears.
This can be understood heuristically as a type of demagneti-
zation effect arising as a consequence of the vectorial char-
acter of the model coupled to asymmetry and multispecies
features. This term indeed suppresses the normal divergence
of susceptibilities at criticality; furthermore, it induces a lin-
ear dependence of the chemical potential and pressure as
functions of the total density in the two-phase region! These
are certainly undesirable and unphysical features of any fluid
model. This wayward behavior reinforces the remark �18�
that, because of the de facto vectorial character of the order
parameter in spherical models, their predictions must be
handled with perspicacity when modeling fluids.

To gain some further insight into this unanticipated “de-
magnetization effect” we study in Sec. V an XY model be-

neath Tc using a mean-field approach in which the vectorial
character of the order parameter, coupled to an asymmetry of
the external fields, leads transparently to a very similar de-
magnetization effect. Finally, some general conclusions are
drawn in Sec. VI and we remind readers that detailed appli-
cations to systems with long-range Coulomb potentials have
been undertaken �17�.

II. MULTICOMPONENT SPHERICAL MODELS

A. Fluid and spin systems

We consider a d-dimensional lattice fluid in the grand-
canonical ensemble that consists of S species labeled �
=1, . . . ,S, each being associated explicitly with only one of
S identical interlaced sublattices �see Fig. 1�. Every sublat-
tice is taken as the image of a periodic reference sublattice
R0 after translation by a vector �� so that every site i on a
lattice � is characterized by a position Ri

�=Ri
0+��. The ref-

erence sublattice is generated by the vectors a� ��
=1, . . . ,d�, has a unit cell volume v0 and contains N
=��N� sites at positions Ri

0=��R̃i,�
0 a� specified by the inte-

gers R̃i,�
0 =1 ,2 , . . . ,N�.

It is well known that a grand-canonical lattice fluid is in
correspondence with a canonical spin system �19�. Indeed,
let us write the grand partition function of a fluid as

	�T,�� = �
�
	�

N�

1

N�!�
ri

�

exp�− 
	Hgas − �

�

�� N�
� ,

�1�

where 
 is the inverse temperature 1 /kBT, while N� and ��

denote the number of particles and chemical potential of spe-
cies �. The Hamiltonian Hgas is expressed as a sum over
particles k=1, . . . ,n� and l=1, . . . ,n� as

Hgas =
1

2 �
��,k����,l�


���rk
� − rl

�� , �2�

where 
�� is the pair interaction potential while rk
� is the

position of the kth particle of species �, occupying sites on
the lattice �. Considering a system with hard cores, i.e.,

���0�= +�, the sum in �1� refers to configurations where
the local lattice density n��Ri

��=�k��Ri
�−rk

�� can be only 0
or 1, so that the local spin variable

s��Ri
�� = 2n��Ri

�� − 1 �3�

takes the values �1 as in the Ising model. A straightforward
generalization of the procedure described in �19� then leads
to the partition function of a spin system, namely,

	�T,�� = �
�

�
s��Ri

��=�1

exp�− 
Hspin� , �4�

where the spin Hamiltonian is

−

+

+ +
−

−

−
+ + + +

−

+
−

+

−
+

FIG. 1. �Color online� Illustration of a two-dimensional ternary
lattice gas with species labeled �= + ,−,0. Particles of each species
occupy only one of the interlacing sublattices shown as dotted,
broken, and solid lines, respectively; however, each particle may
interact with all others via pairwise potentials ����R�−R��.
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Hspin = −
1

2 �
��,i�,��,j�

J���Ri
� − R j

��s��Ri
��s��R j

��

− �
�

h��
i

s��Ri
�� + Ho��� . �5�

In this correspondence, the link between the coupling ener-
gies and pair interactions is

J���Ri
� − R j

�� = − 1
4
���Ri

� − R j
�� if Ri

� � R j
�, �6�

with J���0�=0, while the external fields are given by

h� = 1
2�� − 1

4��, �7�

with reference level

�� = �
��,j����,i0�


���Ri0
� − R j

�� , �8�

where i0 is a fixed position. Finally, the background term in
�5� is merely

Ho��� = −
1

2
N �

�

�� +
1

8 �
��,i����,j�


���Ri
� − R j

�� . �9�

The correspondence between fluid and spin systems fol-
lows straightforwardly for the other properties. For instance,
the local density ���r�=n��r� /v0 is related to the local spin
via

v0���Ri
�� = 1

2 �s��Ri
�� + 1� , �10�

while the species correlation functions

G���Ri
� − R j

�;T,�� = 
���Ri
�����R j

��� − 
���Ri
���
���R j

���
�11�

are related to spin correlations via

v0
2G���Ri

� − R j
�;T,�� = 1

4 �
s��Ri
��s��R j

��� − 
s��Ri
���
s��R j

���� .

�12�

As usual, the angular brackets denote grand-canonical expec-
tation values.

In order to define density or charge correlations simply in
this lattice geometry, it is convenient to work in Fourier
space. We consider periodic boundary conditions and define
Fourier series with respect to the reference sublattice R0 by

ŝ��k� = �
i

e−ik·Ri
�
s��Ri

�� . �13�

Then, when J�� is periodic over the reference sublattice, we
may write

Ĵ���k� = �
i

e−ik·�Ri
�−Rj0

� �J���Ri
� − R j0

� �

= �
j

e−ik·�Ri0
�−Rj

��J���Ri0
� − R j

�� , �14�

with any fixed positions i0 and j0. The wave vectors should
be combinations of the reciprocal vectors b� �defined by

a� ·b��=2���,��� such as k=��k̃�b� with k̃�=0, �1 /N�,
�2 /N� , . . .. In the following, the first Brillouin zone is de-

noted as B. The density correlation function GNN, and, for
fluids of particles carrying charges q�, charge GZZ and
charge-density GNZ correlations can then be defined via

ĜXY�k;T,�� = �
�,�

q�
�Xq�

�YĜ���k;T,�� , �15�

where X and Y stand for either N or Z, with �N=0, �Z=1.
We also define structure factors as

SXY�k;T,�� =
v0

�q�X+�Y
ĜXY�k;T,�� , �16�

where q is an elementary charge, while the total density is
�=��
���. The term v0 compensates here for the homogene-
ity difference between the discrete and continuum Fourier
transforms.

B. Mean spherical model

We are not able to perform the multiple sums in �4� in
general. Instead, we adopt the appropriate mean spherical
model �3� and compute the multiple integral

	��T,h� =� �
�

ds�e−
H�, �17�

with

H� = Hspin + �
�

�̃��
i

s�
2�Ri

�� . �18�

As usual, the Lagrange multipliers �̃� are introduced to allow
imposition of the mean spherical conditions which need to be
enforced uniformly for every species; specifically, the rela-
tions

��
i

s�
2�Ri

��� = N, � = 1, . . . ,S , �19�

define the Lagrange multipliers or spherical fields �̃� as im-
plicit functions of �T ,h�. Consequently, the free energy per
site �of the reference sublattice� is

− 
f�T,h,��T,h�� = ln 	��T,h�/N , �20�

in terms of which the spherical conditions �19� can be rewrit-
ten as


s�
2� = � �f

��̃�

�
T,h,�̃�;���

= 1, � = 1, . . . ,S . �21�

As already remarked in Sec. I, the spherical model in this
form describes exactly spin models with fixed length or con-
tinuous n-component spins in the limit n→� with appropri-
ate scalings �13,20�.

As is standard �3�, the calculation of 	� is performed in
Fourier space. For consistency, we will suppose that J�� sat-
isfies the symmetry condition J���Ri

�−R j
��=J���−�Ri

�−R j
���.

The calculation is then a straightforward generalization of
the mean spherical techniques used for single-species sys-
tems. The free energy per site can be decomposed into a sum
of three parts: f = fs+ fh+ fo. The singular part of the free
energy is
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− 
fs�T,h� = −
1

2N �
k�B

ln�
SDet���k;���� , �22�

where the sum runs over the reference Brillouin zone B
while ��k ;�� is the S�S interaction matrix with elements

����k;�� = ��,���� + �Ĵ���k�� − 1
2 �1 − ��,��Ĵ���k� ,

�23�

in which for any function ĝ�k� we employ the notation

�ĝ�k� = 1
2 �ĝ�0� − ĝ�k�� , �24�

while, dropping the tildes in �18� and �21�, the shifted or net
spherical fields are

�� = �̃� − 1
2 Ĵ���0� . �25�

On the other hand, the h-dependent part of the free energy is
given by

− 
fh�T,h� = 1
4

h��−1�0,���h� , �26�

while the analytic background part, following from �9�, is

− 
fo�T,h� = 1
2S ln � − 
Ho/N , �27�

which will be neglected henceforth. Because of the logarithm
in �22�, these results are valid while the eigenvalues of the
matrices ��k ;�� are positive for every k; when one van-
ishes, the expressions �22� and �26� become singular and
phase transitions are implicated.

The last step is taking the thermodynamic limit N→�
�valid provided the Fourier transforms remain well defined�,
with the result

− 
fs�T,h� = −
1

2
�

k
ln�
SDet���k;���� , �28�

where �k is a shorthand notation for �k�Bv0ddk / �2��d, while
the h-dependent free energy fh is still given by �26�. At this
point, it is worth noting that the structure of fs, as an integral
over the Brillouin zone of the logarithm of the interactions in
Fourier space, is similar to that present in Onsager’s exact
solution of the 2D Ising model �21�. The consequences for
charged systems are dramatic �15–17� since this form deter-
mines the coupling or decoupling of correlations in symmet-
ric and asymmetric systems.

With these results in hand, we find that the mean particle
densities ��= 
���Ri

��� are related to the mean magnetiza-
tions via

2��v0 − 1 = m� = 
s�� = − � �fh

�h�
�

T,h�,�;���

, �29�

which, in turn, enter the free energy in standard manner as

fh = −
1

2�
�

m�h�. �30�

As a result of �26� and �29�, the link between h and m is then
merely

h = 1
2� − 1

4� = 2��0�m , �31�

where �= ���� and we have recalled �7� and introduced a
fixed vector �= ����: see �8�. Finally, in the thermodynamic
limit, the spin-spin correlation functions are given by


s��Ri
��s��R j

��� = −
1

2 − ��,�
� ��f − fo�

�J���Ri
� − R j

��
�

T,h,�

, �32�

where 2−��,� is merely a symmetry factor, while we recall
�12� for the density correlation functions G��.

III. BINARY SYSTEMS

The previous analysis holds for an arbitrary number of
species. From here on, however, we focus on the simplest
case, i.e., binary mixtures with species labels 1 and 2. For
many properties, it is useful to decompose densities, chemi-
cal potentials, etc., in terms of means and differences; so for
every function g� �or g��� we define

ḡ = 1
2 �g1 + g2�, g† =

1

2
�g1 − g2� . �33�

Moreover, for simplicity, we suppose that the translation vec-

tors ��=���̃�a� satisfy �̃�=0 or 1 /2 so that the Fourier

transforms Ĵ�� are real.

A. Basic features

For the case S=2, simplifications allow more explicit re-
sults. First, let us introduce the energy scale

j0 = 1
2 Ĵ12�0� , �34�

and, following �33�, write

�J̄�k� = 1
2 ��J11 + �J22� , �35a�

�J†�k� = 1
2 ��J11 − �J22� . �35b�

Then the eigenvalues of the 2�2 matrix � may be written

���k;�� = �̄ + �J̄�k� � D�k;�� , �36�

where

D�k;�� = ���† + �J†�k��2 + 1
4 �Ĵ12�k��2 � 0. �37�

As remarked above, these expressions are valid when �− and
�+ are nonnegative while singularities arise only when
�−�k ;�����+�k ;���→0.

Now the argument of the free energy integral in �28� is
ln�
2Det����, where the determinant of the interaction ma-
trix can now be written

�−�+�k;�� = u + 2�̄�J̄�k� − 2�†�J†�k� + �J2�k� , �38�

where we have introduced the crucial parameter

u��� � �−�+�0;�� = �̄2 − �†2
− j0

2, �39�

which vanishes when Det���k�� vanishes at k=0, while the
squared interaction term in �38�, namely,
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�J2�k� = j0
2 − 1

4 Ĵ12
2 �k� + �Ĵ11�k��Ĵ22�k� , �40�

vanishes as �k2�.
In terms of the eigenvalues, the spherical conditions �21�

become

1 =
1

2
kBT�

k

�� + �Ĵ���k�
�−�+�k;��

+ m�
2 , � � � . �41�

Finally, the h-dependent part of the free energy entails

�−1�0;�� =
1

�−�+�0;��
	�2 j0

j0 �1

 , �42�

while the magnetization-field or density-chemical potential
relation �31� becomes

1
2h� = m��� − m�j0, � � � . �43�

At this point, Eqs. �34�–�43� entirely define the system and
the need is to analyze their structure and consequences.

B. Correlation functions

The density pair correlation functions are given generally
by �12� and �32� which, when S=2, reduce to

Ĝ���k;�� =
kBT

8v0
2

�� + �Ĵ���k�
�−�+�k;��

�� = 1,2� , �44�

Ĝ12�k;�� =
kBT

16v0
2

Ĵ12�k�
�−�+�k;��

= Ĝ21�k;�� . �45�

In terms of these, one can use �15� to obtain the overall

density-density correlation function ĜNN and the comple-
mentary compositional correlations or, for charged systems,

the charge-charge correlation function ĜZZ.
From a purely mathematical perspective, it is also instruc-

tive to decompose the fluctuations with respect to the eigen-
vectors of � which, of course, depend on the wave vector k
and the fields �. Thus if we define ��k� via

tan ��k� = 2�D�k;�� − ��† + �J†�k���/Ĵ12�k� , �46�

it can be interpreted as the angle determined by the eigen-
vector associated with �+�k ;�� relative to the �=1 axis.
Then if we introduce the density fluctuations �+�k ;�� and
�−�k ;�� via

�� = ��1 cos ��k;�� � �2 sin ��k;���/�2, �47�

and define the corresponding correlation function Ĝ�� in the
natural way, we find

Ĝ++�k;�� =
kBT

16v0
2

1

�+�k;��
, �48a�

Ĝ−−�k;�� =
kBT

16v0
2

1

�−�k;��
, �48b�

while Ĝ+−= Ĝ−+ vanishes identically.

However, the eigenmodes �47� will rarely be of direct
physical significance. Rather the physically accessible fluc-
tuations, represented in particular by the structure functions
introduced in �15� and �16�, will typically involve a mixture
of the underlying eigenmodes. Specifically we find

SNN�k;T,��
kBT/4�v0

=
B�k;��

�−�k;��
+

1 − B�k;��
�+�k;��

, �49a�

and, for charged systems with q+=−q−=q,

SZZ�k;T,��
kBT/4�v0

=
B�k;��

�+�k;��
+

1 − B�k;��
�−�k;��

, �49b�

where the mixing amplitude B is

B�k;�� = 1
2 + 1

4 Ĵ12�k�/D�k;�� . �50�

Evidently, singular behavior, anticipated at criticality in
�−�k ;��, will in general affect both SNN and SZZ as we dis-
cuss in detail elsewhere �15–17�.

However, a special situation arises when the two species 1

and 2 are symmetrically related so that Ĵ11�k�= Ĵ22�k� which
implies, via �35b�, �J†�k��0. For a charged system this
corresponds to complete charge symmetry as exemplified
most simply in the restricted primitive model �RPM� of eq-
uisized hard spheres with charges of equal magnitude but
opposite sign. But neutral systems where species 1 and 2
differ only in chirality demand a symmetric description quite
naturally. Then, on the locus of symmetry where �1=�2 �cor-
responding to electroneutrality in 1:1 ionic fluids� one has
�1=�2 and, hence, via �31�, �1=�2 and thence, via �33�,
�†�0. In this case one sees from �50� that B�k ;�� vanishes
identically so that the eigenmodes precisely specify SNN and
SZZ which, therefore, become totally decoupled! This turns
out to play a crucial role in the study of charge screening
near ionic criticality �15–17� albeit for generally unrealistic
charge-symmetric systems.

A small technical detail deserves mention in this fully

symmetric case if Ĵ12�k� should change sign for k�0 �which

is not unreasonable�; then the ratio Ĵ12 /D�k ;�� in �50� to-
gether with �+ and �− involve nonanalytic absolute values
but in such a way that the combinations SNN and SZZ in �49a�
and �49b� remain completely analytic.

Finally, the cross charge-density structure function is also
expressible as a combination of the two eigenmodes via

SNZ�k;T,��
kBT/8v0�

=
�† + �J†�k�

D�k;�� � 1

�−�k;��
−

1

�+�k;��� .

�51�

As is to be anticipated, this vanishes identically on the sym-
metry locus when �1, 2� symmetry is present.

C. Appropriately mixed thermodynamic variables

Depending on the symmetry of the system, the previous
relations may be handled more or less conveniently. In the

general asymmetric case �Ĵ11� Ĵ22�, the spherical constraints
�41� can be rewritten as
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1 =
1

2
kBT�

k

�̄ + �J̄�k�
�−�+�k;��

+ m2 + m†2
�52�

and

2mm† =
1

2
kBT�

k

�† + �J†�k�
�−�+�k;��

, �53�

while the external fields are given by

h̄ = 2�m��̄ − j0� + m†�†� , �54a�

h† = 2�m�† + m†��̄ + j0�� . �54b�

Note that, since �− and �+ are nonnegative, the condition
�52� is consistent with the expectations �m��1 and �m†��1.

For further analysis it is convenient to introduce the basic
integral functions

G��� =
1

2
�

k

1

�−�+�k;��
, �55�

L���� =
1

2
�

k

�Ĵ���k�
�−�+�k;��

, �56�

which are simple generalizations of the typical integrals in-
volved in the analysis of standard spherical models.

Now, in the fully symmetric case, �J†, �†, and m† vanish
identically so that the relations �53� and �54b� have no role to
play. Then �52� and �54a� closely resemble the basic expres-
sions for the single-species �S=1� or standard spherical
model. These in turn lead to the basic equation of state
which, in terms of the reduced temperature variable

t = �T − Tc�/Tc, �57�

can be written most transparently near the critical point �T
=Tc, m=0� as �4–6�

p0u1/� � ctt + cmm2, �58�

where, recalling �39�, u= �̄2− j0
2 while ��1 is the funda-

mental dimensionality-dependent exponent, and p0, ct, and
cm are fixed positive coefficients.

Now physicochemical insight into the behavior of binary
fluid mixtures suggests strongly that their critical behavior
will, when expressed in terms of suitable density and field
variables, be essentially the same as for a single-component
fluid. However, the “suitable” or “appropriate” variables
will, in leading order, be linear combinations or mixtures of
the related binary thermodynamic variables, specifically, the
fields and densities. Furthermore, the appropriate mixing co-
efficients must, in general, be nontrivial functions of the state
variables.

It follows that our primary task now is to find what the
appropriate mixing coefficients are. To that end, we intro-
duce the general linear combinations

�̌ = 1
2 �� −1�1 + ��2�, �̌† = 1

2 �� −1�1 − ��2� , �59�

together with corresponding remixed interactions

�J̌,�J̌† = 1
2 ��−1�J11 � ��J22� . �60�

The mixing parameter � is to be determined later. In terms of
these new variables and interactions, the basic determinant
becomes

Det��� = u + 2�̌�J̌�k� − 2�̌†�J̌†�k� + �J2�k� , �61�

where, following �39�, the value at k=0 is now

u��1,�2� = �̌2 − �̌†2
− j0

2. �62�

Then it proves necessary to introduce a second state-
dependent mixing parameter �m by writing

m̌,m̌† = 1
2 ��m

−1m1 � �mm2� . �63�

In terms of these new variables and the integrals �55� and
�56�, the original spherical conditions �41� become

1 = �−1kBT��̌ − �̌†�G��� + L2���kBT + �m
2 �m̌2 + m̌†2

+ 2m̌m̌†� ,

�64a�

1 = �kBT��̌ + �̌†�G��� + L1���kBT + �m
−2�m̌2 + m̌†2

− 2m̌m̌†� .

�64b�

Finally, it is helpful to define new external fields via

ȟ = 1
2 ��h

−1h1 + �hh2�, ȟ† = 1
2 ��h

−1h1 − �hh2� , �65�

which are linked to the generalized magnetizations via

ȟ = m̌���̌ − j0��+ + �̌†�− + j0�m
+ �

+ m̌†���̌ − j0��− + �̌†�+ + j0�m†
+ � , �66�

and similarly for ȟ† in terms of �m
− and �m†

− with �+ and �−

interchanged while the coefficients ��, �m
�, and �m†

� are
found to be

�� = ��m/�h � �h/��m, �67�

�m
�/��m − 1/��m� = �m†

� /��m + 1/��m� = �/�h � �h. �68�

With these new fields and magnetizations, the free energy
per site reduces to

fh = − 1
2 ��h�m + 1/�h�m��m̌ȟ + m̌†ȟ†�

+ 1
2 ��h�m − 1/�h�m��m̌ȟ† + m̌†ȟ� . �69�

As we will show, the choice of the coefficients �, �m, and �h
will be dictated by physical arguments in order to ensure
compact and familiar expressions for the critical behavior.

IV. BINARY LATTICE GASES WITH SHORT-RANGE
ATTRACTIVE INTERACTIONS

To obtain explicit results for critical behavior we focus
now on binary systems with short-range interactions �in ad-
dition to the hard cores already accounted for�. Accordingly,
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we suppose that the small-k expansions of the interactions in
k space are

Ĵ���k� = Ĵ���0��1 − k2R��
2 + O�k4�� ��,� = 1,2� , �70�

with fixed range parameters R��. Moreover, to ensure simple
criticality, we suppose that the interactions are “overall at-

tractive,” which we take to mean that j0, �Ĵ12, and �J̄ are
real and satisfy

j0 = 1
2 Ĵ12�0� � 0 and ��Ĵ12�k�� � 0, �71�

�J̄�k� � 0 ∀ k � 0 .

These conditions are easily fulfilled, as, for example, when
J12�r�=J12�−r� while J11�r� and J22�r� are positive for all r.

A. Critical loci

To identify the singularities of the binary systems, we
recall that they are signaled by the vanishing of one of the
eigenvalues of �, which occurs first when �−�k ;�� van-
ishes. As shown in Appendix A, these singularities arise only
when �i� k=0, and, thence, �ii� when the spherical fields �
satisfy

u��1,�2� = 0, �72�

provided the asymmetries of the interactions are not too ex-
treme in the sense that, as we suppose henceforth, �J†�k�
�defined in �35b�� satisfies the conditions �A2� and �A7�.

Now, any state of the system is specified ab initio by the
three thermodynamic fields �T ,�1 ,�2� which, via �21�, give
��T ,h�, and then the densities m. However, for the location
of critical points, it is more convenient to utilize the set of
variables �T , m̌ , m̌†� introduced in �63� and then to solve for

��̌ , �̌†� as defined in �59�.
Next, let us choose �m�0 in �63� so that m̌c vanishes at

criticality or, in other words, take �m= �−m1,c /m2,c�1/2. This
condition will be analyzed below in seeking a critical point,
at a given value of m̌†. Likewise, we choose ��0 in �59� so

that �̌c
†=0. This condition then enforces the link between �

and m̌†, since it implies �2=�1,c /�2,c. As established in Ap-
pendix A, the singularities are characterized by u=0, which
via �62� means �c= j0 and thence, �1,c=�j0 and �2,c= j0 /�.

At this point, one must pay attention to the behavior of
integral expressions �55� and �56� when �−�0� approaches
zero. If we accept �70� we find that �− varies as k2 when
�−�0�=0 and then G��� and L���� remain finite at the sin-
gularity provided d�d�=2 �in this case� as seen in �22�.
Accordingly, from here on we suppose the dimensionality
exceeds d=2 and may then write

G��c� = g0���/j0
2,

L���c� = g0���l�,0���/j0 �� = 1,2� . �73�

The residual � dependence arises from �J̃ and �J̌†; see �60�,
�61�, �55�, and �56�.

Putting these considerations together we find that the criti-
cal locus, Tc�m̌†� with m̌c=0, may be defined parametrically
via

kBTc�m̌†� =
j0�1 − �m

2 m̌†2
�

g0����1/� + l2,0����
, �74�

m̌†2
=

�� − 1/�� + l1,0��� − l2,0���
���m

2 − 1/��m
2 � + l1,0����m

2 − l2,0���/�m
2 . �75�

In fact, the latter relation must be seen as an implicit equa-
tion giving � as a function of m� † while, as shown below, �m
will also be related to �. Hence, if one realizes that m̌† �i.e.,
some combination of the densities other than the total den-
sity� characterizes the composition of the system, the func-
tion Tc�m̌†� describes naturally the composition dependence
of criticality in the binary fluids.

B. Critical neighborhood

We seek an expression for the physical properties of the
binary system in terms of �T , m̌ , m̌†� near the critical locus

�Tc ,0 , m̌†�. For this purpose, we first solve for �̌† in terms of
T, m̌, and m̌†: this can be done implicitly in the general case
by invoking �64�, and explicitly in the vicinity of a critical
point by implementing a perturbation scheme at fixed m̌†. To
this end, consider the critical point at Tc�m̌†� and m̌c=0 and
its vicinity defined by the two small parameters, t�T−Tc�, as

introduced in �57� and m̌. By construction, u and �̌† are small
parameters near criticality, so that the integral involved in
G��� can be computed as usual in spherical models; see
�4,6,22�. However, a significant new feature is that the inte-

gral is now a function of two vanishing parameters, u and �̌†.
The appropriate extension of the standard critical expansion
�22� yields

G��� = g0j0
−2�1 − p�1 − p†�̌†�u1/� + q0u + g1�̌†/j0 + g2�̌†2

/j0
2

+ O�u1/��̌†2
,�̌†3

� + o�u�� , �76�

with coefficients p, p†, q0, g1, and g2 which in general still
depend on �, and with the critical exponent

� = max�2/�d − 2�;1� . �77�

The integrals L���� are less singular and one finds

L���� = g0j0
−1�l�,0 + l�,1�̌†/j0 + l�,2�̌†2

/j0
2 + O�u,�̌†3

�� .

�78�

We note that g1 and l�,1 vanish in the symmetric case when
�J†=0, while g1, g2, p†, l�,0, l�,1, and l�,2 are all of order
�J�� / j0. It is worth remarking, furthermore, that the expres-
sion �77� can be generalized by replacing 2 by � when long-
range integrable 1 /rd+� interactions are present �with 0��
�2�.

Using these expansions one can explicitly expand the
terms in the spherical constraints �64� about their values at
criticality, which then provides the required relation between
u1/� and �† and t and m̌. To proceed further, we aim to
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choose the mixing parameters and, explicitly, �m, to ensure
that the resulting expansion for u1/� begins at orders t and
m̌2, as in �58�, rather than with m̌ as �64� naively implies.
This can be done by imposing the condition

� m
4 =

1 − g1��� − �l2,1���
� �� + �g1��� + l1,1����

. �79�

To study this, consider first the symmetric case when g1
= l�,1=0; the condition then reduces simply to �m

2 =1 /�,
which, in combination with �75�, leads to the equation

�1 + m̌†2
l�,0��1 − �2� = 0. �80�

The conditions �71� enforce �Ĵ���0 in symmetric systems,
which leads to l1,0= l2,0�0. Consequently, the only positive
solution of this equation is �=1, independently of m̌†. Thus
we obtain �=�m=1. Finally, we discover, as naturally ex-
pected, that symmetric criticality is confined to the manifold
m̄c=0 or ��1+�2�c= 1

2v0
−1, while the critical locus is given

explicitly by the simple parabolic form

Tc
sym��1,�2�

Tc,max
sym = 1 − m†2

= 1 − v0
2��1 − �2�2, �81�

where kBTc,max
sym / j0=1 /g0�1��1+ l�,0�1��.

In the general, nonsymmetric case the condition �79� is
less tractable and might even lead, one could suspect, to
multiple solutions. To keep the analysis at the simplest level,
we note that the coefficients g1��� and l�,1��� are actually of

order Ĵ11�0� / j0 and Ĵ22�0� / j0. For the present work, we will,
thus, restrict attention to systems in which the �1, 1� and �2,
2� interactions are sufficiently small relative to the �1, 2�
attractions �which, then, predominantly drive phase separa-
tion and yield criticality�. In these circumstances the right-
hand side of �79� remains positive, ensuring solutions for
real �m and �: we then select a positive root for �m.

Supposing, then, that the condition �79� is satisfied, the
spherical constraint in the general case has the expansion

pu1/� �1 + O�u1−1/�,t,m̌�� = ctt + cmm̌2 + O�tm̌,m̌3� ,

�82�

where, with the coefficients p , l1,0 , . . . defined via the expan-
sions �76� and �78�, we find

ct = 1 +
�m

4 l1,0 + l2,0

��m
4 + 1/�

�83�

and, with

c0 = j0/g0kBTc and w��� = 1 − g1��� − �l2,1��� , �84�

cm =
2c0

��m
2 + 1/��m

2 +
2�2�m

4 c0
2

w2���
m̌†2

��1 + 2g1
�2�m

4 − 1

�2�m
4 + 1

+ 2g2 + 2
�m

4 l1,2 + l2,2

��m
4 + 1/� � . �85�

These expressions are derived only for ��1, but the general
expansion �82� remains valid when �=1 with, however, dif-

ferent coefficients. For �Ĵ�� small enough, ct and cm are

positive �which we suppose from here on�. Thus the structure
of �82� leads to the usual form of the critical singularity in
the spherical model.

The second spherical field �̌†, which, recalling �38� enters
into u, is given by

�̌†/j0 = 2��m
2 m̌m̌†c0/w��� + ct�t + cm� m̌2 + O�t2,m̌t,m̌3� ,

�86�

where, in similar fashion, the coefficients are found to be

ct� = ��l2,0 − l1,0/��/w����1 + 1/�2�m
4 � , �87a�

cm� =
��m

2 c0

w����1 + 1/�2�m
4 �

� �1 − 1/�2�m
4 + 4��m

2 c0��l2,2 − l1,2/� − 2g1�m̌†2
/w2���� .

�87b�

It should be noted that in the symmetric case, where �=�m
=1, both these coefficients, ct� and cm� , vanish. At this stage,

having obtained expansions for u and �̌†—and thus for �1
and �2—as functions of T, m̌, and m̌†, we are in a position to
derive all the physical properties of the system in terms of
the fluid variables T, �1, �2, and �1 and �2.

C. Equation of state

To calculate the equation of state, we need to rewrite the

relation �66� for the field ȟ using the expansions of u and �̌†

in terms of t and m̌, at fixed m̌†, together with the expansion

�̌ − j0 = �u + �̌†2
�/2j0 + O��̌†4

,u�̌†2
,u2� , �88�

which follows from �39�. At this point, we resolve the free-
dom to choose �h in �65� by requiring that the resulting ex-

pression for ȟ is minimally singular. We achieve this by can-

celing the O�u� term introduced by the factor m̌†��̌− j0� on
the right-hand side of �66�, by choosing

�h = ��m, �89�

so that �− in �67� vanishes identically. With this choice the
equation of state can be written

ȟ − �ȟc + j0cht + nm̌ + O�m̌t,t2��

= j0
−1p−�m̌�ctt + cmm̌2 + O�m̌3,tm̌����1 + O�t,m̌,u1−1/��� ,

�90�

provided the expression in braces, which derives from u,
remains nonnegative; otherwise, this expression must be re-
placed by zero. Recall, indeed, that u must be nonnegative
for the free energy to be well defined.

On the left-hand side of �90� the coefficient

ȟc�m̌†� = j0m̌†�1 − �2�m
4 �/��m

2 , �91�

serves to specify the critical fields h1,c and h2,c �via �65� and
�88�� and thence the critical chemical potentials �1,c and

�2,c. Note that ȟc vanishes with m̌† so that in a symmetric
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system, where �=�m=�h=1, criticality occurs, as natural,

when h̄c=0.
The linear term in t, with mixing coefficient

ch�m̌†� = 2m̌†ct�, �92�

similarly determines the near-critical T dependence of the
chemical potentials, ��,1�T ; m̌†� and ��,2�T ; m̌†�, on the
phase boundary, a feature to be anticipated in binary fluid
mixtures.

Finally, note the linear term in m̌ on the left-hand side of
the equation of state �90�: this is quite unanticipated from the
perspective of previously studied spherical models, at least to
the authors’ knowledge. The corresponding coefficient,
which for reasons to be explained below we call the “demag-
netization factor,” is given by

n�m̌,m̌†�/j0 = −
�1 − ��m

2 �2

��m
2 + 4c0

��m
2

w���
m̌†2

+ 2cm� m̌m̌†

+ O�m̌2� , �93�

in which further powers of m̌ should be noticed. In a sym-
metric model, this factor simplifies to the fairly explicit ex-
pression

n�m̄,m†� = 4j0�1 + l�,0�
m†2

1 − m†2�1 +
2m̄2

�1 − m†2
�2

+ O�m̄4�� .

�94�

Finally, as regards the second external field ȟ†, or chemi-
cal potential, near criticality we have

ȟ† − �ȟc
† + n�m̌ + O�t2,m̌t��

= j0
−1p−�m̌†�ctt + cmm̌2 + O�tm̌,m̌3��� �1 + O�t,m̌,u1−1/��� ,

�95�

where the right-hand side has the same form and is subject to
the same conditions as in �90� while the critical point value is
determined by

ȟc
†�m̌†� = j0m̌†�1 + ��m

2 �2/��m
2 , �96�

and the modified demagnetization factor is

n��m̌,m̌†� = j0
�2�m

4 − 1

��m
2 + 4j0c0

��m
2

w���
m̌m̌†	1 + c0

��m
2

w���
m̌†


+ O�m̌2� . �97�

For symmetric models, these three relations reduce simply to

h† = 4j0m† + O�m̄,t2� . �98�

D. Phase diagram and critical behavior

Our result �90� and subsequent relations �91�–�93�, de-
scribe the equation of state, i.e., the relations between the
densities, m1, m2, or �1 and �2, and the fields, h1, and h2, or
chemical potentials, �1 and �2, at temperature T close to
criticality. To reveal specific, characteristic features we con-

sider, first, the phase boundary in terms of the sum and dif-
ference densities m̌ and m̌†. It follows from �90� that the
phase boundary below and up to Tc�m̌†� is determined by the
relation u�t , m̌ , m̌†�=0. Figure 2 depicts the boundary in the
space �T , m̄ ,m†� for a symmetric system, for which the criti-
cal locus was already derived in �81�. Evidently, at fixed m†

and for T�Tc�m†� there is a composition gap ��̄�T�= �̄�

− �̄
, where � and 
 label the two phases. This vanishes as
T→Tc�m†� and from the magnetic perspective is most
readily expressed in terms of the spontaneous magnetization
which is described by

m̌0�T� � B�t�
 with 
 = 1
2 , �99�

where B= �ct /cm�1/2. In fact the critical exponent 
= 1
2 repre-

sents the standard “universal” spherical model result!
As regards the other critical exponents of the general bi-

nary fluid model, our choice of the mixing parameters �, �m,
and �h at fixed m̌† ensures that they basically match those of
the corresponding single-component spherical models. This,
of course, is in agreement with general considerations of the
thermodynamics of multicomponent fluids �23�. Thus regard-
ing the density correlation functions, the decomposition
�49a� and �49b� shows that the dominant behavior of the
density structure function near criticality is given by

SNN�k;T,�� � 1/�u + k2Rc
2 + ¯ � , �100�

where Rc is a nonzero range parameter, while on the critical
isochore, m̌= m̌c=0, we have u� t� as follows from �82�.
Hence, we find SNN�k=0 ;T ,�c��1 / t�, which is consistent
with the definition of the critical exponent � via, say, light
scattering experiments. At criticality, this result also implies
SNN�k ;Tc ,�c��1 /k2, which confirms the classical value �
=0 of the critical point decay exponent.

Moreover, in leading order close to but above criticality
one can establish the scaling form

SNN�k;T,�c� � t−�XNN�k�N�T�� , �101�

where the density correlation length is �N�T���0 / t with
critical exponent  = 1

2� in accord with the general scaling
relation �= �2−�� . The scaling function XNN�x� has the
standard Ornstein-Zernike form varying as 1 / �1+x2�.

T�T

m

c
max

�

m�

�1

�0.5

0

0.5

1

�1
�0.5
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0.5

1

0

0.5

1

FIG. 2. �Color online� Phase boundary in terms of the magneti-
zation m̄= 1

2 �m1+m2� and m†= 1
2 �m1−m2� in the symmetric case.

Criticality occurs on the bold line. The surface represents the limit
of the single-phase region. Below the surface the parameter u sticks
at zero.
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However, the equation of state in terms of T, m̌, and the

field ȟ requires further examination. Thus, while the standard
spherical model singularities embodied in �58� are evident,
new features arise from the “demagnetization” term nm̌ on
the left-hand side of �90�. To understand their significance,

consider symmetric systems �i.e., with Ĵ11= Ĵ22�, where �90�
reduces to

h̄ � nm̄ + j0p−��ctt + cmm̄2��, �102�

while the demagnetization factor n�m̄ ,m†� is then given by
�94� and vanishes only if m†=0. More generally, however,
we note that n�m̌=0, m̌†� vanishes in asymmetric systems,
only on the special two loci m̌†= � m̌s

† where one finds

m̌s
†2

= �1 − ��m
2 �2w���/4�2�m

4 c0. �103�

It now follows from �102� that the inverse thermodynamic

susceptibility or partial compressibility, 1 /!���h̄ /�m̄�t, does
not vanish at the critical point t=0, m̄c=0: see Fig. 3. Con-
sequently, the susceptibility does not diverge near criticality
in the general case! The culprit is clearly the demagnetiza-
tion effect, i.e., the term nm̄ which arises both from the com-
positional asymmetry �when m̌†�0� reflecting the multicom-
ponent nature of the binary fluid, and from the underlying
vectorial character of the order parameter: recall that spheri-
cal models correspond to the n→� limit of systems of
vector-valued spins. Indeed, as we demonstrate in the next
section, the origin of the demagnetization effect in spherical
models can be understood directly in terms of vector spin
models.

The nondivergence of the susceptibility-compressibility !
means that standard isothermal plots of the chemical poten-
tial �or, similarly, the pressure� vs density or of magnetic
field vs magnetization near criticality take the form illus-
trated in Fig. 3 with, in general, a nonzero slope at T=Tc
fixed by the value, nc, of the demagnetization coefficient.
Note, in particular, that below Tc what would in a standard
fluid system be a constant isotherm of zero slope through the
two-phase region—i.e., the interval set by the spontaneous
magnetization, m0�T�—is now replaced by a straight line
with the same fixed slope nc �at least close to Tc�.

It is this fact that leads us to call this anomalous behavior,
certainly unphysical in a fluid model, a “demagnetization

effect.” To be more specific, in a real magnetic system with
long-range dipole-dipole interactions, one must distinguish
between the externally applied magnetic field Hext, analogous

here to h̄ �or ȟ�, and the internal field, Hint, which is what is
“seen” by individual atomic and molecular spins. The rela-
tion between these may be written

Hint = Hext − NM , �104�

where M, analogous here to m̄ �or m̌� is the magnetization
while N is the demagnetization coefficient �24–26�. More
generally the fields Hint and Hext are real-space vectors, as is
M, and the relation �104� can be used only when the system
is in the form of an ellipsoid and directions parallel to the
major axes are considered. �In the case of a sphere one has
N=4� /3 �24–26�.�

One might, in light of these considerations, ask if one
should not, similarly, be able to introduce an “effective in-

ternal field,” ȟint� ȟext−nm̌, that would play a natural ther-
modynamic role. However, on the one hand, given the im-
plicit variation of n�m̌ , m̌†�, this seems unlikely to be related
to the basic thermodynamic parameters, T, ��, and ��, suf-
ficiently directly to be of real value, and, on the other hand,
the higher-order terms in �90� indicate that the linear slope
shown in Fig. 3 for the “two-phase” region will become non-
linear outside the critical region.

Two further points need to be made. First, the unphysical
nondivergence of the susceptibility �or compressibility� ap-
pears only in two-component systems that lack symmetry.
Indeed, by �94�, the demagnetization factor vanishes identi-
cally when 
11�R�=
22�R� and m1=m2 �so that m†=0�. In
general such symmetry is nonphysical; but it would apply,
for example, to two species that differ only in being of op-
posite chirality, i.e., two entiatiomers, present in equal con-
centrations, so constituting a racemic mixture. Second, since
the range of potentials enters only through the integrals G���
and L����, defined in �55� and �56� and via the second- and
higher-order terms in the expansion �71�, one sees that the
basic anomaly of nondivergence does not depend on the
short- or long-range character of the interaction potentials.
Thus a neutral electron-positron plasma also represents a
fully symmetric situation and the corresponding spherical
model would be anomaly-free. Less obvious, but as can be
shown �15–17�, a neutral 1:1 electrolyte also escapes the
demagnetization effects even if the short-range parts of the
��,�� and ��,�� ionic interactions differ.

Finally, as a further caution, another unphysical feature of
the present multicomponent fluid models must be noted. In-
deed, it enters even in single-component spherical models
�4,5,18�! Specifically, whenever ��1 and nc=0 so that the
susceptibility ! diverges to � on approach to Tc along the
critical isochore, it also diverges when the phase boundary is
approached below Tc. Even for nc�0, a corresponding
anomalous feature arises and is embodied in Fig. 3 where the
slope of the isotherm below Tc remains continuous through
the phase boundaries �marked by open circles�; but in real-
istic fluid models there would be breaks in the slope!

mm�m 0

h

hc

T�Tc

T�Tc
T�Tc

h
0

�

�h
0

� 00
���

�

�
�

�

FIG. 3. Schematic depiction of the equation of state at fixed m̌†

��0� in a symmetric system for temperatures above, at, and below
criticality. In the latter case, the equation of state reduces to the

linear demagnetization form h̄=nm̄ �dashed line� for −m̄0� m̄

� m̄0 �where m̄0� t
� and h̄ in the interval �−h̄0 , h̄0�.
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V. VECTOR SPIN MODEL ANALYSIS

To understand the origin of the demagnetizationlike ef-
fects that enter the present multicomponent spherical models,
it is helpful to recognize that spherical models correspond
precisely to the n→� limit of appropriate systems of
n-component spins �13�. The vectorial character of the order
parameter is thus a trademark of the model �4,5�, coupled
here to asymmetry and multicomponent features. The “se-
cret” of the demagnetization effect appearing first in �90� can
then be understood by regarding our binary-fluid spherical
models as magnetic models with two classes of spins on
separate sublattices, just as in �1�–�14�, but now as fixed
length vector spins, s��Ri

�� ��=1,2�, rather than scalar Ising
spins as originally contemplated.

To obtain insight into the behavior of the model below Tc,
we may use a simple mean-field approach by representing
the overall sublattice magnetizations by two mean values, m1
and m2. The lengths of these magnetization vectors should
ideally be taken as m�

0�T�, the spontaneous magnetizations
�at fixed T�Tc�; but it suffices here to consider the symmet-
ric situation and so accept equal fixed lengths �m1�= �m2�=1.

Then, in contrast to most realistic magnetic systems, it is
imperative to allow for the imposition of two distinct exter-
nal magnetic fields h1 and h2, corresponding, as is funda-
mental for fluid models, to two distinct chemical potentials
�1 and �2. However, for the “chemical interpretation,” we
must take h1 parallel to h2 and may identify the preferred
direction as the y axis: see Fig. 4. The components �m1�y and
�m2�y then correspond to the densities m1 and m2 in our
previous analysis, while

h̄ = 1
2 �h1 + h2� with h� = �h��y �105�

describes the external field or chemical potential. On the
other hand, h†= 1

2 �h1−h2� characterizes the compositional
asymmetry of the system �even when the two species, here
the magnetic sublattices, are symmetrically related�: that
asymmetry is at the heart of the matter. As regards the
vector-spin dimensionality, however, it suffices to allow for
only one more dimension and so regard the m� as XY or
O�2� order parameters.

Finally, beyond the symmetric intrasublattice ferromag-
netic couplings �that lead to the spontaneous magnetiza-

tions�, we allow for the intersublattice interactions by a cou-
pling constant j�0 �analogous to j0 above�. Thus we take
the essential part of the mean-field free energy to be

F�h̄;h†;m1,m2� = − h1 · m1 − h2 · m2 − jm1 · m2.

�106�

Here the external field h̄ is the control variable while h† is
fixed and, as usual, F is to be minimized with respect to m1
and m2.

Let us, as in Fig. 4, introduce the mean tilt angle " be-
tween the y axis and m̄= 1

2 �m1+m2� and the splitting or sepa-
ration angle �, between the m� and the m̄. For simplicity we
suppose that � is small �which requires �h†�# j�; then mini-
mization on � yields

Fmin�"� = − j − 2h̄ cos " −
2h†2

sin2 "

2j + h̄ cos "
+ O�h†2

/j2� .

�107�

Consider, first, the fully symmetric case in which h†=0
�and �min=0�. Minimizing this expression on " then gives

"min=0 for h̄=0 but "min=� for h̄�0. This evidently cor-
responds to the usual ferromagnetic situation in which �ne-
glecting dipolar interactions and demagnetization effects� the
magnetization m̄ switches abruptly from m̄��m̄��y =−1 to

+1 as the field h̄ passes through zero.
On the other hand when h†�0 the minimizing value of "

assumes a nontrivial value for h̄ between the limits �h̄0
given by

h̄0 = j��1 + h†2
/j2 − 1� � 1

2h†2
/j , �108�

up to corrections of relative order �h† / j�2. As a consequence,

the magnetization m̄�h̄� no longer jumps discontinuously at

h̄=0 from m̄=−1 to m̄= +1 but rather varies continuously

and almost linearly over the interval −h̄0� h̄� h̄0 according
to

m̄�h̄� �
h̄

h̄0

�1 −
3

8
�h†/j�2���1 −

3

8
�h†/j�2�h̄/h̄0�2� .

�109�

More explicitly to leading order in �h† / j�2 one finds for �h̄�
� h̄0,

m̄ = cos "min =
2j

h̄
�� 1 − h̄2/4j2

1 − 2h̄2/h†2
− 1� , �110�

while for �h̄�� h̄0 one has cos "=sgn�h̄�.
In words, for an external field h̄ not too large compared to

the square of the asymmetric field h†, the spins cant them-
selves in a direction "min�0, with, indeed, "min=� /2 when

h̄=0! This minimizing behavior of vector spins is clearly the
origin of the seeming demagnetization effect and explains

Θ

y

x

m1

m2

δ
δ

h1

h2

FIG. 4. Vectorial representation of the two-species spherical
model within a mean-field picture in which m1 and m2 are the two
sublattice magnetization vectors that can rotate with respect to the
direction, the y axis, set by the parallel external fields, h1 and h2.
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our result for the spherical model. Indeed, near the origin, for

h̄ / h̄0→0, we find cos "min�2h̄ j /h†2
which leads to a non-

divergent susceptibility of magnitude

! = ��m̄/�h̄�T,h̄=0 = 2j/h†2
. �111�

Thus, as the spherical model itself, the asymmetry of the spin
model, coupled to the vectorial character of the order param-
eter, leads to a nonvanishing inverse susceptibility near criti-
cality in the general case. Note also that, as in the spherical
model, the divergence of ! reemerges in the symmetric case

when h†=0. Finally, the nonlinear terms in h̄ implied by
�109� show that one cannot hope to find a simple demagne-
tization description as in �24–26�.

VI. CONCLUSIONS

We have introduced multicomponent generalizations of
the standard spherical model that embody lattice-gas hard
cores for many-species fluids by using interlaced sublattices.
Taking into account a spherical constraint for each distinct
species, we have obtained exact expressions for the free en-
ergy and pair correlation functions in the general case, in
terms of the basic Fourier space interaction matrix. We have
then focused on binary fluids where the diagonalization of
2�2 matrices leads to relatively simple results for the physi-
cal properties of the system. We find that density and �for
ionic fluids� charge correlation functions can be decomposed
naturally in terms of two eigenmodes. This formulation,
which could well have broader validity, has dramatic conse-
quence for charged fluids as we expound elsewhere
�4,5,15–17�.

The present analysis addresses fluids where, in addition to
hard cores, only short-range overall attractive interactions are
present. We show that with an appropriate choice of vari-
ables �in the form of linear combinations of the mean
magnetizations-densities or external fields-chemical poten-
tials for the two species�, the usual critical properties of
single-component spherical models can be uncovered in ac-
cord with general thermodynamic arguments for multicom-
ponent solutions. Specifically, as the relative composition of
the system varies, criticality is realized on a well-defined
locus in the full phase diagram.

However, an unexpected and intrinsically unphysical
“pseudodemagnetization phenomenon” arises that, except on
certain submanifolds, prevents the usual divergence of the
thermodynamic susceptibilities-compressibilities at critical-
ity. This feature, undesirable for model fluids, is found to be
a consequence of an interplay between species and compo-
sitional asymmetry and the multidimensional characteristics
represented by the hidden vectorial character of the order
parameter in spherical models. The behavior can, indeed, be
understood via a simple mean-field description of a corre-
sponding XY spin model. Despite this artificial aspect, re-
quiring caution in interpreting results, further aspects of the
multicomponent spherical models seem worth pursuing: on
the one hand, ternary fluid models with, say, positive and
negative ions in solutions of neutral molecules, could be

instructive; on the other hand, magnetic systems with differ-
ent types of ions could reveal interesting behavior.

ACKNOWLEDGMENTS

In the period 2002-2004, this work was supported through
the National Science Foundation under Grants No. 99-81772
and No. 03-01101. J.-N.A. appreciates both support and hos-
pitality from the Institute for Physical Sciences and Technol-
ogy at the University of Maryland.

APPENDIX A: LOCATION OF SINGULARITIES

In this appendix, we locate the singularities of the binary
spherical model for the generic case of short-range interac-
tions. The singularities derive from the vanishing of �−�k ;��
and we obtain sufficient conditions to ensure that they arise
only when k=0.

1. Vicinity of the origin

We first consider the small-k behavior of �−�k ;��. Owing
to the second condition �71�, the range R12 defined in �70�
satisfies R12

2 �0. Note also the relations �J̄�k�� j0R̄2k2 and

�J†�k�� j0R†2k2, where R̄ and R† are characteristic ranges.
At leading order in k we then have

�−�k;�� − �−�0;��
j0k2 = R̄2 +

j0R12
2 − �†R†2

��†2
+ j0

2
+ ¯ , �A1�

which will be valid in a domain �k��km�0. From the third

condition �71� we find R̄2�0 and if, recalling the definition
�35b� of �J†, we accept the further condition

�R†2
� = lim

k→0
�J†�k�/j0k2 � R̄2, �A2�

we are assured that k=0 is indeed the minimum of �−�k ;��
when k�km.

2. Remainder of the Brillouin zone

Consider now the subdomain B� of the Brillouin zone B,
consisting of all vectors k outside the origin domain �k�
�km. In the symmetric case when �J†=0 �marked by super-

scripts “sym”�, the second condition �71� leads to �Ĵ12�k��
� j0 so that

��−
sym � �−

sym�k;�� − �−
sym�0;�� � �J̄�k� . �A3�

But, according to the last member of �71�, there exists a
��−

sym such that

��−
sym�k;�� � ��−

sym � 0 for k � B�. �A4�

In the general case where �J† is arbitrary, we may write

�−�k;�� − �−�0;�� = ��−
sym�k;�� + ��−��J†�k�� ,

�A5�

where from �36� we define
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��−��J†�k�� = ��†2
+ 1

4 Ĵ12
2 �k� − ���† + �J†�k��2 + 1

4 Ĵ12
2 �k� .

�A6�

Then, noting that �����−� /��J†�k���1 and �J†�0�=0, we
see that ���−��J†�k���� ��J†�k��. Hence, accepting the fur-
ther condition

max
k�B�

���J†�k��� � ��−
sym, �A7�

which means that the asymmetry is not too strong, one con-
cludes that �−�k ;����−�0 ;�� for all k in B�.
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