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We study the control of noise-induced spatiotemporal current density patterns in a semiconductor nanostruc-
ture (double-barrier resonant tunneling diode) by multiple time-delayed feedback. We find much more pro-
nounced resonant features of noise-induced oscillations compared to single time feedback, rendering the
system more sensitive to variations in the delay time 7. The coherence of noise-induced oscillations measured
by the correlation time exhibits sharp resonances as a function of 7, and can be strongly increased by optimal
choices of 7. Similarly, the peaks in the power spectral density are sharpened. We provide analytical insight
into the control mechanism by relating the correlation times and mean frequencies of noise-induced breathing
oscillations to the stability properties of the deterministic stationary current density filaments under the influ-
ence of the control loop. Moreover, we demonstrate that the use of multiple time delays enlarges the regime in
which the deterministic dynamical properties of the system are not changed by delay-induced bifurcations.
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I. INTRODUCTION

It is well known that random fluctuations can seriously
affect charge transport in semiconductors [1], which usually
leads to deterioration of their performance. However, re-
cently the constructive role of noise in semiconductor de-
vices has been recognized. In particular, noise was shown to
induce coherent radiation in semiconductor lasers [2—4] or to
induce moving field domains in semiconductor superlattices
[5] whose regularity becomes optimum at some nonzero
value of the noise intensity. This phenomenon is known as
coherence resonance [6,7]. In double-barrier resonant tunnel-
ing (DBRT) diodes noise can generate spatially inhomoge-
neous current density patterns in the form of breathing cur-
rent filaments [8], however, their regularity decreases
monotonically with increasing noise intensity, and thus
shows no coherence resonance.

The control of the features of noise-induced dynamics is
generally of great importance, and has recently attracted a lot
of attention in the field of nonlinear dynamic systems [9]. In
[10,11] a method for manipulation of essential features of
noise-induced oscillations, such as coherence and time
scales, was proposed using a delayed feedback scheme that
was originally used to control chaos in purely deterministic
systems [12]. This technique was demonstrated to be effec-
tive for control of noise-induced oscillations in either simple
(generic) systems [13-18] or more complex, spatially ex-
tended systems [19-21]. For the DBRT nanostructure it was
shown that time-delayed feedback can either increase or de-
crease the regularity of noise-induced breathing filaments
and, moreover, can even lead to spatial homogenization of
current density patterns [22]. For deterministic systems the
original single time-delayed feedback was extended by using
multiples of the delay time 7 weighted with a memory pa-
rameter [23], which generally leads to larger control domains
and more efficient control [24-27]. In a simple stochastic
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Van der Pol oscillator this has also been shown to yield dras-
tically increased correlation times [28].

In the present work we study the effect of multiple time-
delayed feedback on the stochastic spatiotemporal pattern
formation in the DBRT model. Compared to the single time-
delayed feedback in the same system [22], we find much
sharper resonances of the spectral and correlation properties
in dependence upon the delay time. For parameter values
close to, but below a Hopf bifurcation we show that in these
sharp, pronounced resonances the temporal regularity is sig-
nificantly increased and the power spectral width becomes
much narrower. Moreover, we demonstrate that the use of
multiple time delays enlarges the control parameter regime in
which the original deterministic dynamical properties of the
system do not change, i.e., the delay-induced bifurcations
occur only at larger feedback strength.

The paper is organized as follows. In Sec. II the DBRT
model is described, and the dynamical properties of the sys-
tem for our chosen parameters are discussed. Section III is
devoted to the effects of the multiple time-delayed feedback
upon noise-induced dynamics, and in Sec. IV we draw con-
clusions.

II. MODEL

In our study, we use a deterministic model for the DBRT
suggested in [29] and add two sources of random fluctuations
as proposed in [8]. Furthermore, we use the time-delayed
feedback scheme, which was already applied to this system
in [22], and extend it in order to take multiple time intervals
into account in the feedback loop.

aaf;’ d = fla,u) + a—i(D(d)Z_z> +D,é(x.1),
ou(t) 1
p =;(U0—u—rj)+Du77(t)+F(f), (1)
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where all quantities are dimensionless. The dynamical vari-
able a(x,r) describes the charge carrier density inside the
quantum well, whereas u(z) is the voltage drop across the
device. The spatial coordinate x denotes the direction perpen-
dicular to the current flow, and ¢ is time. In terms of nonlin-
ear dynamics, in the deterministic (D,=D,=0) and uncon-
trolled (K=0) case, this is a reaction-diffusion model of the
activator-inhibitor type, where a is the activator, and u is the
inhibitor [30].

The net tunneling rate of the electrons through the two
energy barriers into and out of the quantum well is modeled
by the nonlinear function [29]

f(a’u) =jin _jaut’

. 1 1 2 u d
Jn=) <+ —arctan| —\xo— -+ —a
2 a Y 2 rp
u d
X\YIn| l+exp| ,—xg+ - ——a||—-af(,
2 rg

jout =a > (2)

where d is the effective thickness of the double-barrier struc-
ture, rg=(4meeyh?)/ (e’m) is the effective Bohr radius in the
semiconductor material, € and ¢, are the relative and abso-
lute permittivity of the material, and x; and 7y describe the
energy level and the broadening of the electron states in the
quantum well and 7, is the dimensionless Fermi level in the
emitter, all in units of kg7. Throughout the paper we use
values of y=6, d/rg=2, 5,=28, and xy=114, corresponding
to typical device parameters at 4 K [29].

The effective diffusion coefficient D(a) resulting from the
inhomogeneous lateral redistribution of carriers and from the
change in the local potential due to the charge accumulated
in the quantum well by Poisson’s equation is given by [31]

D(a):a(i+;>. (3)
rg 1—exp(-a)
It describes the diffusion of the electrons within the quantum
well perpendicular to the current flow. J= ll_ I} é jdx gives the
total current through the device, where j(a,u)=%(j,»n+ Jour)
:% (a,u)+2al] is the local current density within the well.
The system’s width is fixed at a value of L=30 and homo-
geneous Neumann boundary conditions are used.

In Eq. (1) we use uncorrelated Gaussian white noise
sources &(x,1) and 7(r) with noise intensities D, and D,

(x,0)=(n)=0 (xe[0,L]),
(e, &(x", 1)) = lx —x") 8t - 1"),

(n()m(t")) = 8t —1'). (4)

Physically, D, can be realized by an external tunable noise
voltage source in parallel with the supply bias. D, describes
internal fluctuations of the local current density, which could
be caused, e.g., by shot noise [1].
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FIG. 1. (Color online) Stochastic spatiotemporal dynamics un-
der multiple time-delayed feedback control. (a) Voltage time series
u(t) (in units of 0.35 mV), (b) charge carrier density a(x,7) (in units
of 10'9/¢cm?), (c) phase portrait of current J (in units of 500 A/cm?)
vs voltage u. Space x and time ¢ are scaled in units of 100 nm and
3.3 ps, respectively, corresponding to typical device parameters at
4 K [29]. Parameters are Uy,=—84.2895, r=-35, ¢=6.2, D,=0.1,
D,=10"* K=0.1, 7=6.3, R=0.5.

The control force F(r) represents a control voltage, which
is constructed recursively from a time-delayed feedback loop
with delay time 7, feedback strength K=0, and memory pa-
rameter R, and can be written as

F(t)=K[u(t—7) —u(t)]+RF(t—17) (5)

=K, R{u[t- (n+ )7 —u(t—nd}. (6)
n=0

The first equation (1) is the local balance equation of the
charge in the quantum well, and the second equation repre-
sents Kirchhoff’s law of the circuit in which the device is
operated. The control parameters are the external bias volt-
age U, the dimensionless load resistance r, and the time-
scale ratio e=RC/ 7,, which is related to the load resistance
R, and the parallel capacitance C of the attached circuit, nor-
malized by the tunneling time 7,. A discussion of the various
deterministic bifurcation scenarios can be found in
[25,29,32].

We fix £=6.2 slightly below the Hopf bifurcation, which
occurs at ey~ 6.469. In this regime we have two fixed
points: (i) a stable, spatially inhomogeneous fixed point and
(ii) a spatially homogeneous fixed point, which is stable with
respect to completely homogeneous perturbations but gener-
ally unstable against spatially inhomogeneous fluctuations
(saddle point). Although the deterministic system rests in the
inhomogeneous steady state, noise can induce irregular spa-
tiotemporal oscillations of the current density [8]. In the fol-
lowing we shall study how these noise-induced oscillations
are influenced by the control force.

III. MULTIPLE TIME-DELAYED FEEDBACK CONTROL

Figure 1 shows simulations of the spatiotemporal dynam-
ics under the influence of noise and delayed feedback. The
voltage time series (a), the spatiotemporal charge density
patterns (b), and the current-voltage projection of the
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FIG. 2. (Color online) Same as Fig. 1 for D,=1.0.

infinite-dimensional phase space (c) are depicted. Noise in-
duces small spatially inhomogeneous oscillations around the
inhomogeneous steady state (breathing current filaments). In
the J-u phase portrait (c), the spatially inhomogeneous
steady state (fixed point) is determined by the intersection of
the load line (null isocline =0, blue dashed-dotted) with the
nullcline ¢=0 for inhomogeneous a(x,?) (red dotted). The
neighboring intersection of the load line with the nullcline
a=0 for homogeneous a (black solid curve) defines the sec-
ond, spatially homogeneous fixed point, which is a saddle.
With increasing noise intensity (Fig. 2) the oscillation ampli-
tude becomes larger, the oscillations become more irregular,
and finally, at even larger noise, the oscillations are more
spatially homogeneous, i.e., in the phase space they are more
centered around the homogeneous fixed point (Fig. 3).

We shall now investigate how the regularity and the time
scales of these noise-induced oscillations depend upon the
feedback parameters K, R, T.

A. Linear stability analysis

To this purpose we first examine the stability properties of
the inhomogeneous fixed point (ay(x),uy) under the influ-
ence of the control force. We perform a linearization of the
original continuous system (1) (with D,=D,=0) around the
inhomogeneous fixed point along the same lines as in
[22,33]. We use an exponential ansatz for the deviations from
the fixed point da(x,?)=a(x,t)—ay(x)=e a(x) and Su(r)
= u(f)—uy=e"'ii. The resulting coupled eigenvalue problem
reads

500 540 580

260 265 270
u

FIG. 3. (Color online) Same as Fig. 1 for D,=2.0.
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Aa(x) = Ha(x) + f,(0), (7)
L -AT
- r o 1+7J,_ 1-e _
Au=—8—Lf0 Ja()alx)dx — A u—Kl_Re_ATu,
(8)
where we have introduced a self-adjoint linear operator
. Of b b | o b | &
H= — — —| =+ —| -
dal, ., oa |, da,|, ox  day|, ox
00 0 0 0
)

The index x denotes the partial derivative with respect to the
spatial variable, and b(a,ax,axx)=[,—‘l[D(a)ax] is an abbrevia-
tion for the diffusion term in the first equation of the model
system (1).

The eigenfunctions W; and eigenvalues \; of H corre-
spond to the voltage-clamped system, du=0. Furthermore,

P
! ou agity ‘ da agty
1 (" g
J == f 2 ax (10)
L)y, ou agity

Due to the global constraint, Eq. (8) mixes the eigenmodes
¥, and both equations have to be solved simultaneously. An
expansion of the eigenmodes a of the full system in terms of
the eigenmodes W; of the voltage-clamped system, keeping
only the dominant eigenmode W, with eigenvalue \y>0,
leads to a characteristic equation for the eigenvalues A,

1+rJ 1—e™
A2+( ”—)\)A+ A=N)K——— -
£ o A+ (A=N)KT

=0, (11)

A
—0(1 +ray)
€

where the static differential conductance at the inhomoge-
neous fixed point o,= %LIO’MO has been introduced. In [22] a
more detailed derivation of the characteristic equation is
given for the special case R=0. The extension to the case
R #0 is straightforward.

Without control, K=0, Eq. (11) reduces to a characteristic
polynomial of second order, which gives the well-known
conditions for stability of a filament [33]

1+rJ,
= ——)\0>O,
€
Ao
C=-—+roy)>0, (12)
€
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and a Hopf bifurcation occurs on the two-dimensional center
manifold if A=0.
With control, Eq. (11) can be expressed as

1—- -AT
A2+AA+(A—B)KTZ_AT+C=O, (13)

with B=\y>0. The parameters A, B, C can be calculated
directly from Eq. (12) [22], yielding A=0.0447, B=1.0281,
and C=1.1458.

Using Eq. (13) we can calculate the domains of stability
in the 7K plane numerically for selected values of the
memory parameter R. In order to find the curves containing
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the boundaries of stability of the inhomogeneous fixed point
as a subset, we set A=p+iq with p=0 and separate Eq. (13)
into real and imaginary parts as follows:

[BK —R(C - ¢*)]cos(g7) — g(AR + K)sin(g7)
=BK+(q°-C), (14)

g(AR + K)cos(g7) + [BK + R(¢* - C)Jsin(g7) = g(A + K).
(15)
Using Egs. (14) and (15) the boundary of stability can be

obtained from the set of parametric functions K(g) and m(q)
using g=Im(A) as the curve parameter:

[A%% +(C - ¢»)*](1 + R)

K(q) =

2BC -2(A + B)¢*

g(AB+C—-g»)(1-R)K

7(q) = l(arcsin(
q

Figure 4 shows these curves, Eq. (16), as blue lines. The
boundaries of stability, where a delay-induced Hopf bifurca-
tion of deterministic breathing oscillations occurs, are a sub-
set of these curves, because the fixed point may already be
unstable when a complex eigenvalue crosses the imaginary

@ 12 (b)
R=0.0 R=0.1

Lo

u R=0.9

| 4

R=0.5

FIG. 4. (Color online) (a)—(d) Stability domains of the inhomo-
geneous fixed point in the 7-K plane of the deterministic system (1)
(D,=D,=0), for selected values of the memory parameter R. Blue
lines: Solutions of Eq. (13) with Re(A)=0 calculcated from Eq.
(16). Orange (shaded) region: Regime of stability of the fixed point
obtained from the numerical solution of Eq. (1). Black horizontal
line: Upper bound for K where the fixed point is stable for all values
of 7, calculated from Eq. (17). The black diamond in panel (c)
marks the parameter values for which a J-u phase portrait of the
delay-induced limit cycle is shown in the inset.

[A2q2+(c_q2)2]R2+2[_BC+(A+B)q2]RK+(Bz+q2)K2> +27TN)

(16)

axis, due to other unstable eigenvalue branches. The bound-
aries are in good agreement with the domain of stability
obtained from dynamical simulations of the nonlinear system
equations (1) (D,=D,=0), shown as orange (dark shaded)
areas. The inset of panel (c) shows the delay-induced limit
cycle in the J-u phase space for parameters outside the sta-
bility domain of the inhomogeneous fixed point. The stability
domains increase significantly with increasing memory pa-
rameter R from (a) to (d). The modulation of their boundaries
in dependence on 7 results from the crossover of different
eigenvalue branches, which is a typical feature of delay dif-
ferential equations.
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FIG. 5. (Color online) (a)-(d) Power spectral density S,,(f) of
the dynamical variable u in dependence of the frequency f and the
delay time 7 for selected values of R (K=0.1, £=6.2, D,=0.1,
D,=107%).
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From Eq. (16) it is possible to calculate an upper bound
K. of K for which the stability properties of the uncontrolled
deterministic system remain unchanged over the whole 7 in-
terval, meaning that no delay-induced Hopf bifurcation oc-
curs.

K_A%A+&U%¥{D+MC+GV

¢ 2(A +B)’G (1+R)
~0.1059(1 + R),
G = VA*C[B(A + B) + C]. (17)

Figure 4 shows this upper bound plotted as a black horizon-
tal line.

B. Correlation times

To quantify the temporal regularity of the noise-induced
oscillations, we evaluate the correlation time [34] calculated
from the voltage signal,

= | W 19

where W(s)={[u(t)—(u)][u(t+s)—(u)]), is the autocorrela-
tion function of the variable u(r) and o?=¥(0) its variance.

In order to investigate the influence of multiple time-
delayed feedback control in the DBRT, we systematically
study the dependence of the correlation time from Eq. (18)
upon the control force parameters 7, K, and R.

In Fig. 5 the Fourier power spectral density S, obtained
from the time series u(¢) is shown in dependence of the delay
time 7 for different values of the memory parameter R. The
shape of the spectra S,,(27f) alternates between broad and
sharply peaked with varying 7. This shows up more clearly
in the corresponding sections at fixed 7 depicted in Fig. 6. A
very good analytic approximation of the power spectral den-

[cos(wT) = 1](R+1)

wK(1 — R)sin(wT)
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FIG. 6. (Color online) Power spectral density S,,(f) of the dy-
namical variable u in dependence of the frequency f for various
delay times 7 and memory parameters R (K=0.1, £¢=6.2, D,=0.1,
D,=107%).

sity can be obtained by a straightforward extension of the
argument in [22] to multiple time-delayed feedback, with
effective noise intensity D' <1:

[cos(wT) = 1](R+1)

D12
Suu(w) = —[(— w*+ BK
21

3 (1-R)sin(w7) )2]_]
1+ R?=2R cos(w7) ’

which is shown as black curves in Fig. 6.

At certain resonant values of 7 (left column) the spectral
peaks become extremely sharp. With increasing memory pa-
rameter R the broad spectra prevail over larger intervals of 7,
whereas the regime of sharply peaked spectra becomes
smaller. Thus multiple time feedback control exhibits much
more pronounced resonant features both in the frequency do-
main and in the delay time. Since a sharply peaked spectrum
gives rise to long correlation times (which are, in the linear
regime, proportional to the inverse spectral width) we expect

1 +R?>-2R cos(w7) T 1+R2-2R cos(w7)

2
C) + (—Aw+ wK

1+ R?-2R cos(w7)

(19)

the domains of strong correlation to shrink with increasing
memory parameter and the domains of low correlation to
increase. Extracting from the Fourier power spectral density
the autocorrelation function W(s)=/"_S,,(e*™*df and us-
ing Eq. (18) we obtain the correlation time 7, in dependence
of 7. This is shown in Fig. 7 for different values of the
memory parameter R. The feedback strength is kept at a
constant value of K=0.1, where the system is below the
Hopf bifurcation for all values of 7and R.
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FIG. 7. (Color online) Correlation times ., (upper panels) and
deterministic stability of the inhomogeneous fixed point, Re(A)
(lower panels), in dependence of the delay time 7 for different val-
ues of the memory parameter R [(a)—(d)] and fixed K=0.1. The red
(dark) curves in the lower panels mark the leading eigenvalue,
which governs the overall stability of the fixed point. Parameters:
£=6.2, D,=0.1, and D,=10"* (in the panels showing 7.,).

For small memory parameter R the correlation times al-
ternate between high and low values with growing 7. For
higher memory parameters R the peaks in correlation time
indeed become narrower and sharpen up, and the domains of
low correlation time increase. The stability of the inhomoge-
neous fixed point reveals a relation between properties of the
controlled deterministic system and the noise-induced dy-
namics: maximum regularity of noise-induced oscillations is
attained when the deterministic fixed point is least stable.
This feature is maintained for all values of the memory pa-
rameter R. In the case of small R the crossover of the real
part of eigenvalue branches also determines the location of
the minima in correlation time. In that case two eigenmodes

600 ‘
R=0.0,1=7.0 ——
R=0.0, 1=3.91 =
R=0.5, 1=6.5 -
500 F  R=05 1=83 = |
R=0.9, 1=6.23
R=0.9, 1=8 --o--
400 3 |
K Hopf ©
8 300 |
200
100
o
0 .
0 0.05 0.1 0.15 02
K

FIG. 8. (Color online) Correlation times 7., in dependence of K
for different values of the memory parameter R and optimal and
nonoptimal 7 (£=6.2, D,=0.1, D,=10"). Kjj,or. Kpjopp and Kipoe
mark the values of K at which the Hopf bifurcation occurs for
R=0, R=0.5, and R=0.9, respectively (¢=6.2, D,=0.1, D,=107%).
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FIG. 9. (Color online) (a) Correlation times 7., in dependence
of the memory parameter R for different values of the coupling
strength K and 7=6.19. (b) Domain of stability of the inhomoge-
neous fixed point (green shaded) in the (K,R) plane for 7=6.19.
The horizontal lines mark the values of K chosen in (a) (¢=6.2,
D,=0.1, D,=107%).

with the same stability (real part) but different frequencies
are present in the system, resulting in rather irregular noise-
induced dynamics. For large memory parameters the broad
domains of low correlation display many eigenmodes that
are not well separated (stability wise) causing irregular
mixed dynamics.

The regularity of the noise-induced oscillations in depen-
dence of the control force strength K is visualized in Fig. 8.
The correlation time vs K is shown for different values of R
and 7. Depending upon the chosen value of 7 the correlation
time increases or decreases with growing K. An optimal
value of 7leads to more regular oscillations whereas a non-
optimal value of 7 results in more irregular oscillations. In
the case of an optimally chosen 7 and a value of K>0.1 the
curves split for larger K, and the one with largest R (blue full
squares) attains the highest correlation times, clearly above
the curves for R=0 (red plus) and R=0.5 (violet asterisks).
Comparing the values of 7., at the threshold of delay-
induced Hopf bifurcation of the fixed point, marked by Kﬁopf,
the order of increasing correlation time is from small to large
R.

The dependence of the correlation time on the memory
parameter R is shown in Fig. 9(a) at a fixed value of 7

(a) 7.5 (b)
= 65|
=
E 6
B 557
5
(c) 7.5
3
E T
T 65
<
£ 6
= 55|
[aV)

FIG. 10. (Color online) Main period Ty=1/fpy. of the noise-
induced oscillations obtained from the main peak in the power spec-
tral density (blue open circles). Red (solid) curve: Period
T=2a/Im(Ag) of the leading eigenvalue. Green (gray) curves: Pe-
riod T=27/Im(A;) (K=0.1, £=6.2, D,=0.1, D,=107%).
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=6.19 and values of K=0.1 and 0.2. Initially starting at a
higher value of 7., the correlation time increases more
rapidly and reaches higher values in the case of larger
K (K=0.2). Figure 9(b) shows the domain of stability in the
K-R plane. The colored (dark) region is the domain where
the inhomogeneous fixed point is stable under the influence
of the feedback loop without noise. The two lines mark the
chosen values of K used in Fig. 9(a). Again, the correlation
time is maximum if the fixed point is closest to its boundary
of stability.

C. Mean period

Here we will establish a relation between the linear modes
of the inhomogeneous fixed point and the time scales of the
noise-induced oscillations in its vicinity. The stability and
angular frequency of the eigenmodes are given by the real
and imaginary parts of the eigenvalues A; of Eq. (13), Re(A;)
and Im(A,), respectively. Figure 10 shows a plot of the main
periods of the noise-induced oscillations obtained from the
main peak in the Fourier power spectral density (blue open
circles) compared to the periods calculated from the imagi-
nary part Im(A;) of the eigenvalues of the deterministic fixed
point using Eq. (13). The red (solid) curve shows the periods
Ty=27/Im(A) of the leading eigenvalue. For small memory
parameter R the period of the oscillations closely follows the
eigenperiod corresponding to the leading eigenvalue over the
whole 7 interval, whereas for larger R this feature is only
maintained in a narrow domain where the leading eigenvalue
has a real part close to zero and is clearly separated from all
other eigenmodes (compare Fig. 7).

IV. CONCLUSION

In conclusion, we have shown that multiple time-delayed
feedback control leads to more pronounced resonant features

PHYSICAL REVIEW E 79, 011109 (2009)

of noise-induced spatiotemporal current oscillations in a
semiconductor nanostructure compared to single time feed-
back. The regularity of noise-induced oscillations measured
by the correlation time exhibits sharp resonances as a func-
tion of the delay time 7, and can be strongly increased by
control with optimal choices of 7, whereas it decreases in a
broad range of nonoptimal values of 7. Thus the system is
more sensitive to variations in 7. Similarly, the peaks in the
power spectral density are sharper and exhibit stronger reso-
nances in dependence on 7 for multiple time feedback,
whereas their position, i.e., the main period of the oscilla-
tions, is less sensitive to variations in 7 in wider intervals.

The regularity and time scales of noise-induced breathing
oscillations are related to the stability properties of the deter-
ministic stationary filamentary current pattern (fixed point)
under the influence of the control loop. Maximum regularity
is attained if the fixed point is least stable in the deterministic
case. In the domains of high temporal correlation the period
of the noise-induced oscillations corresponds to the eigenpe-
riod of the leading eigenvalue in the deterministic system.

Furthermore, we have shown that using multiple time-
delayed feedback control compared to single time-delayed
feedback leads to larger regimes of stability of the stationary
filamentary current pattern in the deterministic system, and
delay-induced bifurcations occur only at larger values of the
control amplitude K.
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