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We consider the model of random sequential adsorption, with the depositing objects, as well as those already
at the surface, decreasing in size according to a specified time dependence, from a larger initial value to a finite
value in the large-time limit. Numerical Monte Carlo simulations of two-dimensional deposition of disks and
one-dimensional deposition of segments are reported for the density-density correlation function and gap-size
distribution function, respectively. Analytical considerations supplement numerical results in the one-
dimensional case. We investigate the correlation hole—the depletion of correlation functions near contact and,
for the present model, their vanishing at contact—that opens up at finite times, as well as its closing and
reemergence of the logarithmic divergence of correlation properties at contact in the large-time limit.

DOI: 10.1103/PhysRevE.79.011104 PACS number�s�: 02.50.�r, 68.43.Mn, 05.10.Ln, 05.70.Ln

I. INTRODUCTION

The random sequential adsorption �RSA� model has at-
tracted a lot of attention and has a long history �1–4�. It finds
applications, e.g., �1–9� in many fields, ranging from surface
science to polymers, biology, device physics, and physical
chemistry. Traditionally, the RSA model assumed that par-
ticles are transported to a substrate which is a continuous
surface or a lattice, the latter convenient for numerical simu-
lations. Upon arrival at the surface the particles are irrevers-
ibly deposited, but only provided they do not overlap previ-
ously deposited objects. Otherwise, the deposition attempt is
rejected and the arriving particle is assumed transported
away from the substrate. The original RSA model studies
were largely motivated by surface deposition of micrometer-
sized objects, such as colloid particles. Particles of this size
are typically not equilibrated on the surface, and are larger
than most surface features and the range of most of the
particle-particle and particle-surface interactions. Various
generalizations of the basic RSA model have been consid-
ered in the literature, e.g., �8–29� including “soft” rather than
hard-core particle-particle interactions, as well as relaxation
by motion of particles on the surface.

Recently, experimental surface-deposition work has ex-
panded to nanosized particles and submicrometer-feature-
patterned �ultimately, nanopatterned� surfaces �30–33�. The
added control of the particle and surface “preparation” as
part of the deposition process could allow new functional-
ities in applications, and therefore it has prompted new re-
search efforts. Specifically, deposition on surfaces prepared
with patterns other than regular lattices was studied �24,25�,
motivated by new experimental capabilities in surface pat-
terning. Another development involved a study �8,15,17� of
one-dimensional deposition of segments that, after attach-
ment to the substrate, can shrink or expand, motivated by
potential applications, e.g., in device physics �10,11�.

The motivation for our present work has been the newly
emerging experimental capability �34,35� of depositing poly-
mer “blobs” �or polymer-coated particles� the size of which
can be modified by changing the solution chemistry: Ap-
proximately spherical particles can be deposited in a process
whereby their effective size �including the interaction radius�

is varied on a time scale comparable to that of the deposit
formation. The size of both the particles in solution and those
already deposited will thus vary with time, in a controllable
fashion.

For particle deposits formed on prepatterned surfaces, an
interesting property is suggested by experiments �36–42�,
and theoretically verified �24,25�: They acquire semiordering
properties “imprinted” by the substrate, as quantified by the
development of peaks in the two-particle correlation. How-
ever, as in the original irreversible RSA model, there remains
a significant peak at particle-particle contact, which, for
deposition continuing indefinitely, at infinite times becomes a
weak singularity �43,44�. This tendency of particles to form
clumps is undesirable mostly because many nanotechnology
applications rely on nanoparticles utilized in isolation, or
simply being kept away from each other to avoid merging. In
this work, we establish that deposition of particles of vary-
ing, specifically, decreasing size, can yield deposits without
clumping, by opening a “correlation hole,” i.e., a property of
depletion of two-particle correlations near contact, as defined
in other fields, e.g., �45–50�. In our case, the correlation
functions studied actually vanish at contact for finite deposi-
tion times.

The outline of this paper is as follows. In Sec. II, we
consider the two-dimensional �2D� deposition of shrinking
disks in a plane. The model is defined and then a two-point
density-density correlation function is studied by numerical
Monte Carlo simulations. In Sec. III, we present both nu-
merical and analytical analyses of the one-dimensional �1D�
deposition of shrinking segments on a line. Our 1D study
focuses on the gap-density distribution function. A brief sum-
mary is offered at the end of Sec. III.

II. DEPOSITION OF DISKS ON A TWO-DIMENSIONAL
SUBSTRATE

A. Definition of the model

In this section, we introduce the model for the most rel-
evant geometry for possible applications: The 2D RSA
model of deposition of disks of diameters D�t� on an initially
empty planar substrate. A 1D model of deposition of seg-
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ments on a line provides additional insight into the problem
and will be considered in the next section.

As usual in RSA, we assume that disks are transported to
the surface with the resulting deposition attempt flux R per
unit area and unit time t. A disk adsorbs only if it does not
overlap a previously deposited one. The diameter of all the
disks, those already on the surface and those arriving, is a

decreasing function of time, Ḋ�t��0, varying between two
nonzero values D�0��D����0. For the 2D model, we car-
ried out numerical Monte Carlo simulations to estimate the
particle-particle pair correlation function that describes the
relative positioning of the disks with respect to each other. It
is defined as the ratio of the number of particle centers N at
distances from r to r+dr from a given particle’s center, nor-
malized per unit area and per the deposit density �,

P2�r,t� =
N�r,dr,t�

�2�r dr���t�
. �1�

In studies of RSA, ��t� is usually a quantity of interest. It
grows linearly for short times and reaches a jamming-limit
value, which is less than close packing, for large times. In the
latter regime the approach to the jamming coverage on a
continuum substrate is described by a power law �43,44,51�.
However, in our present study we found by numerical simu-
lations no new interesting features for ��t� for the considered
time dependences of the disk diameters �specified below�.
Therefore, we focus our presentation on the correlation func-
tion, and specifically its properties near particle contact, at
r�D�t�.

The model is illustrated in Fig. 1. We note that if the disks
shrink too fast as compared to the time scale of the buildup
of the deposited layer, which is of order �1 /RD2, then the
problem will be reduced to that of simply depositing smaller
disks. On the other hand, if the disks shrink too slowly as
compared to the time scale �1 /RD2, then the depletion of
the correlations at contact will be trivially attributable to disk
shrinkage alone. We are interested in the interplay of two
effects: The decreasing disk size enlarges voids between al-
ready deposited disks. At the same time this process in-
creases the rate of successful disk deposition events, which
reduce voids between disks. Given that numerical simula-
tions for this problem are quite demanding, we report results

for the following time dependence for the disk radius:

D�t� = D����1 + exp�− RD2���t�� . �2�

We also studied numerically the cases

D�t� = D���	1 +
1

ln�e + RD2���t�
 , �3�

D�t� = D���	1 +
1

1 + RD2���t
 , �4�

and found qualitatively similar results.

B. Numerical results

Let us now briefly outline the numerical procedure used
in our Monte Carlo simulations. In order to calculate the
correlation function P2�r , t�, we have to generate a distribu-
tion of deposited objects. We used periodic boundary condi-
tions and system sizes L�L=500D����500D���. The xy
coordinates of the center of the next disk that makes a depo-
sition attempt were randomly generated. If the disk does not
overlap any of the previously deposited ones, then it is de-
posited. The total number of deposition attempts is thus
equal to RL2�t for a physical time interval �t. All our data
presented below were averaged over 100 independent Monte
Carlo runs.

We point out that there exist algorithms for studying RSA
at large times �52�, specifically designed to account for the
fact that isolated residual voids �defined as landing areas for
particle centers for allowed depositions� then evolve inde-
pendently. However, in our case we were primarily interested
in intermediate times. Furthermore, as disks already ad-
sorbed on the surface shrink, all the voids increase and some
might merge to form larger voids. Therefore, we used the
straightforward algorithm described in the preceding para-
graph.

Our main result is illustrated in Fig. 2. The correlation
function introduced earlier is plotted for several times, which
are multiples of the characteristic process time scale

	 = 1/RD2��� . �5�

At finite times the correlation function has a peak at a value
r /D����1, and actually vanishes at the disk contact, when
r=D�t�. This correlation hole behavior is in contrast with the
ordinary RSA, e.g., �7,51�, for which the correlation func-
tion, instead of developing a peak close to contact, actually
increases as the disk separation decreases toward contact,
and reaches, for finite times, a constant, nonzero value at
contact. The correlation hole property represents the forma-
tion of a certain degree of short-range ordering in the system,
and specifically avoidance of particle clumping.

In the limit t→�, the correlation hole closes and the
correlation function seems to develop a weak divergence as
r→D���. In fact, for constant disk diameters, this property
has been studied by asymptotic analytical arguments �44�
and numerically �7,51�: The weak logarithmic divergence of
the correlation function of RSA at contact, is not easy to
quantify numerically, and our data were not accurate enough

FIG. 1. Left panel: Deposition attempts in 2D and 1D that are
rejected due to particle overlap. Right: A situation at a later time at
which the same deposition attempts would succeed due to particle
shrinkage.
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to study this limit for shrinking-diameter disk deposition by
directly estimating P2�r ,��. However, the time dependence
of the peak values in Fig. 2 follows a logarithmic divergence
as t increases, as shown in Fig. 3. This is reminiscent of a
similar logarithmic divergence predicted �44� for the values
of P2�D , t� at contact �r=D� for fixed-D RSA.

The formation of the finite-time correlation hole at disk
contact was observed also for the nonexponential disk-
diameter time dependences defined in Eqs. �3� and �4�; see
Fig. 4. This property of the correlation function is qualita-
tively similar for all three time-dependence protocols stud-

ied. However, we did not study larger time values for the
nonexponential time dependences.

III. DEPOSITION OF SEGMENTS ON A LINE

A. Numerical results

In this section we report numerical results for the 1D
deposition of segments on an initially empty line. The seg-
ment length is a function of time, ��t�, monotonically de-
creasing from ��0� to ����. Our numerical results in 1D were
obtained for the exponential time dependence similar to the
2D case,

��t� = �����1 + exp�− R����t�� . �6�

We denote the number of deposition attempts per unit time
per unit length �the flux� by R. The arriving segments are
adsorbed only if they do not overlap any previously depos-
ited ones; see Fig. 1. The quantity of interest is the gap
density distribution function G�x , t�: The density of gaps
�measured between the ends of the nearest-neighbor depos-
ited segments� of length between x and x+dx at time t is
G�x , t�dx. The density of deposited segments at time t, which
in 1D equals the density of gaps, is given by

n�t� = �
0

�

G�x,t�dx . �7�

Our numerical simulations followed the same procedure
as in 2D. In 1D, we used periodic boundary conditions and
system sizes 10 000����. The time scale �cf. Eq. �5��, was
redefined for 1D,

	 � 1/R���� . �8�

Our results, shown in Fig. 5, represent averages over 10 000
independent Monte Carlo runs. One can see that the gap
density distribution function is a smooth function of x for

FIG. 2. Time evolution of the correlation function in deposition
of disks with diameters shrinking according to Eq. �2�. The dashed
line corresponds to t=	. The solid lines with increasing peak values
at r /D��� approaching 1 correspond, respectively, to t=2	, 4	, 6	,
8	, 12	, 18	, and 24	.

FIG. 3. Time dependence of the peak values of the correlation
function, demonstrating the expected logarithmic divergence as
t→�. The least-squares fit of the peak values, shown here for times
t=4	 ,6	 ,8	 ,10	 ,12	 ,18	, and 24	, yields the slope of the solid
line as 0.37
0.02 �but note a comment in Sec. III C below regard-
ing the low reliability of this “error-bar” estimate�.

FIG. 4. Correlation function for t=10	, in deposition of disks
with diameters shrinking according to Eq. �2�, dashed line; Eq. �3�,
solid line; and Eq. �4�, dotted line.
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finite times t, and for larger times it develops a pronounced
peak at x���t� approaching x=0. However, at x=0 for finite
times there is a correlation hole. In the large-time limit,
G�x , t→�� appears to develop a step at x=����, as well as a
divergence at x=0. These properties will be further discussed
in the next two sections.

B. Analytical considerations

In this section, we will consider an analytical kinetic
equation approach to the 1D deposition problem. This will
allow us to elucidate the origin of the correlation hole at
x=0. Kinetic equations, in closed form, or hierarchies of
them, for RSA can be formulated for the gap density distri-
bution function as well as for several other correlation-
function-type quantities. They have been widely used for de-
riving exact results and low-density approximation schemes;
see reviews in �1–4�. For the present problem, we have

�G�x,t�
�t

= − R�„x − ��t�…�x − ��t��G�x,t�

+ 2R�
x+��t�

�

G�y,t�dy + �̇�t�
�G�x,t�

�x
. �9�

Here the first term represents the destruction of gaps of
length x by segment deposition, with ��¯� denoting the
standard step function, which vanishes for negative argu-
ments and is 1 for positive arguments. The second term rep-
resents the creation of gaps of length x due to deposition of
segments landing in larger gaps of size y�x+��t�. The last
term describes the increasing size of all the gaps as a result

of segment shrinkage. Note that the case �̇�t�=0 is exactly
solvable �53�, and we will be using some of the exact results
in the next section. For large x, we obviously have the
boundary condition G�x→� , t�0�=0 for Eq. �9�. The fol-

lowing discussion explores the form of the boundary condi-
tion at the small-x side of the distribution.

There are two kinetic processes that alter gap lengths in
our problem. First, deposition of segments can reduce the
length by ��t�. This process can generate very small, positive
gap lengths � from available gaps of sizes ��t�+�. At the
same time, the second process, that of segment shrinkage,
causes all gap lengths to “drift” toward larger positive values

with velocity −�̇�t�. These two kinetic processes determine
the evolution of the gap-length distribution G�x , t� from its
initial value G�x ,0�. While our numerical simulations were
for G�x ,0�=0, we note that in principle one can generate
other translationally invariant initial distributions by an ap-
propriate preparation of the initial state. In fact, one can even
prepare initial distributions that extend to small negative gap
lengths. This entails allowing overlaps for the segments ini-
tially placed on the line, but not for those depositing later. If
the segments are ordered according to their center-point po-
sitions, and each gap is measured as a consecutive center-
point distance minus ��t�, then the initial-distribution over-
laps, even if some are multi-segmented, can be
unambiguously counted as negative gaps. The two kinetic
processes will then remain the same: Gaps larger than ��t�
can be shortened due to deposition events, while at the same
time all the gaps �positive, zero, negative� also increase to-
ward positive values, due to segment shrinkage.

The above considerations suggest that Eq. �9� strictly
speaking should be mathematically considered for
−��x��. An attempt to limit it to 0
x��, and also use
moment definitions, such as the zeroth-order moment Eq.
�7�, with integration over 0
x��, may in general yield
wrong results: Neglecting the “flow of length” from the
negative-x values may violate length conservation. However,
in our case, specifically for the initial condition G�x ,0�=0
�and with nonvanishing ��t� for all t, including in the t→�
limit, which avoids a possible singular limit�, it is obvious
that the problem should be definable with a boundary condi-
tion at x=0 because all the kinetics of the process occurs in
0
x��. Indeed, together with the zeroth-order moment,
the first-order moment of the distribution can be used to
determine the applicable boundary condition directly from
length conservation,

��t�n�t� + �
0

�

xG�x,t�dx = 1. �10�

Here the first term is the density of the covered area, whereas
the second term is the density of the uncovered area. Both
densities are “per unit length” in 1D, and therefore they sum
up to 1.

The derivation proceeds as follows. We take the time de-
rivative of Eq. �10�,

�̇�t�n�t� + ��t�ṅ�t� + �
0

�

xĠ�x,t�dx = 0. �11�

The second term is then transformed by using Eq. �7�, with
Eq. �9�,

FIG. 5. Time evolution of the dimensionless gap-size distribu-
tion function �2���G�x , t� for segments with length shrinking ac-
cording to Eq. �6�. The dashed line corresponds to t=	. The solid
lines with increasing peak values at x /���� eventually approaching
0, correspond, respectively, to t=2	 ,4	 ,6	 ,8	 ,12	 ,18	, and 24	.
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��t�ṅ�t� = − ��t�R�
��t�

�

dx�x − ��t��G�x,t�

+ 2��t�R�
0

�

dx�
x+��t�

�

dy G�y,t�

+ ��t��̇�t��
0

�

dx
�G�x,t�

�x

= − ��t��̇�t�G�0,t� + ��t�R�
��t�

�

dx�x − ��t��G�x,t� .

�12�

The second form was obtained by integration by parts. The
last term in Eq. �11� can be transformed in the same way,

�
0

�

xĠ�x,t�dx = − ��t�R�
��t�

�

dx�x − ��t��G�x,t� − �̇�t�n�t� .

�13�

Equations �11�–�13� combine to yield

��t��̇�t�G�0,t� = 0. �14�

For shrinking segments, �̇�0, of nonvanishing length, we
are thus led to our main conclusion,

G�0,t� = 0, �15�

except perhaps in the limit t→� �in which �̇ vanishes�. This
result indicates that the correlation hole for finite times at x
=0 is generic for the shrinking-segment RSA, no matter how
fast is the deposition kinetics that tends to “fill the hole” in
the distribution at small x: The presence of the correlation
hole �the depletion of the gap distribution near x=0� follows
from the boundary condition established for x=0.

C. Properties of the gap-length distribution

For ordinary 1D RSA of segments of fixed length
��t�=������, Fig. 6 illustrates the exact solution �53� for
several times and in the limit t→�. Specifically, the gap
distribution has a finite value at x=0, consistent with Eq.

�14� for �̇=0. This value actually diverges in the t→� limit,
while a logarithmic singularity develops near x=0. This sug-
gests that ordinary RSA is actually a rather singular limit of
the more general shrinking-segment RSA. Indeed, the point
x=��t� corresponds to discontinuity in the first, deposition
term in the kinetic equation, Eq. �9�. As a result, the fixed-�
RSA gap distribution has a discontinuous derivative at x=�,
which becomes an actual discontinuity �jump� in the t→�
limit. On the other hand, with segment shrinking allowed,
the distribution is apparently continuous and smooth �as nu-
merically observed�, and likely analytic at all points internal
to the domain of definition, 0�x��, of the gap distribution.
Adding the segment-shrinkage process seems to smooth the
singularities out for finite times �see Fig. 5�. In terms of the
kinetic equation, this is a consequence of the added third,
��G /�x term playing the role of the “diffusive” �second-

derivative� smoothing contribution with respect to the
x-dependent integral �the second term�. This diffusive prop-
erty of the kinetic equation suggests that the function G�x , t�
has no singularities for any x�0 for finite time, though in

the limit t→� �when �̇�t�→0� the divergence as x→0+ and
the discontinuity at x=���� are asymptotically restored.

The exact solution technique for the constant-length case
�53� involves the use of the exponential-in-x Ansatz for
G�x , t� for x��, recently detailed in applications for related
models in �27,28�, and then solution of the x�� equation,
Eq. �9�, which becomes tractable because the first term is not
present, whereas the integration in the second term involves
a simple exponential integrand. Thus, this approach by its
nature yields discontinuities if not in the function then in its
first- or possibly higher-order derivatives. Attempts to use
this approach, as well as more complicated, exponential-
multiplied-by-polynomial Ansätze for x���t�, for
time-dependent ��t� yield solutions which satisfy the
equation but possess unphysical discontinuities. Specifically,
G(x→��t�+ , t)�G(x→��t�− , t) for finite times. As argued in
the preceding discussion, based on heuristic considerations

and confirmed by numerical results, for nonzero �̇�t� we
actually expect the function G�x , t� to be continuous
at x=��t� and have all its derivatives continuous. Thus, we
consider it unlikely that the shrinking-segment RSA problem
in 1D can be solved exactly by the presently known
techniques.

Finally, let us consider the extent to which our numerical
data can confirm the restoration of the logarithmic singular-
ity near x=0 in the t→� limit. As in 2D, our data are not
accurate enough to confirm the form of the x dependence of
the expected logarithmic divergence for x�����, i.e.,
G�x ,���−ln�x /�����. Regarding the t dependence, Fig. 7

FIG. 6. Time evolution of the dimensionless gap-size distribu-
tion function �2G�x , t� for segments of constant length �. The
dashed line corresponds to t=	. The solid lines correspond to
t=2	, 4	, 6	, and 8	, with increasing peak values at x=0, increas-
ing values at x=�, and with respectively smaller values for x��.
The dotted line corresponds to t→�, with the values for x�� equal
0 in this limit.

RANDOM SEQUENTIAL ADSORPTION OF OBJECTS OF… PHYSICAL REVIEW E 79, 011104 �2009�

011104-5



shows our 1D data for the peak values at small positive x
�see Fig. 5�, as well as the asymptotic large-time form of the
exact solution peak values at x=0 for constant �=����, the
latter given by the relation �53�

�2G�0,t� � 2e−2� ln�t/	�, t � 	 , �16�

where �=0.577 215 664 9. . . is Euler’s gamma constant.
Typical for data fits for logarithmic dependences, the esti-
mated slope given in Fig. 7 may gradually drift as the t
variable varies over many decades. It is possible that it
reaches the larger value of the fixed-segment RSA: We con-
sider the error estimate, 0.02, here and in the 2D case �Fig. 3�
inconclusive.

In summary, we investigated a RSA model in which depo-
sition of arriving objects, which tends to form small gaps or
voids, competes with the process of shrinking of the objects,
both those already deposited and those newly arriving. The
latter process always “wins” at finite time, and as a result a
correlation hole opens up in the correlation properties con-
sidered. In fact, analytical considerations in 1D suggest that
this property is generic for an initially empty substrate. The
numerical Monte Carlo results reported support this conclu-
sion for the time dependences studied. For the exponential-
decay time dependence of the object sizes studied in 1D and
2D, we also found preliminary evidence that logarithmic di-
vergence of the correlation properties at contact is restored as
t→�. For 1D, the discontinuous behavior of the gap distri-
bution at x=���� also reemerges in this limit.
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