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We investigate the microscopic structure of strongly coupled ions in warm dense matter using ab initio
simulations and hypernetted chain �HNC� equations. We demonstrate that an approximate treatment of quan-
tum effects by weak pseudopotentials fails to describe the highly degenerate electrons in warm dense matter
correctly. However, one-component HNC calculations for the ions agree well with first-principles simulations
if a linearly screened Coulomb potential is used. These HNC results can be further improved by adding a
short-range repulsion that accounts for bound electrons. Examples are given for recently studied light elements,
lithium and beryllium, and for aluminum where the extra short-range repulsion is essential.
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I. INTRODUCTION

The structural properties of warm dense matter �WDM�
provide the basis for a general understanding of such diverse
systems as giant gas planets �1,2�, laser-heated solids, and
imploding capsules of hydrogen during inertial confinement
fusion �3�. The availability of intense lasers makes it nowa-
days possible to investigate WDM in the laboratory by x-ray
scattering �4–7�. The interpretation of the x-ray scattering
signal and its application as diagnostics need, however, the-
oretical input for the structural properties of WDM. Such a
model should be fast and simple enough to allow for a simi-
lar treatment as developed for weakly coupled plasmas �8�. A
fitting routine based on hypernetted chain �HNC� equations
seems applicable; however, a validation of such approximate
results by means of first-principles simulations is required.

The theoretical investigation of WDM is challenging
since it requires a consistent description of interacting sys-
tems with degenerate electrons and strongly coupled ions.
Here, we will discuss two approaches: the classical HNC
method based on integral equations developed in fluid theory
and first-principles simulations using density functional mo-
lecular dynamics �DFT MD�. For purely classical systems,
the first approach is known to yield reasonably accurate re-
sults, but the quantum nature of the electrons can only be
treated approximately. Nevertheless, this method provides
high numerical efficiency. In contrast, ab initio simulations
like DFT MD aim to describe fully interacting quantum sys-
tems. That is, they include strong ionic correlations as well
as the quantum behavior for the electrons. This treatment
exactly meets the requirements of WDM, but such simula-
tions demand much computing power.

We investigate the ionic structure in simple elements for
parameters recently studied �4,7�. The goal is to benchmark
the HNC approach by DFT-MD simulations and, thereby,
investigate the applicability of often used effective interac-
tion potentials. In particular, pseudopotentials designed to
incorporate quantum effects in classical approaches are
tested. Once the effective ion-ion potential is understood, the
ion structure in WDM can be determined very efficiently by
the HNC approach.

II. METHODS

The spatial arrangement of the particles in WDM can be
described by the pair distribution function gab�r� or the static
structure factor Sab�k�. These functions are connected via
Fourier transformation. For multicomponent isotropic sys-
tems, we have �9�

Sab�k� = �ab +
4��nanb

k
�

0

�

dr r2�gab�r� − 1�sin�kr� . �1�

First, we briefly discuss the classical HNC approach. This
method combines the Ornstein-Zernike and the HNC closure
relations �10–12�

hab�r� = cab�r� + �
c

nc� dr̄cac�r̄�hcb��r − r̄�� , �2�

gab�r� = exp�− �Vab�r� + hab�r� − cab�r�� . �3�

This system of coupled integral equations can be solved nu-
merically for an arbitrary number of components �13�. The
bridge diagrams neglected in the HNC approximation �3� are
well known to be of minor importance for the intermediate
coupling strengths considered here.

Here, we use two versions of the HNC approach. The first
one considers only the ions explicitly, and the electrons are
treated either as a uniform, neutralizing background �one-
component plasma �OCP� model� or as a polarizable back-
ground �Yukawa model�. In the latter case, linear screening
leads the Yukawa or Debye potential

Vii
Y�r� =

Z2e2

r
exp�− �r� �4�

as an effective ion-ion interaction. Of course, the OCP limit
is recaptured for �=0. The Yukawa �Y� model treats the
electrons within linear response which is applicable as long
as the electron-ion interaction is weak. To describe the par-
tially degenerate electrons in WDM, the inverse screening
length � should be calculated by �2= �4e2me /��3�	dpfe�p�
with the Fermi distribution fe�p�. The classical Debye-
Hückel law and Thomas-Fermi screening are included as
limiting cases.
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Second, we use a multicomponent version of the HNC
equations to consider both electrons and ions on equal foot-
ing which also goes beyond linear screening. To include
quantum effects inherent for electrons, pseudopotentials
must be applied for the electron-ion and electron-electron
interactions. In this way, quantum diffraction and exchange
can be treated approximately within classical methods. In
this paper, we consider a simple form of the Klimontovich-
Kraeft �KK� potential �14� and, for one example, the Deutsch
potential �15�. For WDM conditions, both potentials are
much weaker than the Coulomb potential. A more detailed
comparison with other quantum pseudopotentials can be
found in Ref. �13�.

The approximate descriptions of electron-ion systems pre-
sented above should be compared to first-principles quantum
simulations. Here, we use DFT MD as available in the VASP

code �16–18�. It relies on the Born-Oppenheimer approxima-
tion to decouple the ionic and electronic degrees of freedom.
For every MD step, the Kohn-Sham equations �19� are self-
consistently solved for the electronic ground state in the ex-
ternal field of the ions. This ground state is defined on the
basis of the Mermin functional to incorporate temperature
effects on the electron distribution �20�. The electronic
exchange-correlation contribution is estimated via the gener-
alized gradient approximation �GGA� �21�. The electron-ion
interaction is modeled using the projector augmented-wave
�PAW� method �22,23�, which makes it possible to include
all electrons �core and valence� into the calculations in an
efficient manner. Finally, Hellmann-Feynman forces can be
derived from the electronic wave functions to move the ions
with classical Newton dynamics.

The electron wave functions are represented by plane
waves with an energy cutoff of 300 eV �Al� and 800 eV �Be,
Li�, respectively. In the calculations for beryllium and
lithium, all electrons are treated as valence electrons. For
aluminum, the full inner shells were treated as core states.
The Brillouin zone was sampled at the � point only. The high
temperatures �compared to solids� of the WDM state require
a substantial number of electronic bands to properly repre-
sent the tail of the Fermi distribution.

The MD part of the simulations uses a time step of
0.192 fs and up to 2000 MD steps after equilibration. Simu-
lations were performed with 108–250 ions whose tempera-
ture was controlled by a Nose-Hoover thermostat �24�.

III. RESULTS AND DISCUSSION

The presented comparison of results from the HNC and
DFT-MD calculations are an attempt �i� to find the HNC
version that matches the DFT-MD simulations best and �ii� to
indirectly obtain information about the effective ion-ion in-
teractions. The WDM states chosen for analysis in this paper
are very similar to those created in recent experiments
�4,5,7,25�.

Figure 1 considers warm dense beryllium under several
compression levels. Independent of the density, the ion
charge state can be estimated to be close to Z=2. The two-
component HNC calculations for electron-ion systems use
the Klimontovich-Kraeft potential �labeled HNC-KK�. Such

a treatment results in pair distributions that rise less sharply,
but are shifted to the right. This is generally the case when
the ions are coupled too strongly or are less effectively
screened. Although screening is self-consistently described
within the two-component HNC approach, the use of the KK
potential with very soft electron-ion interactions leads to
strongly reduced screening clouds around the ions. The ions,
in turn, interact more strongly. Indeed, the resulting pair dis-
tributions are very close to OCP results �not shown� for all
cases.

Surprisingly, the model, which considers only ions that
interact via screened Coulomb forces �labeled HNC-Y�,
works rather well when compared to the DFT-MD data. In
particular, larger distances and the shoulder of the pair dis-
tribution in the upper two panels of Fig. 1 are nicely de-
scribed. This fact indicates that screening can be considered
to be linear for larger distances.

Large discrepancies arise for small distances where the
ion-ion repulsion appears to be underestimated by the HNC
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FIG. 1. �Color online� Ion-ion pair distribution functions gii�r�
in warm dense beryllium at multiples of the normal density 	0

=1.848 g /cm3: �a� normal density, �b� 	=2	0 �2 times compressed�,
and �c� 	=3	0. The temperature and the ion charge state �for HNC�
are T=13 eV and Z=2, respectively.
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approaches discussed so far. They can be understood on the
basis of the electronic configuration of the beryllium ions
with Z
2. Regardless of temperature and compression, the
ions still have an intact 1s2 shell. When these shells start to
overlap, an additional repulsive force arises due to the Pauli
exclusion principle. The forbidden overlap of the electron
orbitals can be modeled by an additional short-range repul-
sion �SRR�

Vii
Y+SRR�r� =

a

r4 +
Z2e2

r
exp�− �r� . �5�

The power in the SRR was obtained from a fit to the poten-
tials directly extracted from the simulations �26�. The param-
eter a is related to the radial extension of the ion and defines
the strength of the short-range repulsion. Here, it is used to
fit the pair distributions, but it is kept constant for the same
material under all conditions; it would only change due to
further ionization.

The potential �5�, labeled Y+SRR, gives the desired
larger correlation hole in the pair distributions when used in
the HNC approach. In particular, for the highly compressed
beryllium in Fig. 1�c�, the additional repulsion is significant
to reproduce the correct interparticle spacing and the maxi-
mum in the distribution.

Figure 2 shows the static ion-ion structure factor related
to the case in Fig. 1�c�. Again, the KK potential leads to a
OCP-like behavior—i.e., Sii�0��0. The application of other
pseudopotentials �not shown� yields results between
HNC-KK and HNC-Y. They show, however, not the same
shape as the DFT-MD results. As for the pair distributions,
the best agreement with the DFT-MD data can be obtained
by the use of a Yukawa potential with an additional short-
range repulsion �Y+SRR�. The structure factor from DFT
MD is restricted to k values larger than 2� /L where L is the
length of the simulation box. Therefore, HNC is a valuable
tool to calculate the structure factor for smaller values. The
results should be considered with caution though since alge-
braic screening known to occur for large distances �27,28� is
not incorporated.

As a second example, the ionic structure of warm dense
lithium is studied. Comparisons as in Fig. 3 were used to

extract the ion charge state from the DFT-MD data which
was then combined with inelastic x-ray scattering for diag-
nostics of a shocked sample �7�. Once more, the KK poten-
tial and also the Deutsch potential �labeled HNC-Deutsch�
fail to describe screening correctly. In contrast, the Yukawa
model yields good agreement with DFT-MD simulations
over the whole range. An additional short-range repulsion is
here not required since the higher ionization destroys the full
1s shell.

Warm aluminum is discussed in the last example of Fig.
4. Under these conditions, the ions are strongly coupled ��
�170� and the pair distribution shows its typical character-
istics: well-pronounced maxima and a large correlation hole.
Results similar to the DFT-MD data, but slightly shifted to
larger r, are achieved by the HNC approach for an OCP. The
overestimated second maximum indicates, however, that
screening is important here, although HNC calculations us-
ing linear screening �4� show by far not enough spatial cor-
relations.

One should, however, keep in mind that aluminum ions
possess full inner shells under these conditions. As for beryl-
lium, these bound electrons lead to an additional repulsion
between the ions at short distances. After taking this SRR
into account, the ion-ion pair distribution obtained by HNC
also shows the typical characteristics for a strongly coupled
system and agrees well with the simulation data. Interest-
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FIG. 2. �Color online� Static ion-ion structure factor Sii�k� for
compressed beryllium under conditions as in Fig. 1�c�.
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FIG. 3. �Color online� Ion-ion pair distribution of lithium with
T=5 eV, 	=0.85 g /cm3, and Z=1.6.
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FIG. 4. �Color online� Ion-ion pair distribution for aluminum
with T=1.1 eV, 	=3.4 g /cm3, and Z=3.
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ingly, these correlations are here not due to strong Coulomb
forces as in highly ionized dense plasmas, but due to the
interaction of full inner shells. In other words, these ionic
correlations mainly result from the Pauli principle applied to
shells of bound electrons.

IV. CONCLUSIONS

We investigated the ion structure in warm dense matter
applying the classical HNC approach and ab initio quantum
simulations. The comparisons for different systems show that
effective potentials, which mimic quantum effects in multi-
component HNC calculations, do not yield agreement with
the quantum simulations. Although the Klimontovich-Kraeft
potential is an extreme case, this fact holds for other quan-
tum potentials as well.

A simple linearly screened Coulomb potential used in
HNC calculations for the ions only is, however, often in
good agreement with the DFT-MD results. The results can be
considerably improved by including additional short-range
repulsion due to the forbidden overlap of bound electrons in
full shells. It has been shown that an appropriate algebraic
potential can mimic this effect.

In conclusion, the Yukawa potential with an additional
short-range repulsion can describe the ionic structure of
WDM in agreement with the results from the DFT-MD simu-
lations even for ions with many bound electrons.
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