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Analysis of the convergence of the 1/t and Wang-Landau algorithms in the calculation
of multidimensional integrals
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In this Brief Report, the convergence of the 1/¢ and Wang-Landau algorithms in the calculation of multidi-
mensional numerical integrals is analyzed. Both simulation methods are applied to a wide variety of integrals
without restrictions in one, two, and higher dimensions. The efficiency and accuracy of both algorithms are
determined by the dynamical behavior of the errors between the exact and the calculated values of the integral.
It is observed that the time dependence of the error calculated with the 1/¢ algorithm varies as N~2 [with N
the number of Monte Carlo (MC) trials], in quantitative agreement with the simple sampling Monte Carlo
method. In contrast, the error calculated with the Wang-Landau algorithm saturates in time, evidencing the
nonconvergence of this method. The sources of error for both methods are also determined.
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It is well known that the Wang-Landau (WL) algorithm is
one of the most refreshing variations of the Monte Carlo
simulation methods [1]. Its effectiveness is based on the sim-
plicity and versatility of the algorithm in calculating the den-
sity of states g(E) with high accuracy [where g(E) represents
the number of all possible states or configurations for an
energy level E of a given physical system]. The algorithm
has been successfully used in many problems of statistical
physics, biophysics, and other fields. There have been sev-
eral papers in recent years dealing with improvements and
sophisticated implementations of the WL iterative process in
discrete and continuous systems (see references in [2]).

However, the most controversial point in the application
of the WL and other variations of the algorithm is the satu-
ration of the error between the calculated and the real g(E).
In fact, for long enough time, the error approaches a constant
value. This problem was first evidenced in Refs. [3,4]. On
the other hand, other authors [5-9] have studied the accu-
racy, efficiency, and convergence of the WL algorithm. Some
of them [5,8,9] have demonstrated the convergence of the
WL algorithm by different arguments. In particular, Zhou
and Bhatt [5] have presented a mathematical analysis of the
WL algorithm. They gave proof of the convergence and the
sources of errors for the WL algorithm as well as strategies
for improvement.

The error saturation and the algorithm convergence are
certainly two contradictory results. Moreover, in Ref. [10],
an analytical demonstration of the nonconvergence of the
WL algorithm has been presented. The authors have deduced
that in those methods in which the refinement parameter de-
creases faster than 1/¢ (with ¢ the Monte Carlo time) the
calculated density of states reaches a constant value for long
times, and therefore the error saturates. To overcome this
limitation, they introduced a modified version of the WL
algorithm in which the refinement parameter is scaled down
as 1/t instead of exponentially [11]. The 1/¢ algorithm has
been successfully applied to several statistical systems
[2,10-13].
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The saturation of the error and consequently the noncon-
vergence of the WL algorithm have been demonstrated for a
discrete system [10], namely, the Ising model. However, the
mathematical arguments about the source of error seem to be
more general, and can be extended to all algorithms that
consider a refinement parameter decreasing faster than 1/¢.
In all these cases, the nonconvergence of the method can be
guaranteed.

In addition, for continuous systems, there are few simula-
tions where a comparison has been made with the exact den-
sity of states [17]. The reason for that may be attributed to
the nonavailability of exact results for any nontrivial system
having a continuous energy spectrum.

Recently, Li er al. [14] reported a new application of the
WL algorithm to the simplest continuous system, namely,
numerical integration. The basic idea is to relate the density
of states g(E) to the distribution g(y), where g(y) represents
the fraction of the integration domain ([a,b] in one dimen-
sion) that lies within a certain interval [y,y+dy]. This idea
was first proposed by Troster and Dellago [15]. Simulta-
neously, Liang [16] developed a generalization of the WL
algorithm to continuous systems.

In principle, the WL method of integration presents vari-
ous advantages over the conventional Monte Carlo (MC) in-
tegration scheme (see Ref. [14]). Its potential appears for
ill-behaved integrals and for higher-dimensional integration
problems, since, in general, the random walk remains one
dimensional. However, the accuracy of the WL algorithm is
poorer than in the simple sampling MC method, at least for
one and two dimensions, as is shown in Ref. [14].

The aim of this work is to study the convergence of the
1/t and Wang-Landau algorithms in the calculation of mul-
tidimensional numerical integrals. The dynamical behavior
and sources of error in both algorithms are also analyzed.

The 1/t algorithm is adapted to the numerical calculation
of multidimensional integrals. The basic idea is as follows.
To evaluate the definite integral [ Zy(x)dx it is necessary to
determine the proportion of the integration domain that lies
within a certain interval [y,y+dy], i.e., the measure {x|x
€la,b],y<y(x)<y+dy}. The distribution g(y) can be gen-
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erated by measuring this fraction. Provided that the lower
bound y,;, and the upper bound y,,, of the integral are
known, the integral can be approximated by

b Ymax
f y()dx = 2 g(y)y. (1)

Ymin

To build the distribution g(y), the interval [y~ Ymin] is di-
vided into L=[y .~ Yminl/dy segments. The MC time is de-
fined as t=N/L, where N is the number of Monte Carlo
trials. The MC time is related to the size of the y domain. In
order to compare the algorithms, all the quantities will be
related to the number of MC trials, N.

The algorithm is as follows.

(i) Choose a value of x; at random and calculate the cor-
responding value of y;; then set S(y)=0 for all values of y,
Fy=1, and fix Fy,, or equivalently fgn.0=1/Frpipa-

(ii) Choose at random a value of x; and change y; to y,
according to the probability given by P(y;—yy)
=min{1, PRECHE (yf)]}_ '

(iii) Increase S(y) — S(y)+F;.

(iv) After some fixed steps (i.e., 1000 MC times) check
that all the sites y corresponding to the same F; will be
visited by the random walker at least once; then refine Fj
= F k/ 2

(v) If Fy oy <1/t=L/N then make F,,=F(t)=1/t=L/N.
Hereafter F(r) is updated at each MC time.

The step (iv) is not used for the rest of the experiment. As
soon as the refinement parameter takes F'=1/¢ functionality,
it goes down independently of the number of times that the
site y is visited by the random walker.

(Vi) If 1> tgpa [F() < Fgnal then the process stops. Oth-
erwise, go to (ii).

Other auxiliary histograms are not necessary, with the ex-
ception of S(y)=In[g(y)]. In spite of this, as soon as the
algorithm converges, the histogram corresponding to the
number of visits becomes flat. The relative distribution func-
tion g(y) provided by the algorithm must be appropriately
normalized as in Ref. [14].

In order to compare the methods, the following integrals
are calculated by using the 1/7, Wang-Landau, and simple
sampling (SS) algorithms:

2
Iip= (x5 — 43+ X2 - x)sin(4x)dx, (2)
-2

1
IZD = J f (x? —xlxg +X%XZ + 2)C1)Siﬂ(4.xl + 1)
-1J-1

X cos(4x,)dxdx,, (3)
1! —
I,= —f VI —x%dx =, (4)
4Jo
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FIG. 1. Dynamical behavior of fractional accuracy ay calculated
by means of Wang-Landau, 1/, and simple sampling Monte Carlo
integration: (a) for I;p, with dy=0.005 and L=3066; (b) for I,p,
with dy=0.005 and L=1213. (c) and (d) show the effect of bin
width on /1 and Ipp.

1 1 | i=n i=n . .
InD=f f f H cos(ixi)dxldxz-"dx,,=HM~
0 Jo 0 i=l =1 !
(5)

The first two integrals were introduced in Ref. [14]. These
integrals have no particular physical or mathematical signifi-
cance. However, they are very useful in comparing the con-
vergence of the three MC algorithms.

The fractional accuracy is defined as

af(N) = |(IMC(N) —Texacd)/1, (6)

where Iyc(N) and I.,,. denote the numerical estimate from
the MC simulation and the exact value of the integral, re-
spectively.

Hereafter, all the errors estimated are obtained from 100
independent simulations and the WL calculations have been
made by controlling the histogram every 10 000 MC steps
with a flatness criterion p=0.9.

In Figs. 1(a) and 1(b) the fractional accuracy a, for Ijp
and I,p as a function of the number of MC trials is plotted
using the three algorithms. The fractional accuracy ay is in
close agreement, following a 1/ VN dependence for the 1/¢
and SS algorithms; while for the WL algorithm it saturates at

N=10°. Therefore, for the WL algorithm, ay does not scale
as N712, as is observed.

The b1n width certainly introduces a systematic error in
all the algorithms that use the distribution function g(y) as
strategy to calculate numerical integrals. The effect of dy on
the error for the 1/¢ algorithm is shown in Figs. 1(c) and 1(d)
[the integrals and conditions are the same as in Figs. 1(a) and
1(b)].

The dependence of the error on the bin width will be
determined by the characteristic of the function y(x). In fact,
one should expect that for smaller dy # 0 the saturation will
occur at longer times, i.e., for the two-dimensional integral

067701-2



BRIEF REPORTS

<107
3107,

310”4

. .88

— - — dy=0.0005

10° 10° 10" 10° 10°10°10° 10° 10" 10° 10°10™

Number of Monte Carlo trials, N Number of Monte Carlo trials, N

FIG. 2. Comparison of the dynamical behavior of fractional ac-
curacies ay and a; for different values of bin width dy, in the esti-
mation of the integral /.

shown in Fig. 1(d). However, this is not always valid, as
shown in Fig. 1(c), where the error for dy=0.05 saturates
before corresponding to dy=0.1.

To analyze the influence of the bin width in the behavior
of the error in both WL and 1/t algorithms, the integral I, is
considered. Using the expression of f(y) given in Eq. (4),
which is a one-to-one function in the interval (0,1), one can
obtain the exact value of g(y) as

Zex(¥) = V1= (y+dy)? =1 -y~ (7)

Then, for a given value of dy, the corresponding exact value
of the integral is Iw(dy)esz“‘V,‘m“ia:gex(y)y. For example, for
dy=0.01, the value of the integral is [7,(0.01)
=3.140417 032.... A new fractional accuracy related to the
value of dy is defined as  a@(N,dy)=|Iyc(N)
_Iw(dy)ex/lw(dY)ex|'

The fractional accuracy, ay, versus the MC trials for dif-
ferent values of the bin width, dy, is shown in Fig. 2(a) (WL)
and Fig. 2(b) (1/7). In both cases the error saturates. How-
ever, the sources of the saturation obey different causes. To
demonstrate this fact, the fractional accuracy, ar, for both
algorithms is shown in Fig. 2(c)) (WL) and Fig. 2(d) (1/1).
In these cases for each value of dy, the exact value of
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FIG. 3. Dynamical behavior of fractional accuracy a; for
n-dimensional integral I,,p with (a) n=3, (b) n=4, (c) n=35, and (d)
n=6, using the three algorithms. In both cases, the WL and 1/¢
algorithms the bin width is dy=0.05.

I(dy).y is obtained. While for the WL results the error still
saturates [Fig. 2(c)], in 1/¢ no saturation occurs [Fig. 2(d)].
Thus, for a given dy the error approaches asymptotically the
exact value of the integral I(dy)., (different from ). This is
clear evidence of the convergence of the 1/¢ algorithm in all
discrete systems. The source of saturation in the 1/¢ algo-
rithm in a continuous system may be attributed exclusively
to the bin width dy.

Finally, the behavior of both algorithms in the calculation
of higher-dimensional integrals is analyzed. In Figs.
3(a)-3(d), the integrals I, with n=3,4,5,6 are plotted. In
all cases dy=0.05 and L=40. The error for the WL method
saturates, demonstrating the nonconvergence of the algo-
rithm in all cases. On the other hand, the 1/¢ and SS algo-
rithms are in close agreement.

The numerical estimates of the statistical error for all the
integrals obtained by using the three algorithms are given in
Table 1. The number of final Monte Carlo trials per run is
Npna=10'". The values of the estimates shown in Table I
confirm that the 1/¢ is more accurate than the WL algorithm
for all the integrals in any dimension.

The numerical integration is an excellent demonstration to
prove the convergence of the algorithms for different rea-
sons. (i) In many cases the integrals can be solved analyti-
cally, and therefore the dynamical behavior of the error can

TABLE I. Numerical estimates of integrals calculated by using the Wang-Landau, 1/¢, and simple sampling Monte Carlo methods.
Results and error estimates are obtained from 100 independent simulations.

Integral WL algorithm 1/t algorithm Simple MC method Exact

Iip 1.635580(285) 1.635617(27) 1.635752(23) 1.63564436296...
Ip —-0.0179671(152) -0.0179790(51) —0.0179841(68) —-0.01797992646...
I, 3.1415799(35) 3.1415819(23) 3.1415920(15) 3.14159265358...
Iip 0.01801608(2989) 0.01799079(46) 0.01799666(78) 0.01799626791...
Lip —0.00339585(1798) —0.00340505(54) —0.00340506(55) 0.00340490511...
Isp 0.00065747(505) 0.00065298(47) 0.00065225(49) 0.00065300923...
Isp —0.000031919(3288) —0.00003003(15) —0.00003110(38) —0.00003041015....

067701-3



BRIEF REPORTS

be easily checked. (ii) For some one-to-one functions, the
exact expression for the distribution function g(y) can be
obtained. This is an advantage over physical systems, where
only in a few cases is the exact density of states known,
particularly for continuous systems. (iii) The initial and final
states are not correlated with their neighborhood, namely, a
given initial state can be changed to any other final state in
the integration domain of y(x). In this sense, if a given algo-
rithm cannot converge appropriately in the calculation of a
numerical integral, it will be more difficult to do it in those
physical systems where the initial and final states are
strongly correlated.

In continuous systems, as for numerical integrals, the bin
width introduces a saturation of the error also in the 1/¢
algorithm. However, when the continuum is approached by a
discrete lattice and the corresponding value of the distribu-
tion function can be obtained exactly, the calculation ap-
proaches asymptotically the exact value of the integral with-
out error saturation.

The behavior of the error in the 1/¢ algorithm is in close
agreement with the SS result, following the 1/ VN law. More-
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over, the 1/¢ algorithm can be used as a reference in the
calculation of the density of states in physical systems be-
cause up to now there are no other methods that can calculate
the error below the limiting curve 1/ VN. In contrast, the
behavior of the error in the WL algorithm, for a single value
of the parameters dy and p, does not follow the 1/ VN at any
time.

Very recently, in Ref. [18], Zhou and Su introduced a new
mathematical support for the 1/¢ algorithm.

In summary, the dynamical behavior of the 1/¢ algorithm
in a multidimensional numerical integration is analyzed, with
the conclusion that the algorithm is always convergent in
discrete systems. For a continuous model, the only source of
error saturation is the grid discretization. On the other hand,
further evidence of the nonconvergence of the WL algorithm
is given.
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