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I. INTRODUCTION

In the last decade, the lattice Boltzmann �LB� method has
developed into a very flexible and effective numerical tech-
nique for the simulation of a large variety of complex fluid
dynamical and nonequilibrium transport phenomena �1�. The
LB method is based on a stream-and-collide microscopic dy-
namics of fictitious particles, which stream with a discrete
set of velocities and interact according to local collision rules
that drive the system toward a local equilibrium �1–3�. Math-
ematically, this is formulated as the lattice Boltzmann equa-
tion �LBE�

�t f i + ci · �f i = − �
j

Lij�f j − f j
0� , �1�

where f i�x , t� is the mean number of particles at position x
and time t, moving along the lattice direction defined by the
discrete velocity ci �i , j=1, . . . ,N�. In the above,

f i
0 = wi�� +

�v · ci

cs
2 +

�v�v�Qi��

2cs
4 � �2�

is a local equilibrium distribution, the discrete analog of a
Maxwellian distribution in continuum kinetic theory trun-
cated to second order in the mean flow velocity v, the wi are
a set of weights which satisfy �iwi=1, and cs is the speed of
sound in the LB fluid. Greek indices denote Cartesian direc-
tions and the summation convention is implied. The low-
order velocity moments of the distribution function are re-
lated to the densities of mass, momentum, and the deviatoric
stress, �� ,�v� ,S��	=�i f i�1,ci� ,Qi��	 where S��+�cs

2���

=��� is the Eulerian momentum flux, and Qi��+cs
2���

=ci�ci�. The higher moments of the distribution are related to
the densities of rapidly relaxing kinetic degrees of freedom,
variously called ghost or kinetic variables. Finally, Lij is a
scattering matrix whose eigenvalues control the relaxation of
the kinetic modes to their local equilibrium values. The null
eigenvalues correspond to the eigenvectors associated with
the conserved mass and momentum densities, while the lead-
ing nonzero eigenvalue associated with Qi�� controls the vis-
cosity of the LB fluid.

Historically, the LBE in matrix form was derived as a
Boltzmann approximation to the dynamics of lattice gas cel-
lular automata �4�. It was then understood that the equilibria
and collision matrix could be constructed independently

of the underlying cellular automata microdynamics �5�,
and the lattice Boltzmann approach came into being. The
collision matrix was reduced to the simplest possible form
consistent with the macroscopic hydrodynamics in �6,7�,
where the Bhatnagar-Gross-Krook �BGK� �8� form of the
collision term was implemented on the lattice with Lij
=�−1�ij. In the lattice BGK �LBGK� model, the fluid viscos-
ity, which is the only transport parameter of interest, is given
by �=cs

2��−1 /2�. Even though it has always been clear that
this simplification entails a crude approximation to the relax-
ation process �all modes relax at the same rate ��, the LBGK
equation, since its introduction, has held the mainstream in
LB applications. In a parallel development, the collision ma-
trix version of the LBE �5,9� has been reconsidered, opti-
mized, and is now referred to as the multiple time relaxation
�MTR� method �10,11�, in contrast to the single relaxation
time implied by the LBGK equation. A number of authors
have also made a strong case for the superiority of the MTR
version over the LBGK model in terms of numerical accu-
racy and stability �12,13�. Yet, the lattice BGK version re-
mains by far the most popular form of the LBE to date.

The limited popularity of the MTR approach, in spite of
its superiority compared to the lattice BGK method, may be
due to the lack of a general guiding criterion for the spectral
decomposition of the collision matrix. In other words, it has
not been clear a priori how to choose the eigenvectors of the
matrix Lij which span the kinetic space of the discrete popu-
lations f i. This ambiguity arises because the conservation
laws of mass and momentum fix only the hydrodynamic and
transport subset of the eigenvectors, leaving the kinetic sub-
set unspecified �see below�. As a consequence, MTR models
are dependent on both spatial dimension and the choice of
the discrete velocity set ci, while the LBGK model is identi-
cal across both spatial dimension and choice of velocity set.
Further, the notion of orthogonality of eigenvectors in the
kinetic space can itself be defined in two distinct ways: the
definition followed in �9� using a weighted inner product,
and that in �10� using an unweighted inner product. For ex-
ample, recent work on the shallow water equation �14�, the
fluctuating lattice Boltzmann equation �15�, and multireflec-
tion boundary conditions uses a set of eigenvectors that are
orthogonal under the weighted inner product �16�. Clearly, it
is important to understand how this nonuniqueness in the
kinetic space arises and to provide a guiding principle in
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chosing the eigenvectors. In this work we shall propose such
a guiding rule, by introducing the notion of duality in the
kinetic space of the LB method.

In Sec.II we follow the notation in �17� to highlight the
structure of the kinetic space spanned by the eigenvectors
and how a change of basis from populations to the moments
reveals the dynamics of the various modes. We then intro-
duce and illustrate the idea of duality with concrete ex-
amples. We show how a model in which all the ghost degrees
of freedom are relaxed at the same rate �17,18� may provide
the best compromise between full MTR models where every
mode has a separate relaxation time and the LBGK model.
We end with a discussion on how the present work is rel-
evant to the algorithmic improvement of the LB method.

II. SPECTRAL REPRESENTATION
OF THE COLLISION MATRIX

A. Eigenvectors and eigenvalues

For a general athermal DdQn LB model with n velocities
in d space dimensions, the n	n collision matrix Lij has d
+1 null eigenvectors corresponding to the density and d
components of the conserved momentum, d�d+1� /2 eigen-
vectors corresponding to the stress modes, and n− �d+1�
−d�d+1� /2 eigenvectors corresponding to the ghost modes
�15,17�. The choice of the null and stress eigenvectors
�1,ci� ,Qi��	 follows directly from the physical definition of
the densities associated with them. Without specifying the
exact analytical expression for the remaining eigenvectors,
let us label a linearly independent set of the eigenvectors of
the scattering matrix by �Ai

a	, where a=1, . . . ,n labels the
eigenvector, and i=1, . . . ,n labels the component of the ei-
genvector along the ith velocity direction. Then, we can de-
fine densities associated with the eigenvector Ai

a as moments
of the populations by


a�x,t� = �
i

f i�x,t�Ai
a. �3�

For Ai
a= �1,ci� ,Qi��	 the densities are the mass, momentum,

and stress. The ghost eigenvectors are higher polynomials of
the discrete velocities �9�. The discreteness of the kinetic
space implies that, unlike in the continuum, only a finite
number of polynomials can be linearly independent, being
equal to the number of discrete velocities. For a model with
n discrete velocities, the choice of the n linearly independent
polynomials is thus not unique, but defined only up to a
similarity transformation. Thus, the reason for the nonu-
niqueness in the spectral decomposition can be traced to the
discreteness of the velocity space itself. Independent of the
precise choice, the distribution function itself can be ex-
panded in a linearly independent set eigenvectors which are
polynomials of the discrete velocities

f i�x,t� = wi�
a


a�x,t�
Ai

a

Na . �4�

Consistency between the above two equations implies that
the set of polynomials Ai

a are both orthogonal and complete,

�
i

wiAi
aAi

b = Na�ab, �5�

�
a

Ai
aAj

a/Na = �ij , �6�

where Na is the normalization factor of the ath eigenvector.
Crucially, with the definitions above �15�, the eigenvectors
Ai

a form an orthogonal set under an inner product �Aa ,Ab�
=�iwiAi

aAi
b. This inner product is identical to that introduced

by Benzi et al. �9�, but distinct from the unweighted inner
product �Aa ,Ab�=�iAi

aAi
b used by d’Humieres and co-

workers �10,11�. The advantages of the present choice are
discussed below. As indicated before, a useful categorization
of the polynomials consists of the d+1 polynomials �1,ci�	
corresponding to the mass and momentum, the d�d+1� /2
quadratic polynomials Qi�� corresponding to the stress, and
the remaining n− �d+1�−d�d+1� /2 cubic and higher-order
polynomials corresponding to the ghost variables. Corre-
spondingly, the distribution function can be separated into
contributions from the hydrodynamic, transport, and ghost
moments,

f i = f i
H + f i

T + f i
G. �7�

This motivates the introduction of projection operators �17�
which project the distribution function onto the hydrody-
namic, transport, and ghost subspaces,

�
j

Pij
Hf j = f i

H = wi�� +
�v · ci

cs
2 � , �8�

�
j

Pij
T f j = f i

T = wi
S��Qi��

2cs
4 , �9�

�
j

Pij
Gf j = f i

G = wi �
a�G


aAi
a/Na. �10�

The explicit forms of the projection operators are

Pij
H = wi�1 + ci · c j/cs

2� , �11�

Pij
T = wiQi��Qj��/2cs

4, �12�

Pij
G = �

a�G

wiAi
aAj

a/Na. �13�

The discrete Maxwellian is a nonlinear �quadratic� function
of the distribution function, and thus Eq. �1� is only appar-
ently linear, the nonlinearity being concealed in f i

0. A useful
linearization of the LB equation consists of neglecting the
quadratic term in the discrete Maxwellian to yield a local
equilibrium hi

0 which is linear in the mean velocity,

hi
0 = wi�� +

�v · ci

2cs
2 � = �

j

Pij
Hf j . �14�

In the linearized approximation for the equilibrium distribu-
tion, we have f i

0=hi
0= �PHf�i and so the linearized LBE can

now be written as
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�t f i + ci · �f i = − �
j

Lij�f j − �PHf� j� = − �
j

Lij
R f j , �15�

where Lij
R =�kLik�1− PH�kj is a right-projected collision ma-

trix. In this form, it is clear that Lij
R by construction has eigen-

vectors of mass and momentum with zero eigenvalues. The
form of the matrix, by itself, places no constraint on the
eigenvalues of transport and ghost sectors. However, the re-
quirements of an extended range of hydrodynamic behavior,
stability, and isotropy motivate an optimal construction of
Lij

R. As explained in the Introduction, the simplest possible
model consists of a diagonal collision matrix Lij =�ij /�
which implies that all the nonconserved modes relax at the
same rate 1 /�. This is the very popular LBGK approximation
used in the literature. In the hydrodynamic regime, a scale
separation exists between the relaxation of the conserved and
nonconserved variables: the mass and momentum densities
relax slowly, the stress and ghost variables relax rapidly. One
variant of a model introduced by Ladd �18� uses adjustable
relaxation times for the stress modes, and identical unit re-
laxation times for the ghost modes, i.e., the ghosts are “pro-
jected” out. One advantage of this approach is that the pre-
cise form of the ghost modes, which in general differ both in
number and in form between LB models, need not be known.
A generalization of this model, with two relaxation times
�17�, reads

Lij
R = �Pij

T + �Pij
G = ��1 − Pij

H� + �� − ��Pij
T , �16�

where the last follows from the completeness relations PH

+ PT+ PG=1. Since the precise form of the ghost projection
operator, and hence the ghost eigenvectors, is never needed
in this formulation, it is clear that the linearized dynamics in
this two-relaxation-time model cannot depend on the precise
choice of the ghost mode eigenvectors. The only way this
model may be optimized is to tune the relaxation rate of the
ghost modes in comparision to the stress modes. However, a
model that allows separate relaxation times for each indi-
vidual ghost mode has a greater flexibility and may be opti-
mized to yield the best range of hydrodynamic behavior �11�.
It needs careful analysis to see whether the gain is enough to
justify the loss of simplicity and generality that one obtains
from the two-relaxation-time model. Hydrodynamic behav-
ior is obtained when there are two propagating modes with a
dispersion relation =csk+ i�Lk2, �L=�+3 /2�bulk being the
longitudinal viscosity, and d−1 diffusive modes with a dis-
persion relation = i�k2. Both the speed of sound and the
viscosities are assumed to be constant.

B. Linear mode structure

The hydrodynamic behavior of the linearized LBE is most
conveniently analyzed in the absence of boundaries when a
Fourier mode decomposition is possible �12,14,17,19�. It is
important to note that the departure from hydrodynamic be-
havior can arise from two distinct sources. The first is the
choice of eigenvectors and relaxation times of the discrete-
velocity �but space- and time-continuous� LBE. This is the
category of error arising from discretization in velocity
space. The second is that arising from the numerical integra-

tion of the LBE. This is the category of error arising from
discretization in space and time. The physical and numerical
behavior of the fully discretized LBE dynamics is a combi-
nation of both these sources of error. The present work, fo-
cusing as it does only on the kinetic space, has direct impli-
cations for errors arising out of discretization of velocity
space. The errors arising out of discretization of space and
time are relatively well understood from the numerical
analysis of the hyperbolic differential equations. In particu-
lar, it is known that a Euler integration step of size �t pro-
duces numerical diffusion, and thereby renormalizes the vis-
cosity to �=cs

2��−�t /2� �2�.
To derive the dispersion relation we Fourier transform the

linearized LBE to get

�t f i + ik · ci f i = − �
j

Lij
R f j . �17�

At k=0, the eigenmodes of the dynamics are the same as the
eigenmodes of LR. However, away from k=0, neither the
eigenmodes nor the eigenvalues are identical. For small k, an
analytical expression for the eigenvalues may be obtained
perturbatively �17�. For arbitrary k, a numerical solution is
necessary. The dispersion relation is obtained by a Fourier
transform in time,

− i�k�f i = − �
j

�ik · ci�ij + Lij
R�f j . �18�

Thus we need to obtain the eigenvectors and eigenvalues of
the matrix

Mij = ik · ci�ij + Lij
R . �19�

The dynamics in Eq. �17� can equally well be written in
terms of the densities using Eq. �4� as

�t

a = − �

b

��ab + �a�ab�
b, �20�

where the matrix coupling the different modes is

Na�ab = ik · �
i

wiAi
aAi

bci. �21�

It is worth noting that the linearized LB dynamics can be
written in either of the forms

�t f i = − �
j

�A + C�ij f j , �22�

�t

a = − �

b

�A + C�ab
b. �23�

The dynamical equation in the f i basis diagonalizes the ad-
vection operator Aij = ik ·ci�ij, while the dynamical equation
in the 
a basis diagonalizes the collison operator Cij =Lij

R. The
eigenvectors of the dynamics are a combination of the f i and
the 
a. The dispersion relation equation can be conveniently
nondimensionalized by measuring time in units of the in-
verse of the relaxation rate for the stress modes �=�−1, and
distance in units of cs�. The nondimensionalized dispersion
equation then takes the form
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− i��q�f i = − �
j
�iq ·

ci

cs
�ij + Lij

R� f j , �24�

where �=� is a nondimensionalized frequency and q
=kcs� is a nondimensionalized wave vector. It should be
noted that the nondimensionalized collision matrix LR

=LR /� now depends only on the ratio � /� of the relaxation
rates of the ghost and stress eigenvectors. We shall use this
nondimensionalized form of the dispersion relation to obtain
the numerical eigenspectrum of one of the LBE models pre-
sented below.

III. DUALITY IN LATTICE KINETIC THEORY

The symmetry principle of duality, which relates two dif-
ferent mathematical representations of the same physical
theory, is a powerful tool in many areas of physical science.
Duality is often use to map strongly interacting degrees of
freedom to weakly interacting ones, thus facilitating an ap-
proximate, and often even an exact, solution of the problem.
A celebrated example is the solution of Kramers and Wannier
for the critical temperature of the Ising model �20�. To the
best of our knowledge, dual symmetries do not appear to
have played any major role in kinetic theory. In the context
of the lattice Boltzmann schemes, we introduce duality not
as an exact symmetry, but as a requirement on the structure
of the kinetic space of the theory. Specifically, we require
that the structure of the ghost subspace should mirror that of
the hydrodynamic subspace, and consist of scalar densities
and associated vector currents. In our notation, a LB kinetic
space is exactly dual if each ghost field corresponds to a
hydrodynamic field, and a suitable transformation converts
the ghost degrees of freedom into hydrodynamic degrees of
freedom. If this exact correspondence is broken, but the
ghost subspace still consists of sets of scalar densities and
vector currents, we say that the kinetic space is quasidual.
The scalar densities and vector currents are taken to be even
and odd functions of the discrete velocities, respectively.
Thus introduced, duality is a normative principle on the
structure of the kinetic space of the LBE. The duality prin-
ciple, as we show with several examples below, allows us to
choose the eigenvectors of the collision matrix in a way that
is both transparent and systematic.

A. Two dimensions

Let us first consider the standard D2Q9 model with the
usual set of velocities connecting the four nearest neighbors
and the four next-nearest neighbors of the square lattice.
Thus there are four velocities with unit modulus, another
four with modulus 2, which together with the zero velocity
give the nine dynamical populations of the D2Q9 model. The
kinetic space is spanned by eigenvectors corresponding to
the mass and momentum, �Ai

0 ,Ai
1 ,Ai

2	= �1i ,cix ,ciy	. The next
three natural eigenvectors associated with the stress tensor
are �Ai

3 ,Ai
4 ,Ai

5	= �Qixx ,Qixy ,Qiyy	
�cix
2 −cs

2 ,cixciy ,ciy
2 −cs

2	.
All of these are recognized as discrete velocity analogs of
tensor Hermite polynomials �21�. Without any physical con-
siderations to guide us, the choice of three higher-order

eigenvectors associated with the ghost modes remains open.
An obvious choice is the next series of tensor Hermite poly-
nomials, that is, Qixxcix, Qixxciy, Qiyycix, Qiyyciy. It is imme-
diately seen that, due to the identity cix

3 =cix, holding for the
D2Q9 lattice, only two of these are linearly independent.
This lack of linear independence, as we mentioned earlier, is
due to the discrete nature of the velocities, giving identities
like cix

3 =cix, which are absent in the continuum. To complete
the kinetic space, one more eigenvector is required. It is im-
mediately checked that, as a consequence of the D2Q9 iden-
tity cia

4 =cia
2 , a=x ,y, out of the five Hermite polynomials of

order 4, only one is linearly independent, which we chose as
QixxQiyy. This then completes the construction of the remain-
ing three ghost eigenvectors.

In a very illuminating paper, Dellar �14� proposes a dif-
ferent decomposition, based on the notion of ghost densities
introduced in �9�. The first ghost eigenvector is of the form

Gi
0 
 gi = �1,− 2,− 2,− 2,− 2,4,4,4,4� �25�

and the remaining two are simply the corresponding “cur-
rents,” that is,

Gi
1 
 gicix, Gi

2 
 giciy . �26�

The physical meaning of this choice is best highlighted by
expressing gi in analytical form, that is,

gi =
ci

4

2cs
4 −

5ci
2

2cs
2 + 1i, �27�

where ci
2=cix

2 +ciy
2 . It is easily checked that the basis

A0 , . . . ,A5 ,A6=G0, A7=G1 ,A8=G2, is orthogonal under the
weighted scalar product �Aa ,Ab�=�iwiAi

aAi
b, where w0=4 /9,

w1–4=1 /9, and w5–8=1 /36 are the usual D2Q9 weights. It is
also to be noted that, owing to the D2Q9 identities, the ghost
eigenbasis can also be written as

Gi
0 = cix

2 ciy
2 − �3/2��cix

2 + ciy
2 � + 1, �28�

Gi
1 = cixciy

2 − �3/2��cix + ciy
2 cix� + cix = − �1/2�cix�1 + ciy

2 � ,

�29�

Gi
2 = ciycix

2 − �3/2��ciy + cix
2 ciy� + ciy = − �1/2�ciy�1 + cix

2 � .

�30�

Surprisingly, then, Gi
0=gi is a fourth-order lattice Hermite

polynomial, while Gi
1=gicix and Gi

2=giciy, instead of being
fifth-order lattice Hermite polynomials turn out to be third-
order lattice Hermite polynomials. This sastisfies exactly the
duality principle introduced above: the kinetic space is de-
composed into a set of eigenvectors corresponding to con-
served, transport, and ghost moments; the ghost degrees of
freedom correspond to an even scalar density and two odd
vector currents and are in one-to-one correspondence with
the hydrodynamic degrees of freedom; and, as we show be-
low, the ghost and hydrodynamic degrees of freedom are
related by a suitable transformation.
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The duality in the decomposition is beautifully illustrated
by the diamond structure of the D2Q9 eigenvectors shown in
Table I. The density and the two momenta are matched by a
ghost density and two ghost currents. The dynamical behav-
iors of these degrees of freedom are of course quite different,
as is revealed by displaying the LBE dynamics in the basis of
moments. The kinetic moments associated with the present
choice of eigenvectors are

��,�v�,S��,��, j��	 = �
i

f i�1,ci�,Qi��,gi,gici�	 . �31�

The primed quantities correspond to ghost density and its
currents. The decompostion of f i as the sum of a hydrody-
namic, transport, and ghost components is

f i
H = wi�� +

j · c

cs
2 � , �32�

f i
T = wi�S��Qi��

2cs
4 � , �33�

f i
G =

1

4
wigi��� +

j� · c

cs
2 � . �34�

From the above expressions it is clear that, to within a scale
factor, the ghost sector is transformed into the conserved
sector under the duality transformation 1i↔gi.

To physically interpret the above decomposition, we first
note that the combination wi�=wigi may be interpreted as the
weight associated with the ghost degrees of freedom. Then,
the weights of the hydrodynamic modes sum to unity, �wi
=1, while the weights of the ghost modes sum to zero
�iwi�=0. This last result combined with the fact that ghost
density is even in the velocities gi=gi�, where ci� =−ci, indi-
cates that the ghosts correspond to oscillatory eigenvectors
familiar in quantum and statistical mechanics, where they
represent excitations above the ground state or above equi-
librium. The ghost degrees of freedom are thus nonequilib-
rium excitations carried by even, oscillatory eigenvectors.

The even and odd character of eigenvectors can be exploited
to classify the entire set of moments into two categories:
even moments representing densities, and odd moments rep-
resenting currents. Odd moments, representing currents, van-
ish at global equilibrium by symmetry. The even moments
are not constrained to vanish by symmetry arguments. How-
ever, since the kinetic modes have no projection onto the
global equilibrium distribution function f i

0=wi�, they can be
conveniently chosen to vanish at equilibrium. This is one of
the principal advantages of using a set of eigenvectors which
are orthogonal under the weighted inner product.

By interpreting wi as “masses” of the hydrodynamic
modes, the wi� can be identified with “masses” of ghost
modes. By construction, since they sum up to zero, some of
these masses ought to be negative. For instance, the ghost
density can be rewritten as an alternating sum of the popu-
lations associated with the three energy levels cj

2=0 ,1 ,2,
that is, ��= f0−2�f1+ f2+ f3+ f4�+4�f5+ f6+ f7+ f8�=�0−2�1
+4�2, where j=0,1 ,2 refer to the jth energy level. Being the
sum of populations, each of the partial densities is strictly
non-negative at all times, but the combination of alternating
coefficients is a signed quantity, ��, which is zero only at
equilibrium. The duality is made even more apparent by de-
fining the reduced distribution function �i
 f i /wi, thus writ-
ing �=�iwi�i and ��=�iwi��i. Since wi is the lattice analog
of the global equilibrium distribution, wi� may also be inter-
preted as a measure of the global departure from equilibrium.

The ghost currents are a measure of the skewness
of the kinetic distribution function, which is nonzero
only out of equilibrium. Being based on this
equilibrium↔nonequilibrium duality, the ghost decomposi-
tion shows that the higher-order excitations, keeping the sys-
tem away from equilibrium, can be structured exactly like
their hydrodynamic counterparts. It should be appreciated
that the duality is structural and not dynamical: it is broken at
various levels, starting with the prefactors defining the ghost
density and current, because the norm of the dual hydrody-
namic versus ghost eigenvectors is not the same. In particu-
lar, this implies that the ghost kinetic tensor is not isotropic,
as one can easily check by a direct calculation: Pxx� =4Pxx and
Pxy� =−4Pxy. This is not surprising, since equilibrium and
nonequilibrium are not physically equivalent.

However, a dynamical transformation in time, �↔1 /�,
turns perfectly conserved modes �infinite lifetime� into per-
fectly nonconserved ones �zero lifetime�. What this means is
that the distinction between equilibrium and nonequilibrium
modes is not dictated by the structure of the kinetic space,
but only by the actual values of the lifetimes of the excita-
tions supported by this equation. In this respect, we expect a
signature of this dynamical duality in the form of a mirror
symmetry � /�↔� /� in the dispersion relation for the two-
relaxation-time model introduced earlier. Numerical disper-
sion relations presented in the next section do show evidence
of such a symmetry.

The structural duality of the kinetic space is broken dy-
namically by the different eigenvalues assigned to the hydro-
dynamic and ghost modes. The hydrodynamic sector sustains
itself even in the absence of ghosts �standard macroscopic
hydrodynamics�, whereas the ghosts, because of finite life-

TABLE I. The arrangement of the eigenvectors of the D2Q9
lattice in a diamond structure. There is an exact duality about the
transport sector �T� with the conserved hydrodynamic �C� and ghost
�G� sectors, transforming into each other under the interchange of
weights �see text�.

1 C

x y C

xx xy yy T

xyx xyy G

xxyy G
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times assigned to them, do not survive without a forcing
from the hydrodynamic modes. Indeed, in the absence of
the hydrodynamic feedback on P��� , the ghost sector would
rapidly be extinguished, because neither its density nor its
current is conserved in time. Of course, such dynamical
asymmetry can always be removed by choosing the ghost
eigenvalues equal to zero. In fact, there is even some evi-
dence that long-lived ghosts may prove beneficial to the nu-
merical stability of short-scale hydrodynamics in fluid turbu-
lence �22�. This is a prescription to keep the Boltzmann
distribution away from equilibrium for an indefinitely long
time, leading to anomalous relaxation. This prescription
clearly violates the normal ordering between slow, hydrody-
namic and fast, kinetic modes, as it corresponds to enforcing
additional conservation laws with no counterpart in the real
molecular world. Hence, such a procedure can be justified
only as an effective interaction between collective degrees of
freedom, as for example in lattice kinetic equations for tur-
bulent flows.

B. Higher-order lattices in two dimensions

In two dimensions, lattices with more than nine velocities
are used in the thermal LBE and in applications in microflu-
idics and multiphase flow. Duality can be used to generate an
optimal kinetic space for these higher-order lattices as well.
Let us denote by D�s� the lattice corresponding to a hierar-
chical tree of eigenvectors, with 2s+1 levels and symmetric
about the �s+1�th level �see Tables II and III�. Clearly, this
hierarchy contains �s+1�2 independent moments. With this

definition, D�0� corresponds to the lattice with a single zero-
speed rest particle, D�1� to the D2Q4 lattice, and D�2� to the
D2Q9 lattice. D�3�, which represents a higher-order lattice in
the present terminology, consists of 16 velocities with four
velocities each of modulus 1, 2, 4, and 8. For this rather
complicated lattice, the duality prescription proceeds by first
chosing the usual eigenvectors corresponding to the con-
served and transport sectors. Proceeding to the third level,
the eigenvectors of type ci�Qi�� �and permutations� now turn
out to be linearly independent. The remaining moments
are constructed in a top-down fashion, beginning with a
sixth-order scalar density �6i=Aci

6−Bci
4+Cci

2−1i, from
which two currents �6ici� and three tensorial densities
�6iQixx ,�6iQixy ,�6iQiyy can be used to complete the hierarchy.
The expansion coefficients A ,B ,C for the scalar density can
be computed by requiring orthogonality to the lower eigen-
vectors.

The next member of the hierarchy is D�4�, corresponding
to the lattice of 25 speeds which has recently been shown to
have eighth-order isotropy in its spatial behavior. As with
D�3�, the eigenvectors up to the third level are the conserved,
transport, and tensorial Hermite polynomials ci�Qi�� and
permutations. Again, on the 25-velocity lattice, the permuta-
tions give rise to independent eigenvectors. The remaining
eigenvectors can be constructed bottom up starting from an
eighth-order scalar density �8i=Aci

8−Bci
6+Cci

4−Dci
2+1i,

from which two currents �8icix, �8iciy, three tensorial densi-
ties �8iQixx, �8iQixy, �8iQiyy, four tensorial currents �8iRixxx,
�8iRixxy, �8iRixyy, �8iRiyyy, and five tensorial densities �8iSixxxx,
�8iSixxxy, �8iSixxyy, �8iSixyyy, �8iSiyyyy can be derived, thus

TABLE II. The hierarchical tree of moments for the 16-speed dual lattice D�3� defined in the text. The
first four levels are constructed using the usual lattice Hermite polynomials. The remaining three levels are
completed using the duality prescription starting with an even, sixth-order scalar density.

1 C Lattice

x y C Hermite

xx xy yy T Expansion

xxx xxy xyy yyy T

�6xx �6xy �6yy G

�6x �6y G Duality

�6 G

TABLE III. The hierarchical tree of moments for the 25-speed dual lattice D�4� defined in the text. The
first four levels are constructed using the usual lattice Hermite polynomials. The remaining three levels are
completed using the duality prescription starting with an even, eighth-order scalar density.

1 C Lattice

x y C Hermite

xx xy yy T Expansion

xxx xxy xyy yyy T

xxxx xxxy xxyy xyyy yyyy T

�8xxx �8xxy �8xyy �8yyy G

�8xx �8xy �8yy G Duality

�8x �8y G

�8 G

R. ADHIKARI AND S. SUCCI PHYSICAL REVIEW E 78, 066701 �2008�

066701-6



completing the list of 25 independent eigenvectors. In the
above, Ri���=Qi��ci�, and Si����=Qi��Qi��.

Both of the above examples show that the duality pre-
scription offers a transparent method of choosing and order-
ing the set of eigenvectors in lattices which are more com-
plicated than the most commonly used D2Q9 lattice in two
dimensions. It has recently been shown that the 16- and 25-
speed lattices, with a proper choice of weights, provide sixth-
and eighth-order isotropy, respectively �23,24�. Since the
choice of weights is intimately related to both the weighted
inner product and the duality prescription, it is possible that
there is a fundamental link between isotropy and the duality
prescription.

C. Three dimensions

In three dimensions, the model which is potentially ex-
actly dual is the D3Q14 model, which has the usual four
hydrodynamic degrees of freedom and six transport degrees
of freedom, leaving four ghost degrees of freedom to match
the hydrodynamic ones. However, since the D3Q14 model is
not used in practice, we pass on instead to the analysis of the
most common D3Q19 model. Here, of course, the kinetic
space can only be quasidual, since there are nine ghost de-
grees of freedom. To choose them according to the duality
prescription, several possibilities can be explored. With one
ghost density quartic in the velocity, and three associated
currents which are quintic, we obtain four ghost eigenvec-
tors, leaving five free. This allows three independent compo-
nents of the ghost momentum-flux tensor �xy ,xz ,yz�, plus
another two, which must necessarily come from a higher
Hermite level. This seems to be a rather obscure and un-
promising avenue. A better possibility is to select two ghost
densities along with their currents, leaving the third one “na-
ked,” i.e., without independent degrees of freedom for the
current. Retaining three quartic ghost densities with their re-
spective currents is not viable, for it gives a total of 12 eigen-
vectors, 3 too many. From these considerations, it appears
that the two �dressed� plus one �naked� density representa-
tion comes closest to satisfying the duality program. It is
interesting to note that, apart from the third, naked, density,
this is precisely the early decomposition adopted in �9�,
based on the three-dimensional �3D� projection of a 4D face-
centered hypercube �24 speeds in d=4,18 in d=3�. The ex-
plicit form of the chosen eigenvectors is given in the Appen-
dix.

IV. NUMERICAL RESULTS

We now present a numerical calculation of the dispersion
relation of the two-relaxation-time lattice Boltzmann model
with the duality-prescribed choice of eigenvectors. The dis-
persion relation is obtained by numerically computing the
eigenvalues and eigenvectors of the matrix Mij. As explained
previously, with a suitable rescaling, the only parameter in
the problem is � /�, the ratio of the relaxation rates of the
kinetic and stress degrees of freedom. For �=� the collision
term reduces to the LBGK diagonal collision operator. The
imaginary parts of the eigenvalues for the D2Q9 model are

shown in Fig. 1, clearly showing the presence of hydrody-
namic modes �relaxation rates vanish as wave number goes
to zero� as well as nonhydrodynamic modes �relaxation rates
remain finite as the wave number goes to zero�. The scale
separation between the relaxation rates of the hydrodynamic
and nonhydrodynamic modes becomes progressively smaller
with increasing wave number, and there is considerable over-
lap at around q=�. This is fairly plausible, since q=� is the
value at which the wavelength becomes comparable with the
mean free path cs�, so that the distinction between hydrody-
namics and kinetic modes fades away. This lack of scale
separation is responsible for the poor range of hydrodynamic
behavior of the LBGK models, a fact that was correctly
noted earlier �12�. With �= 1

2�, the overlap between the hy-
drodynamic and nonhydrodynamic modes in Fig. 2 is even
greater, indicating a further reduced range of hydrodynamic
behavior, compared to the LBGK models. On the other hand,
for �=2�, we see in Fig. 3 a clean separation between the
hydrodynamic and kinetic degrees of freedom, and it is in
this range of parameters that we expect the best hydrody-
namic behavior of the two-relaxation-time LB model. An
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FIG. 1. �Color online� Dispersion relation of the D2Q9 matrix
LBE for �=�=1. This is identical to the BGK model. Note the large
overlap of the hydrodynamic �lower curves� and nonhydrodynamic
�upper curves� modes.
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FIG. 2. �Color online� Dispersion relation of the D2Q9 matrix
LBE for �=1, �=2. The ghost modes are forcibly made to relax
more slowly than the stress modes, leading to poor hydrodynamic
behavior.
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interesting qualitative feature that emerges from comparing
Figs. 2 and 3 is that the eigenfrequencies are almost “dual”
to each other, in the sense that the dispersion curves are
approximately identical after a reflection about the ordinate
and a rescaling by � /�. The structural duality is reflected in
the dynamical behavior if the relaxation times are chosen
appropriately.

This supports our earlier assertion that the structures of
the hydrodynamic and nonhydrodynamic modes are dual to
each other. It also illuminates the physical behavior of ghost
modes, whose dynamics appears to be characterized by a
competition between global decay as characterized by �, and
instabilities driven by negative diffusion as indicated by the
negative curvature of the ghost dispersion relations. Thus the
ghost modes decay globally, but, driven by the negative dif-
fusion, concentrate around thinner and thinner regions of
space, and can thereby undermine the high-frequency high-
wave-number stability of the system. Good hydrodynamic
behavior is thus expected whenever global decay proceeds
sufficiently fast to deplete the ghost energy before this en-
ergy has time to cascade to high frequencies. Recent work
based on the so-called regularized lattice Boltzmann model,
in which the ghost modes are filtered out altogether from the
collision operator �25�, has shown significant improvements
in terms of numerical stability for pulsatile hemodynamic
flows �26�.

The ghost picture presented in this work suggests a num-
ber of interesting questions for future studies. First, it would
be interesting to explore whether the use of entropic methods
�27� simply accelerates the ghost decay, or rather turns
ghosts into stable modes. Second, following �22�, it would be
interesting to study whether the dual decomposition can help
in designing the ghost dynamics in such a way as to absorb
energy bursts from the hydrodynamic component, as they
occur in a turbulent flow �intermittency�. This could be
achieved, for instance, by promoting ghost eigenvalues to
dynamical fields responding self-consistently to the local dy-
namics of the turbulent flow, as is currently done with the
transport eigenvalues � in the kinetic modeling of fluid tur-
bulence �28�. Finally, we note that the long-wavelength dy-

namics obtained with the present choice of eigenvectors is,
by construction, isotropic at order k2 and Galilean invariant.

V. CONCLUSION

In this paper we have developed the notion of duality
between the hydrodynamic and ghost sectors of lattice ki-
netic equations, as a guiding criterion to resolve the ambigu-
ities which arise in the practical construction of LB models
in matrix form. Our main prescription is that the ghost sector
should be constructed, in analogy with the hydrodynamic
sector, to consist of density-current pairs. This prescription is
exactly realized in the D2Q9 model, where, in addition, the
ghost and hydrodynamic sectors can be interchanged by a
suitable swapping of weights. For higher-order lattices and in
higher dimensions, the kinetic degrees of freedom are more
numerous than the hydrodynamic ones, thereby ruling out an
exact correspondence between the two. However, the duality
prescription still provides a useful ordering of the eigenvec-
tors into a quasidual kinetic space. The duality principle pre-
sented in this paper has been used previously in constructing
the kinetic space of the fluctuating lattice Boltzmann equa-
tion �15�. It has also been recently used to compare the ac-
curacy of multireflection boundary conditions with both
weighted and unweighted eigenvectors �16�. We hope the
duality principle as introduced here will provide an impetus
to further developments in the matrix formulation of the lat-
tice Boltzmann method.
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APPENDIX

For easy reference we present the eigenvectors of the
D2Q9 and D3Q19 models chosen according to the duality
prescription with weighted inner product. The table is ar-
ranged according to the conserved �C�, transport �T�, and
ghost �G� sectors.

AT = �
A� 1 1 1 1 1 1 1 1 1

Ajx0 1 0 − 1 0 1 − 1 − 1 1

Ajy 0 0 1 0 − 1 1 1 − 1 − 1

AQxx − 1 2 − 1 2 − 1 2 2 2 2

AQxy 0 0 0 0 0 1 − 1 1 − 1

AQyy − 1 − 1 2 − 1 2 2 2 2 2

A�� 1 − 2 − 2 − 2 − 2 4 4 4 4

Ajx� 0 − 2 0 − 2 0 4 − 4 − 4 4

Ajy� 0 0 − 2 0 2 4 4 − 4 − 4

� .
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FIG. 3. �Color online� Dispersion relation of the D2Q9 matrix
LBE for �=1, �=1 /2. The ghost modes relax twice as fast as the
stress modes. there is a clean seperation of time scales and en-
hanced hydrodynamic behavior compared to the BGK model.
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AT =

⎣
⎢
⎢
⎢
⎡

A� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ajx 0 1 − 1 0 0 0 0 1 1 − 1 − 1 1 1 − 1 − 1 0 0 0 0

Ajy 0 0 0 1 − 1 0 0 1 − 1 1 − 1 0 0 0 0 1 1 − 1 − 1

Ajz 0 0 0 0 0 1 − 1 0 0 0 0 1 − 1 1 − 1 1 − 1 1 − 1

AQxx − 1 2 2 − 1 − 1 − 1 − 1 2 2 2 2 2 2 2 2 − 1 − 1 − 1 − 1

AQyy − 1 − 1 − 1 2 2 − 1 − 1 2 2 2 2 − 1 − 1 − 1 − 1 2 2 2 2

AQzz − 1 − 1 − 1 − 1 − 1 2 2 − 1 − 1 − 1 − 1 2 2 2 2 2 2 2 2

AQxy 0 0 0 0 0 0 0 1 − 1 − 1 1 0 0 0 0 0 0 0 0

AQyz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1

AQzx 0 0 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1 0 0 0 0

A�� 0 1 1 1 1 − 2 − 2 − 2 − 2 − 2 − 2 1 1 1 1 1 1 1 1

Ajx� 0 1 − 1 0 0 0 0 − 2 − 2 2 2 1 1 − 1 − 1 0 0 0 0

Ajy� 0 0 0 1 − 1 0 0 − 2 2 − 2 2 0 0 0 0 1 1 − 1 − 1

Ajz� 0 0 0 0 0 − 2 2 0 0 0 0 1 − 1 1 − 1 1 − 1 1 − 1

A�� 0 1 1 − 1 − 1 0 0 0 0 0 0 − 1 − 1 − 1 − 1 1 1 1 1

Ajx� 0 1 − 1 0 0 0 0 0 0 0 0 − 1 − 1 1 1 0 0 0 0

Ajy� 0 0 0 − 1 1 0 0 0 0 0 0 0 0 0 0 1 1 − 1 − 1

Ajz� 0 0 0 0 0 0 0 0 0 0 0 − 1 1 − 1 1 1 − 1 1 − 1

A�� 1 − 2 − 2 − 2 − 2 − 2 − 2 1 1 1 1 1 1 1 1 1 1 1 1⎦
⎥
⎥
⎥
⎤
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