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Packings of a charged line on a sphere
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We find equilibrium configurations of open and closed lines of charge on a sphere, and track them with
respect to varying sphere radius. Closed lines transition from a circle to a spiral-like shape through two
low-wave-number bifurcations—"“baseball seam” and “twist”—which minimize Coulomb energy. The spiral
shape is the unique stable equilibrium of the closed line. Other unstable equilibria arise through tip-splitting
events. An open line transitions smoothly from an arc of a great circle to a spiral as the sphere radius decreases.
Under repulsive potentials with faster-than-Coulomb power-law decay, the spiral is tighter in initial stages of
sphere shrinkage, but at later stages of shrinkage the equilibria for all repulsive potentials converge on a spiral
with uniform spacing between turns. Multiple stable equilibria of the open line are observed.
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I. INTRODUCTION

Confinement of mutually repelling units in a closed ge-
ometry is a common phenomenon in physics, chemistry, and
biology [1-3], and has important structural and functional
consequences for the ensemble of confined units. For ex-
ample, during the packing of DNA and RNA into viral shells,
interaction between individual nucleotides leads to the for-
mation of ordered coils [4-6]. Dielectric properties of the
solvent modify the interaction potential, and elastic proper-
ties of the nucleotide chains (bending and twist rigidity) also
play important roles.

The stable aggregates which result from interactions
through long-range potentials are studied as examples of pat-
tern formation [7,8] and have potential uses in the spontane-
ous formation of new structures known as self-assembly
[9-11]. One of the best-known models is the Thomson prob-
lem for the equilibria of equal Coulomb charges on a sphere
[12]. Many of the equilibria which have been identified so
far consist of a curved hexagonal lattice disrupted by 12 or
more pentagonal defects [13]. The number of equilibria
grows rapidly—perhaps exponentially—with the number of
charges [14].

Recently, Slosar and Podgornik considered a variation of
the Thomson problem wherein the charges are joined by
rigid links into an open single-stranded chain [15]. Using
simulated annealing they identified a spiral configuration as
well as configurations which are locally similar to a spiral
but globally disordered. Other equilibria, including disor-
dered states, were found in simulations of aggregates of
polyelectrolytes [16]. Previously, Saff and Kuijlaars had de-
rived energy bounds for the large-number limit of point par-
ticles which repel with arbitrary power-law decay with dis-
tance [17]. They identified a “generalized spiral set” as a
configuration which yields a uniform distribution of points
on a sphere.

Here we extend the study of the connected-charges prob-
lem in three ways: we consider the cases of closed chains,
varying sphere radius, and varying power law of repulsion.
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First, we determine the behavior of the self-repelling chain as
a function of the radius of the confining sphere. We find that
a closed chain undergoes two bifurcations as the radius
shrinks, the first leading to a “baseball-seam” configuration,
and the second leading to twist. Subsequently, the twist
gradually increases as the chain tends to a spiral configura-
tion. We also find a distinct class of unstable equilibria with
tip splitting (and bilateral symmetry) instead of twist.

We then consider how the equilibrium configuration var-
ies with the power law of decay, for an open line of con-
nected charges. We find that stable equilibria are spiral-like
for all power laws. For small confinement, faster-decaying
power laws lead to tighter spirals. As the radius of the con-
fining sphere decreases, equilibria converge to a common
spiral with uniform spacing between turns. However, we find
that multiple stable equilibria (all spiral-like) are possible for
slowly decaying power laws.

II. THE MODEL

We consider a closed chain (or ring) of n Coulomb
charges, connected by linear springs, and lying in a
spherically-symmetric potential. The energy of the system is

E= E Cln(rz i+l d) + 2 2

zl)z+ln lnnrp

n

+> Q(e[(r,-/R)z—l]/‘% e_[(r"/R)z_l]/ﬁ)' (1)
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The first term is the stretching energy, with spring stiff-
ness Cin and equilibrium spring length d=2m/n. The length
of the chain is thus fixed at 27, which sets the length scale of
the problem. The distance between charge i and charge j is
r;j» and indexing is periodic so n+1=1. The second term is
the generalized Coulomb energy, with charge interaction
strength C,/n” In n and exponent p>0. The Coulomb inter-
action tends to drive charges apart, against the stretching
interaction which tends to keep neighboring charges at dis-
tance d. The third term is the spherical barrier potential. For
fixed C; and C,, we take the limit that C; is sufficiently large
and ¢ sufficiently small that the charged line lies on the
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sphere of radius R. The factors of n in Eq. (1) are included so
that E tends to a finite limit as n— o, in the portion of
parameter space of interest here, namely, that the configura-
tion of charges tends to a line on the sphere of uniform
charge density as n— . We scale the energy in Eq. (1) by
C,, and let p,=C,/C,, which leaves p, p,, and R as the
important parameters in the problem.

We now attempt a partial classification of the equilibria as
a function of p, and R, first restricting to the Coulomb case
p=1. We consider other p later in this work. If the charge
strength is much stronger than the spring stiffness (p,> 1),
we obtain the classical Thompson problem of unlinked
charges on the sphere [12]. In this case, the number of equi-
librium states is conjectured to grow exponentially with n
[14,18]. Addition of the spring energy greatly reduces the
number of equilibria, as we describe below. If the charge
strength p, is zero, there is a continuum of equilibria consist-
ing of “floppy” chains on the sphere with links of length d. If
R=1, one such chain is a circle of radius 1 on the sphere. If
we now set the charge strength p, to any positive number,
the circle is the unique least-energy state among the floppy
chains, because it maximizes the pairwise distances between
charges and therefore minimizes the Coulomb energy. We
focus on the case where p, is positive but sufficiently small
that the maximum stretching strain max{r;;,;/d—1}<1, so
that the chain links are approximately unstretched. A conser-
vative upper bound on such p, is obtained by considering
one chain link in isolation, and computing the strain € by
balancing the stretching and Coulomb forces which arise
from the energy in Eq. (1). We obtain e=p,/(27n?*Inn).
Thus, if n>10 (here n=200), a strain of less than 1% is
obtained for 0 <p, <1. In fact, the strain in a closed chain is
considerably smaller than this estimate, because in the com-
plete chain the Coulomb force on a point charge from one
neighbor is nearly cancelled by the other neighbor to the
extent that the neighbors lie in a straight line. We therefore
begin by setting p,=1, so that we have small strain, and vary
R. To simulate a line of uniform charge density, we take n
sufficiently large (n=200) that the spacing between charges
is always much smaller than the radius of the sphere. Fur-
thermore, all numerical results given do not change (to the
precision given) as n is increased by a factor of 4.

III. THE FIRST BIFURCATION: k=2 MODE

For R= 1, the unique equilibrium is a circle of radius 1 on
the sphere. We now ask what happens when R is decreased
from 1, so that for a chain of length 27 confined to the
sphere, a circle is no longer possible. For R slightly less than
I, or 0<(1-R)<<1, we use a perturbation analysis to predict
the shape, assuming as a base state the circle (x,y,z)
=(cos 6,sin #,0). When R is decreased, confinement to a
sphere requires the circle to buckle into the z dimension to
maintain its length. Figure 1 shows some of the equilibria for
p,=1, and R decreasing from 1 to 0.9. At each R in this
range the equilibrium is unique. The z deformation assumes
a shape with dominant Fourier mode k=2. We can under-
stand why the k=2 mode appears by considering a general z
deformation of wave number k, of the form z=e€sin k6. We
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FIG. 1. The charged line equilibria for 0.9<<R=1. The horizon-
tal equator is the solution for R=1.

determine x and y corresponding to this z by requiring the
line to lie on a sphere of radius R: x*+y?+z?=R?, and to be
unstretched: x'2+ y’2+z'2: 1, where primes denote differen-
tiation by 6. This provides two equations for the two un-
knowns x and y. We solve them by expanding x and y in
Fourier series and matching coefficients at each wave num-
ber and each power of e.

First, the k=1 case is degenerate, and corresponds to a
rigid body rotation. More precisely, adding z=e sin 6 to the
base state results in an ellipse in a plane rotated about the x
axis. The ellipse can be reduced to a circle of radius 1 by an
O(€®) addition to y. Modes higher than k=1 must then be
superposed to yield a closed arc on the sphere of radius R.
We can thus obtain the same solution, up to a rotation, by
considering only k=2. For k=2 the perturbation solutions
are

2

ek 2k+5
x(0)=(1—— cos 0+ € cos(2k—1)6
4 16k
2k - 4
+ € cos(2k+1)0+ O(€),
16k

2

y(6) = (1 - esz)sin 0- 622k+5

16k

sin(2k—-1)80

16k

+€22

sin(2k+ 1)0+ O(€*),

z=€sinkf+ O(€),
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FIG. 2. (Color online) (a) Side view of the equilibrium for R
ranging from 0.58 to 0.72, passing through R.,=0.64. (b) Top view
of the shapes in (a). (c) Magnitude of the ¢/*? and ¢°? modes in z
near R.,.

e=

o (1R, 2)

The last equation, relating € and R, comes from matching the
constant terms in the Fourier series. The inverse relationship
between € and wave number k results from conservation of
length. Among all such deformations, we evaluate the Cou-
lomb energy in Eq. (1), and find that the O(1-R?) term in
increases monotonely with k. Hence the lowest energy mode
is k=2.

An intuitive reason is that among all k, the longest-
wavelength k=2 mode gives the largest distance between a
given charge and its next-to-nearest neighbors, by making
them fall most nearly along a straight line (ignoring the near-
est neighbors, which are always at fixed distance from a
given charge).

As 1—R becomes larger than infinitessimal, the deforma-
tion continues to have a dominant k=2 mode, but other
modes gradually increase in amplitude to become of the
same order as the k=2 mode. In Fig. 1 it can be seen that the
shapes have two orthogonal planes of symmetry, given here
by {6= = 7/2} and {6=0, 7}, so that x(7/2— 6)=x(6). This
symmetry holds for all R above a critical radius R, and in
this regime z(6) consists of modes {sin(4k+2)6,k € N}. We

-3-1.50
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now describe the appearance of the modes {sin(4k)6,k e N}
in a second bifurcation.

IV. THE SECOND BIFURCATION: TWIST

As the k=2 mode in the z deformation grows, members of
the pair of peaks and members of the pair of troughs on the
ring in Fig. 1 approach one another. The Coulomb repulsion
between the regions about these points increases, which
makes other modes more favorable when R drops below a
critical value, which is R,=0.64. Below R, the 4k modes
appear in a sharp bifurcation. In Fig. 2(c), we plot the k=4
and k=6 mode amplitudes at the bifurcation. The k=4 mode
corresponds to a twisting perturbation, as shown in Figs. 2(a)
and 2(b). This twisting perturbation corresponds to the
growth of all even modes, although the Fourier spectrum
decays exponentially with wave number, as for any smooth
periodic curve. The odd modes remain zero, because the
shape is doubly periodic. The twisting motion has the effect
of slowing the decrease in normal distance between the ap-
proaching opposite pairs in the k=2 mode.

V. EQUILIBRIA UNDER LARGE DEFORMATIONS

Subsequent decrease of R leads to a continued twisting of
the twisted equilibrium shape into a spiral configuration,
shown in Fig. 3. Next to the spheres we replot the shapes in
a flattened projection in terms of the azimuthal angle
f=arctan(y/x) and the polar angle ¢=arccos(z/\x’+y?).
This equal-area projection is called the sinusoidal projection,
or alternatively the “Sanson-Flamsteed projection” or “Mer-
cator projection” [19]. These spiral configurations have ap-
proximately uniform distance between turns of the spiral.
They are similar to the configurations found by Slosar and
Podgornik for the open line [15]. They conjectured a rela-
tionship between their spiral configuration and the spiral
configurations which arise in the work by Saff and Kuijlaars
[17] in determining the minimum energy configuration of
interacting points (rather than lines) on a sphere.

FIG. 3. “Spiral” equilibria of the closed line for R decreasing: R=0.497 (a),(b); R=0.367 (c),(d); R=0.271 (e),(f); R=0.2 (g),(h). The
panels (b), (d), (f), (h), to the right of the spheres, are flat projections in terms of the azimuthal angle 6 and polar angle ¢.
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FIG. 4. Unstable “tip-splitting” equilibria of the closed line, for R decreasing: R=0.45 (a),(b); R=0.301 (c),(d); R=0.222 (e),(f); R
=0.134 (g),(h). The panels (b), (d), (f), (h), to the right of the spheres, are flat projections in terms of the azimuthal angle # and polar angle

b.

The spiral equilibrium is the only stable equilibrium
among a number of different equilibria we have obtained by
applying (random) perturbations in position to the initial
guess for x at each R, ranging in magnitude from 10! to
1073. A branch of unstable equilibria also arises. These states
are shown in Fig. 4, and consist of a tip-splitting motion and
the absence of the 4k modes. The value of R, at which the
first tip splitting occurs is the same as that for the twisting
bifurcation. Again, the repulsion between near neighbors fa-
vors a long wavelength deformation. The twisting (k=4)
mode is thus favored over the tip-splitting (k=6) mode,
though the difference in energy between the two is very
small. The tip-splitting mode always arises in numerical
simulations with noise below a threshold value, while the
spiral mode arises with noise above this value. Equilibria
with combinations of tip-splitting states different from that of
Fig. 4 have also been observed. None of these modes has

0 sin(¢)

~_ 0.2
=3-150 153

twist, and all are apparently unstable, meaning that the Hes-
sian matrix of the energy has negative eigenvalues for these
states.

VI. EQUILIBRIA OF AN OPEN LINE

These symmetric unstable equilibria are eliminated when
we consider the problem of an open line segment of uniform
charge density on the sphere. Here when R is larger than 2,
the unique equilibrium is an arc of a great circle on the
sphere. As R decreases below 2, the arc gradually transitions
to a spiral shape. The number of turns in the spiral increases
as R decreases further. A sequence of equilibria for p=1 is
shown in Fig. 5. The shape of the open line at the end points
is of interest. For p=1, the electric field near the ends of an
open line of uniform charge diverges as the inverse of dis-
tance to the end, which is the same divergence as near an

3
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O 2 -
002 =3-1.50 153
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FIG. 5. Sequence of spiral equilibria for the open charged line, with p=1, for R decreasing: R=0.61 (a),(b); R=0.368 (c),(d); R
=0.222 (e),(f); R=0.134 (g),(h). The panels (b), (d), (f), (h), to the right of the spheres, are flat projections in terms of the azimuthal angle

6 and polar angle ¢.
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FIG. 6. Comparison of equilibria for p=0.05, 0.07, 0.1, 0.2, 0.3,
0.5,0.7, 1, 1.5, 2, 3, and 4 at R=0.913 (a),(b) and 0.437 (c),(d). The
lines vary in thickness and shades of grey, where larger p corre-
sponds to greater thickness and lighter shade of gray.

interior point. For a continuous line of charge, the prefactor
of the divergence for an end point is half that for an interior
point, so that there is somewhat less repulsion near the ends.
In Fig. 5 we see that the spacing between turns of the spiral
becomes smaller near the end points.

VII. OTHER POWER-LAW POTENTIALS

The conformations of DNA or RNA are modified by the
presence of a solvent [5]. Different potentials have been used
to model charged polymers in solvents, with exponential and
power law decay with varying exponents [6]. Here we con-
sider how the conformations of the charged open line vary
with respect to the exponent p of power law decay in Eq. (1).
In the limit p— oo, the energy of a charge is dominated by
that of its nearest neighbors, which are always at a fixed
distance. Thus all conformations have the same leading-order
divergent term in their energies in this limit. In the limit p
— 0, the energy becomes independent of the distance be-
tween charges, so again all conformations have the same
energy. (Negative p gives an attractive potential.) For inter-
mediate p, however, there are well-defined equilibria which
vary with p.

In Fig. 6 we plot the conformations for p varying over
two orders of magnitude at two different values of R. For the
larger R=0.913, the larger p have somewhat tighter spirals.
Due to the faster decay of the repulsion, the end points of the
open line do not repel each other as strongly, and it is this
repulsion that leads to the initial transition from an arc of a
great circle into a spiral. At the smaller R=0.437, many of
the lines have nearly converged to a spiral similar to others
we have encountered so far, one with nearly uniform spacing
between neighboring turns. At smaller p we find different
conformations, but with a similar spacing between neighbor-
ing turns, as is evident in Fig. 6(d). Unlike at R=0.913, here
all points of the open line are nearly equidistant from adja-
cent but noncontiguous regions of the line. Apparently any
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FIG. 7. Two distinct stable equilibria for R=0.357 and p=0.05.
Panel (b) is a flat projection of (a) in terms of the azimuthal angle 6
and polar angle ¢.

repulsion is sufficient to create such a spiral state once the
packing density is sufficiently high (or R, which is an inverse
packing density, is sufficiently low).

In Fig. 7 we show that multiple stable equilibria are pos-
sible for the open line with sufficiently small p. We give
examples of two stable equilibria for p=0.05, found by add-
ing different random perturbations during the minimization
search procedure. Both states give spirals with nearly uni-
form spacing between neighboring turns. The orientation of
the turns varies differently between the two states over the
sphere. The amount of curvature near the open ends is also
different between the two states. All of the spirals we have
discussed have two opposite “poles” where the curvature is
largest. The placement of the open ends within the spiral is
not precisely determined, however. There is also the possi-
bility of some variation in the configuration of the windings
of the spiral as the sphere is traversed, somewhat similar to
the global disordered configurations identified by Ref. [16].

VIII. CONCLUSION

We have considered the problem of the equilibria of a line
of uniform charge confined to the surface of a sphere, as a
function of the radius of the sphere. For a closed line, we
have identified the sequence of bifurcations which leads to
the eventual, apparently unique, stable equilibrium of a spiral
configuration. The first bifurcation is from an equatorial
circle into a k=2 mode of deflection out of the plane of the
circle. The second bifurcation is the loss of bilateral symme-
try in the form of twist. Further development leads to a spiral
of an increasing number of turns with approximately uniform
spacing. We also identify unstable equilibria consisting of
tip-splitting events, reminiscent of fingering phenomena in
fluid dynamics (though the physical mechanism is different).
The open line of charge, by contrast, has a simpler transition
from an arc of a great circle into a spiral configuration as R
decreases. We have also examined the effect of varying the
power law of repulsion. Faster decay leads initially to tighter
spirals, but as R decreases below 1/2, the different power
law spirals converge to a class of spirals with uniform spac-
ing between turns. We have identified multiple stable equi-
libria for slowly decaying repulsion p <0.05.
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