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An original approach is developed for the description of spectral coherence and time-domain transport of
wave fields scattered in random media. This approach accounts explicitly for the correlation properties of the
disorder and is universal with respect to the dimensionality of the system. Specifically, a two-frequency mutual
coherence function is evaluated by using a procedure of embedding the initial Helmholtz equation into an
auxiliary problem of a directed wave propagating in a higher-dimensional space. The resulting Schrödinger-
like equation is solved perturbatively by means of a cumulant path integral technique. Mean intensity profiles
and temporal moments of a narrowband wave packet scattered in a random medium are calculated by using the
Fourier transformation of the coherence function. The theory describes the ballistic to diffusive transition in
wave transport, and is consistent with experimental results. Since the coherence function is expressed via an
arbitrary form power spectrum, the results obtained open a new avenue for studying wave transport in aniso-
tropic and/or fractally correlated systems.
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I. INTRODUCTION

In this work, we study spectral coherence and time-
domain transport of wave fields scattered in random media.
Specifically, we evaluate the two-frequency mutual coher-
ence function �sometimes called the frequency field-field
correlator�, which is an important quantity in itself, and is
intimately related, via an appropriate Fourier transform, to
the mean shape of pulsed waves propagating in random me-
dia �1�. Correspondingly, there is a large variety of applica-
tions which cover both direct and inverse problems dealing
with light propagation in the atmosphere and biological tis-
sues, underwater acoustics and seismology, radio waves in
the ionosphere, interstellar plasmas, etc. The study of spec-
tral coherence is especially important in the context of time-
reversal experiments, where self-averaging of the wave field
and the related effects of spatial focusing and time compres-
sion can be achieved only when the spectrum of the pilot
signal is much wider than the coherence bandwidth of the
medium �2�.

When considering the propagation of wave fields in ran-
dom media, one usually deals with two extreme regimes for
which the analysis of wave transport may be essentially sim-
plified. The first is quasiballistic propagation in which the
wave is scattered mostly in the direction of its initial propa-
gation, and the cumulative deflection angle is rather small. In
this case, the Helmholtz equation can be reduced to a para-
bolic wave equation in which backscattering is completely
neglected, and the lateral diffusion of the wave energy is
described in the paraxial approximation �1�. Such waves are
usually called directed waves. Since the resulting parabolic
equation has the form of the Schrödinger equation in quan-
tum mechanics, an efficient tool to construct the solution for
the statistical moments of the field is by means of a path
integral technique �3�. There exists a vast literature consid-

ering the two-frequency coherence function of directed
waves �see, e.g., Refs. �4–7��. In particular, in our recent
paper �7�, the coherence function was calculated by use of a
cumulant expansion of the corresponding path integral.

When the distance of propagation in the random medium
increases or the scattering becomes stronger, a crossover
from ballistic to isotropic diffusion regime usually occurs.
The regime of diffuse waves corresponds to propagation dis-
tances which are much larger than the mean free path that
defines a natural scale of scattered wave isotropization �8�. A
conventional way to describe related phenomena is to use the
diffusion equation, which may be obtained from the ladder
approximation of the Bethe-Salpeter equation, provided the
disorder is � correlated in the configuration space �9�. The
latter condition is satisfied, formally, for small-scale inhomo-
geneities where the correlation scale is much smaller than the
radiation wavelength. In the more general, less restrictive
case, we arrive at the radiative transfer equation �RTE� ca-
pable of accounting consistently for the disorder statistics in
both small- and large-scale inhomogeneities, thus filling the
gap between the ballistic and diffusion regimes in wave
propagation. Recently, an essential progress has been
achieved in deriving the improved version of RTE for waves
propagating in random media with resonant pointlike scatter-
ers �10�. However, the physics of RTE �even if the latter is
derived somehow from the wave equations� is based on the
energy balance which is natural, e.g., for neutrons, but not
for waves where coherent effects may play an important role.
Indeed, it has been predicted theoretically and confirmed ex-
perimentally that the scattering of waves in the backward
direction may be enhanced as compared to the value given
by RTE �the effect of weak localization� �8�. This effect has
recently been analyzed in a number of papers, with a rich
collection of the results that now constitute a well-developed
theory. Moreover, as was first predicted by Anderson for
electron waves �11�, under some conditions, radiation in dis-
ordered media cannot propagate at all, the statement that
constitutes the essence of the so-called strong localization
effect �8�.*samelsohn@hit.ac.il
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Usually, the presence of inelastic scattering, partial coher-
ence of the source, and the finite size of the sample wash out
the coherence of waves for long trajectories, inevitably lead-
ing to a classical radiative transfer at large �in terms of the
scattering mean free path� distances. However, under the
conditions of quenched disorder, a nonclassical, phase coher-
ent diffusion could take place even when the Anderson lo-
calization is absent. For example, recently observed stimu-
lated emission in random lasers with coherent feedback �12�
provides a direct evidence of a limited applicability of the
diffusion approximation in strongly scattering media. The
coherent feedback in such systems arises from photon trans-
port along closed loop paths formed by the recurrent scatter-
ing �13,14�, the mechanism that is fully neglected in the
framework of the classical diffusion paradigm.

In view of relative efficiency of the evolutional type para-
bolic equation in studying directed waves, it is reasonable to
search for a similar formulation valid in the general case,
including the regime of wave localization. A possible way to
transfer to an evolutional type equation is to use Fock’s em-
bedding procedure, according to which the solution of the
Helmholtz equation is presented as an integral over
pseudotime, the integrand being a solution of the generalized
parabolic Schrödinger-like equation �15�. Here, for auxiliary
directed waves, the medium is assumed to have no variation
of the refractive index along the pseudotime coordinate. The
latter point makes the problem quite different from the usual
memoryless Markov model typical of directed wave propa-
gation. However, a perturbative path integral technique de-
veloped in Refs. �15–17� allows the transport properties of
various disordered systems to be studied consistently by tak-
ing into account their microstructure statistics.

In this work, we extend the above approach to the case of
the two-frequency mutual coherence function and temporal
behavior of wave fields propagating in random media,
mainly in the intermediate regime lying between ballistics
and diffusion, which up to now has remained practically un-
explored. Although scattering is rather strong in this regime,
coherent effects may be of great importance. In particular, a
special attention should be paid to coexistence of ballistic
and diffuse waves in scattering experiments, which is mani-
fested, for example, in a bimodal form of the photon time-
of-flight distributions for ultrashort laser pulses �18�. These
phenomena can be used in an effective imaging through tur-
bid media, where a variety of different modalities, such as
time-gating techniques or optical coherence tomography,
have been recently proposed �19,20�. As we will show, the
results obtained in this paper from the first principles, with-
out any resort to phenomenological models such as RTE,
predict the two-scale structure of both the coherence function
and the impulse response, and are fully consistent with
known experimental results obtained in this intermediate
scattering regime. Since the coherence function is expressed
via an arbitrary form power spectrum, the results obtained in
the work open a new avenue for studying wave transport in
anisotropic and/or fractally correlated systems.

The outline of the paper is as follows. In Sec. II, we
present a mathematical model for the wave propagator and
define the statistics of the random medium. In Sec. III, we
briefly describe the derivation procedure �more details may

be found in Appendixes A and B�, and arrive at a general
result for the coherence function given in the form of a
weighted integral over the power spectrum of the disorder.
Wave transport in the time domain, including the calculation
of the first temporal moments of a narrowband wave packet,
is considered in Sec. IV. The results obtained are applied in
Sec. V to three-dimensional isotropic systems with Gaussian
and exponential correlation functions. Finally, Sec. VI con-
tains a summary and concluding remarks.

II. PROPAGATOR MODELING

To describe time-harmonic wave propagation in scattering
media, we start with the Helmholtz equation for the Green’s
function G�r �r0�,

�2G�r�r0� + k2�1 + �̃�r��G�r�r0� = − ��r − r0� , �2.1�

where r denotes the position vector in an m-dimensional
space �m can range from 1 to 3�, k is the wave number of a
homogeneous “reference” medium, and ��r�=1+ �̃�r� is the
relative permittivity distribution, such that �̃�r� may be con-
sidered as a random scattering potential. It is assumed that
�̃�r� is a Gaussian random field with zero mean value
��̃�r��=0. Hereafter, the angular brackets mean ensemble av-
erage. For statistically homogeneous fluctuations, the corre-
lation function depends only on the distance between the
corresponding points

B��r� = ��̃�r���̃�r� + r�� . �2.2�

In its turn, the power spectrum of the scattering potential is
given by

���K� = �2��−m� dr exp�− iK · r�B��r� . �2.3�

The most straightforward way to study the statistical mo-
ments of the wave field is based upon presenting the un-
known solution of Eq. �2.1� as a functional of the scattering
potential, with successive averaging over its fluctuations. To
do this it is appropriate to convert the initial problem to some
auxiliary, evolutional-type equation that would satisfy the
dynamic causality condition �21�. This strategy can be easily
accomplished while dealing with directed waves, where the
elliptic-type Helmholtz equation can be reduced to a para-
bolic equation. In order to achieve the same goal when the
wave is scattered diffusively in all directions, we resort to
another technique. Specifically, according to the Fock’s
method of proper time �22�, we consider an auxiliary prob-
lem for a function g�r ,� �r0 ,0� satisfying the generalized
parabolic equation

2ik��g + �2g + k2�̃�r�g�r,��r0,0� = 0, � � 0, �2.4a�

g�r,0�r0,0� = ��r − r0� . �2.4b�

Then, the original Green’s function G�r �r0� is defined
through the solution of the latter equation as
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G�r�r0� =
i

2k
�

0

�

d� exp�ik�/2�g�r,��r0,0� . �2.5�

Here, it is assumed that while � is a real function, k contains
an �infinitesimally small� positive imaginary part that en-
forces the radiation condition at infinity and provides the
convergence of the corresponding integral. The generalized
parabolic equation �2.4�, being of exactly the same form as
the standard equation used to describe the propagation of
directed waves in a paraxial approximation, has a higher di-
mensionality than the latter. The difference of the problem
associated with Eq. �2.5�, from usual paraxial approximation,
is that here all kinds of trajectories are allowed, including
those with multiple turning points �backscattering�, and pass-
ing many times through the same points �recurrent events�.

The essential difficulty associated with representation
�2.5� is that it contains an integral over pseudotime coordi-
nate �, with a rapidly oscillating integrand. In order to dis-
pose of that integral while keeping the procedure to be physi-
cally correct, we derive a series expansion for the Green’s
function G. The main advantage of this expansion is that
accounting for even the first term of this series allows one to
describe consistently the statistical behavior of the wave
propagating in strongly scattering media. Without loss of
generality, we present the solution of Eq. �2.4� in a multipli-
cative form g=g0g�, where the first factor g0 is the homoge-
neous medium Green’s function, while the second factor g�

accounts for the disorder. Then, we apply a formal proce-
dure, presenting the inhomogeneous factor g� as

g��r,��r0,0� = �
−�

�

ds��s − ��g��r,s�r0,0� . �2.6�

Replacing now the � function by its spectral expansion, and
interchanging the integration order in Eq. �2.5�, we arrive at

G�r�r0� = �
−�

�

dsg��r,s�r0,0�
1

2�
�

−�

�

d	


exp�i�s − L�	�Fm�	� , �2.7�

where we have introduced the function

Fm�	� = �
0

�

d� exp�ik�/2 − i�	�g0�r,��r0,0� . �2.8�

Evaluating the integral over � in Eq. �2.8� leads to

Fm�	� = �i/4��k	1 − 2	/k/2�L�m/2−1 exp�iL	�


Hm/2−1
�1� �k	1 − 2	/kL� , �2.9�

where L= �r−r0� is the distance between the source and the
observation point and Hm/2−1

�1� �¯� is the Hankel function. Ac-
tually, Fm�	� being multiplied by exp�−iL	� can be identi-
fied with the free-space Green’s function for the field with a

rescaled wave number k̃=k	1−2	 /k. In Eq. �2.7�, we may
expand the function Fm�	� in a Taylor series in the neigh-
borhood of the point 	=0, where the function is analytic.
Then, the integrals over 	 give the derivatives of the � func-
tion, and we obtain a series expansion for the unknown
propagator

G�r�r0� = 

n=0

�
�− i�n

n!
Fm

�n��0�g�
�n��r,L�r0,0� , �2.10�

where the derivatives of g� with respect to the pseudotime
are calculated at �=L. Since the function Fm�	� is analytic in
the neighborhood of the point 	=0, the series expansion
obtained has to be absolutely convergent.

In a statistical problem of wave propagation in random
media, the calculation of the field itself is not necessary and
the aim of the theory is to evaluate the statistical moments of
the field such as mean �coherent� field or a second order
coherence function. The main contribution to the statistical
moments is provided by the zeroth-order term of the propa-
gator expansion

G�r�r0� � G0�r�r0�g��r,L�r0,0� , �2.11�

which actually reduces the problem to that of directed waves,
though propagating in a higher-dimensional �m+1� space
with scattering potential that is uniform along the
pseudotime axis. For instance, by using propagator �2.11� to
evaluate the mean field, we reproduce the standard result of
the diagrammatic approach, namely, the Bourret approxima-
tion, while higher order terms add only small corrections in
the far field �15�. Also, applying the same propagator to the
analysis of wave intensity behavior in a typical realization of
the one-dimensional random media with correlated disorder,
we obtain the well-known classical formula expressing the
localization length through the power spectrum taken at the
wave number of the resonant Bragg lattice �16,17�.

III. COHERENCE FUNCTION

Using the approximate model of the propagator derived in
the previous section, we consider now the two-frequency
mutual coherence function

���,	� = �G�+	/2�r�r0�G
�−	/2
* �r�r0�� , �3.1�

where, to simplify the calculations, we assume that there is
no separation between the points in both source and obser-
vation planes. Without any loss of generality we assume also
that r0=0. As follows from Eq. �2.11�, the coherence func-
tion may be approximated by the corresponding solution ob-
tained for a generalized directed wave propagating along the
pseudotime coordinate � in an artificially constructed me-
dium with a m-dimensional transverse coordinate. This prob-
lem may be solved by resorting to a cumulant expansion of
the corresponding path integral. This strategy has been very
successful in our previous studies aimed at both evaluating
the mean field �15� and exploring the strong localization phe-
nomenon �16,17�.

Using the so-called velocity �or white-noise� representa-
tion of the Feynman path integral �3�, the Green’s function g
for a field with wave number k may be written as
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g�r,��r0,0�

=� Dv�t���r − r0 − �
0

�

dtv�t�


exp�i

k

2
�

0

�

dt�v2�t� + �̃�r0 + �
0

t

dt�v�t���
� ,

�3.2a�

with the normalization condition

� Dv�t�exp�i
k

2
�

0

�

dtv2�t�
 = 1. �3.2b�

To evaluate the coherence function, we first rescale the inte-
gration paths vi�t� as vi�t�→
ivi�t�, where the coefficients 
i
are given by


i � 
i��,	� = 	k���/k��i�, i = 1,2, �3.3�

and k�k��� is the wave number corresponding to a “cen-
tral” frequency �. Then, introducing the Wigner type func-
tional variables

w�t� =
1

2
�v1�t� + v2�t��, v�t� = v1�t� − v2�t� , �3.4�

and performing ensemble averaging, we arrive at

���,	� = �0��,	��m� Dw�t� � Dv�t�


��
�r − �
0

L

dtw�t�
����r + �
0

L

dtv�t�


exp�ik�

0

L

dtw�t� · v�t�


exp�− X�w�t�,v�t�;�,	�� , �3.5�

where �0�� ,	� is the coherence function in a homogeneous
reference medium, the functional X has the form

X�w�t�,v�t�;�,	�

=
k2

8
�

0

L

dt1�
0

L

dt2��1
2B��r1�t1� − r1�t2�,�1,0�

− 2�2B��r1�t1� − r2�t2�,�,	�

+ �2
2B��r2�t1� − r2�t2�,�2,0�� �3.6�

and a number of dimensionless coefficients are defined as
follows:


 = �
1 + 
2�/2, � = 
1 − 
2, �3.7a�

�1 = 1/
1
2, � = 1/�
1
2�, �2 = 1/
2

2, �3.7b�

each one depending on the frequency shift 	. Note that ad-
ditional arguments in the correlation functions B��¯� take
into account an arbitrary permittivity dispersion. The func-
tional paths r1�t� and r2�t�, entering Eq. �3.6� are, in their
turn, given by

r1�t� = 
1�
0

t

dt�w�t� + v�t�/2� , �3.8a�

r2�t� = 
2�
0

t

dt�w�t� − v�t�/2� . �3.8b�

To evaluate the path integral in Eq. �3.5�, we use a per-
turbative technique in which the expectation value of the
exponential exp�−X� over all possible paths is replaced by
the exponent of a �truncated� series over corresponding cu-
mulants, ��� ,	�, such that the coherence function is ex-
pressed as

���,	� = �0��,	�exp�− ���,	�� . �3.9�

Actually, the path integral can be evaluated perturbatively
not only for the functional X�� ,	� itself, but also for its
�implicitly assumed much smaller� deviation from X�� ,0�.
Indeed, the path integral in Eq. �3.5� may be split approxi-
mately as

� exp�− X��,	�� � � exp�− X��,0�� � exp�− X̃��,	�� ,

�3.10�

where

X̃��,	� = X��,	� − X��,0� , �3.11�

and the integral sign abbreviates the expectation over a set of
“velocities” w�t� and v�t�. This splitting of the path integral
is by virtue of the fact that the two functionals X�� ,0� and

X̃�� ,	� are practically uncorrelated in the function space, as
can be verified by direct numerical simulations of the white-
noise trajectories. As a result, the normalized correlator

�̃��,	� = ���,	�/���,0� = �̃0��,	�exp�− �̃��,	�� ,

�3.12�

even though based on calculating the first cumulant alone,
should be rather accurate in a much broader scattering frame-
work than the same approximation for the mean intensity is.

We begin here by performing the calculations for the
functional X�� ,	� in its original form, while the normaliza-
tion will be carried out in Sec. V. The first cumulant �linear
with respect to the correlation function� is calculated by
firstly replacing the correlation functions in Eq. �3.6� with
their spectral expansions. This allows us to present the co-
herence function, at least for dispersionless media, as an in-
tegral transform of the power spectrum

���,	� =
�

2
k3L� dKf�K,�,	����K� , �3.13�

with a kernel f�K ,� ,	� called the filtering function in the
sequel. This function consists of three terms as follows:

f�K,�,	� = �1
2f11�K,�,	� − 2�2f12�K,�,	�

+ �2
2f22�K,�,	� , �3.14�

where
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f ij�K,�,	� = �4�kL�−1�m�
0

L

dt1�
0

L

dt2� Dw�t� � Dv�t�


 ��
�r − �
0

L

dtw�t�
����r + �
0

L

dtv�t�


 exp�ik�

0

L

dtw�t� · v�t�


exp�iK · �ri�t1� − r j�t2��� . �3.15�

As is shown in Appendix A, in the far field this weighting
factor has the form

f�K,�,	� = K−1 2

�
�

0

�

dx cos�2xk · K/K��cos�xK�

− sinc�xK�exp�i	LK2/8ck2 − i	LK · k/4ck2�� ,

�3.16�

where c is the wave velocity in a homogeneous reference
medium. In terms of generalized functions the latter expres-
sion becomes

f�K,�,	� = K−1��K − �2k · K/K��

− K−2 exp�i	L�K/8ck2��K − 2k · K/K��


��K − �2k · K/K�� , �3.17�

where, as previously, ��¯� is the Dirac � function and ��¯�
is the Heaviside step function. The filtering function can be
mapped onto the Ewald diagram �see Fig. 1�, which is a very
useful tool in analyzing, e.g., the x-ray diffraction by crystals
�23� and also in diffraction tomography �24�. As follows
from Eq. �3.17�, the loss of coherence between two waves
with different frequencies is due to both Bragg scattering on
spectral components lying within the limiting sphere of the
Ewald diagram �K�2k� and to local high-frequency reso-
nances �K�2k�.

Another issue that can be covered by using the result ob-
tained is the role of dissipation. In an absorptive medium, the
dissipation is usually accounted for by taking the scattering
potential �permittivity or refractive index� to be a complex-

valued field. When the dissipation is small, a possible alter-
native is to consider the scattering potential to be real while
assigning a small imaginary part to the frequency, i.e., trans-
forming the wave number as k→k+ i�, where � is the dec-
rement of the field. Note that just the latter approach makes
the corresponding integral in Eq. �2.5� convergent. Thus, in a
homogeneous absorptive medium, the intensity of the wave
will decrease as exp�−L / la�, the factor that has to be included
in the expression for �0�� ,	�. Obviously, the absorption
length la is given by la=1 /2�. Since the two frequencies are
defined now as

�1 � � + ic� + 	/2, �2
* � � − ic� − 	/2, �3.18�

we could include the absorption by substituting 	→	
+2ic� in the filtering function.

For a given spectrum ���K�, the final result depends on
both the modulus and direction of the wave vector k. Here
we will concentrate on the analysis of wave propagation in
isotropic three-dimensional media, where a diffusionlike
spread of the wave energy in the time domain takes place.
Therefore, for isotropic spectra ���K� we can integrate in
Eq. �3.13� over angular variables, which results in

���,	� = �2k2L�
0

�

dKKf�K,�,	����K� . �3.19�

For convenience, we extracted the general factor 1 /kK from
the filtering function, the latter after integration takes the
form �see Appendix B�

f�K,�,	� = �1 − exp�i	LK2/8ck2�sinc�	LK2/8ck2��


��2k − K� − �2k/K�exp�i	LK2/8ck2�


sinc�	LK/4ck���K − 2k� . �3.20�

It is instructive now to compare the high-frequency limit
of the result obtained to that of directed waves �i.e., by as-
suming the propagation in a large-scale weakly scattering
random medium�. In principle, the approximations we have
used do not allow us to extend the final result to directed
waves. In fact, for directed waves the relevant vectors K are
much smaller in size than the wave number k, so the integra-
tion is performed over a very small region near the origin of
the Fourier space. Moreover, as follows from the geometry
of the directed wave propagation and is seen by inspecting
the Ewald diagram, Fig. 1, scalar product 2k ·K vanishes in
this case, violating the necessary conditions imposed on the
corresponding parameters on the way to final results �see
Appendix A�. Nevertheless, our approximation does make
sense even in the ballistic regime. Indeed, for the directed
waves, the ratio K /2k is so small that we can neglect totally
the contribution of the high-frequency tail �K�2k� in Eq.
�3.20�. Comparing the resulting expression for the filtering
function with a corresponding linearized solution obtained
for directed waves �7�

f�K,�,	� = 1 − exp�i	LK2/8ck2�


1F1�1/2,3/2;− i	LK2/8ck2� , �3.21�

where 1F1�a ,b ;z� is the hypergeometric Kummer function,

xK

yK

k

Ewald
sphere

Limiting
sphere

FIG. 1. �Color online� Ewald diagram �two-dimensional case is
shown�. The points of the Ewald sphere for a given wave vector k
determine all possible spectral components K that could resonantly
transform the incident wave into a scattered one. The limiting
sphere encircles all spectral components coupling any two wave
vectors in the process of elastic scattering.
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we see that they look similar, although Eq. �3.21� predicts
approximately two times faster loss of coherence then our
extrapolated result does.

Also, since no limitations have been imposed on the co-
herence function for wave propagation in media with small-
scale disorder, we can conclude that the result obtained
should be valid in a rather wide range of wavelengths, in-
cluding the most interesting resonant regime where the
wavelength is of the same order as the correlation scale of
the disorder and, therefore, the coherent effects should be
especially pronounced �8�.

IV. WAVE TRANSPORT IN THE TIME DOMAIN

Our ultimate goal here is to evaluate the normalized cor-

relator �̃�� ,	�. Indeed, for a very short �but still narrow-
band� wave packet, such as a picosecond pulse of visible

light, �̃�� ,	� and the normalized impulse response function
�photon time of flight distribution� J�� , t� constitute a Fou-
rier transform pair �1�

J��,t� =
1

2�
�

−�

�

d	 exp�− i	t��̃��,	� . �4.1�

By considering Eq. �3.13�, we see that our approach de-
scribes photon migration as a process of subsequent scatter-
ing of the wave by resonant Bragg lattices of all possible
directions and periods hidden in a disordered structure, and
takes into account an additional dwell time due to the local
resonances. This resembles a usual random walk in the time
domain but accounts for the wave interference effects and for
the wave energy accumulation inside resonant clusters.
Moreover, the shape of the pulse, which can be reconstructed
using Eq. �4.1�, is related to actual correlation properties of
the scattering medium, rather than to a phenomenological
diffusion constant.

For large distances, the behavior of the cumulant �̃�� ,	�
is determined by small values of 	. Formally, we can expand
the filtering function in a series, which leads to

�̃��,	� = �̃���,0�	 + �̃���,0�	2/2 + ¯ , �4.2�

where, as can be shown �7�, the linear term is related to the
delay time �̃= i�	�̃�� ,0�, while the quadratic term corre-
sponds to a pulse width squared w̃2=�	

2 �̃�� ,0�.
Differentiating Eq. �3.19� for lossless media, we arrive at

�̃ = �2k3L2c−1�
0

�

dKf��K����K� , �4.3�

where the filtering function f��K� has the form

f��K� = �K/2k�3��2k − K� + �K/2k�2��K − 2k� . �4.4�

For large-scale inhomogeneities, only the first term in the
latter expression should be retained, that leads to a
frequency-independent delay time �̃, a natural result in the
framework of geometric optics. In the opposite regime, the
delay time increases linearly as a function of k.

Analogous calculations for the pulse width w̃ result in

w̃2 =
2

3
�2k3L3c−2�

0

�

dKfw�K����K� , �4.5�

where

fw�K� = �K/2k�5��2k − K� +
1

4
�K/2k�2�1 + 3�K/2k�2�


��K − 2k� . �4.6�

As follows from Eq. �4.5�, w̃ decreases with frequency in the
geometric optics regime. For low frequencies, however, the
pulse width diverges as k−1/2. This asymptotic behavior is
related to a very long tail typical of the mean intensity in this
regime due to slow damping of the local high-Q resonances
in lossless media.

The higher order terms of the series expansion �4.2�
specify the asymmetry and other fine details of the pulse
shape. For L→� and sufficiently large values of k, the
higher order terms may be neglected, which leads, after com-
pleting Fourier transform �4.1�, to a symmetric Gaussian
form of the impulse response function J�t�. Obviously, such
asymptotic behavior contradicts the classical time domain
behavior of a short pulse in the diffusion limit, and should be
attributed to the limitations of our model based on the first
cumulant. However, as we will see later on, our results are
consistent with known experimental data in the intermediate
regime of moderately strong scattering where both ballistic
and diffuse components of the wave may be equally impor-
tant. Despite the fact that the higher cumulants are significant
for evaluating the coherence function or the impulse re-
sponse in the diffuse regime, their contribution to the delay
time �first derivative of �̃�� ,	� taken at 	=0� is exactly
zero whatever strong the disorder is, and our estimate of �̃
should remain viable even when the accuracy in evaluating

�̃�� ,	� is lost.

V. EXAMPLES

In order to exemplify the results we start with the Gauss-
ian correlation function of the form

B��r� = ��
2 exp�− r2/l�

2� , �5.1�

where ��
2 and l� characterize, respectively, the strength and

correlation scale of the disorder. In 3D case this corresponds
to the power spectrum

���K� = �2	��−3��
2l�

3 exp�− l�
2K2/4� . �5.2�

Although the Gaussian function is not related directly to a
specific physical mechanism responsible for the heteroge-
neous medium formation, and even cannot correspond to any
two-phase random medium �25�, it is an effective mathemati-
cal model widely used to characterize the wave propagation
in a broad class of random media having a single correlation
scale �in contrast, for example, with fractal media where
���K� has a power law decay�, when the exact form of B��r�
is not known or in order to perform a qualitative analysis �1�.

For this model, the normalized cumulant �̃�� ,	�
=��� ,	�−��� ,0� entering Eq. �3.12� becomes
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�̃��,u� = s��,u�L/ls, �5.3�

where ls, given by

ls
−1 =

	�

4
k2l���

2, �5.4�

is the first-order approximation for the scattering mean-free
path �15�. The factor s�� ,u� being a function of two param-
eters, specifically, the normalized wave number �=kl� and
the normalized frequency shift u=	L /c can be presented as
a sum of two terms

s��,u� = sLF��,u� + sHF��,u� . �5.5�

The first, low-frequency �K�2k�, term reads

sLF��,u� = 1 − exp�− �2� − i��2/u�


�ln�1 − iu/�2� + E1��2 − iu� − E1��2�� ,

�5.6�

where E1�z� is the exponential integral. The second, high-
frequency �K�2k�, term is of the form

sHF��,u� = 	�� erfc��� − 2���2/u�erf�u/4	�2 − iu/2�

+ 2�2Wu/2��2 − iu/2� , �5.7�

where erf�¯� and erfc�¯� are the error and complementary

error functions, respectively, and W
�¯� is given by a rap-
idly converging �for ��1� series

W
�z� = 

n=0

�



k=0

n
�− 1�n
2�n−k��2z�k

�2n + 1��2n + 1 − 2k�!�2k�!!
. �5.8�

Calculations show that for the value of � greater than 2–3 we
can neglect the contribution of the high-frequency term. For
lossy media, the frequency shift u becomes complex valued:
u→u+ iv, where v=L / la is the normalized absorption coef-
ficient.

Figures 2 show some examples of the normalized coher-
ence function evaluated for L / ls=20 and different values of
� and v. It is seen that for relatively low frequencies
��=0.1�, the coherence function has a two-scale structure,
with a rather quick decay at small frequency shifts u and a
long tail for larger values of u. For instance, the value of ���
calculated for the wave propagating in a lossless scattering
medium, decreases rather quickly down to the value of 0.1
already for u�0.1, but remains practically unchanged at the
same level up to u�15. Being transformed to the time do-
main, these two scales can be attributed, correspondingly, to
diffuse and ballistic components, coexisting even in the
strong scattering regime. The bimodal structure of the photon
time-of-flight distribution has been described previously in a
number of publications, all based on a time domain version
of the radiative transfer equation �26,27�. Our model is the

FIG. 2. �Color online� Normalized coherence function �̃�� ,	� plotted for L / ls=20 and different values of the normalized wave number

and absorption length: �a� �=0.1, v=0.0; �b� �=0.1, v=0.05; �c� �=1.0, v=0.0; �d� �=1.0, v=1.0. The absolute value of �̃�� ,	� is shown
by solid line, while dashed and dotted lines correspond, respectively, to the real and imaginary parts of the coherence function.
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first, to our knowledge, that predicts this effect and at the
same time has been derived directly from the wave equation.
Note that the possibility of separate observation of ballistic
photons constitutes a physical basis for the time gating tech-
nique improving essentially spatial resolution in near-
infrared spectroscopy �19�.

In the diffusion regime �L / ls�1�, the results of the cal-
culations are also consistent, at least qualitatively, with
known experimental data �28–30�. The absorption enhances
essentially the coherence �attention should be paid to the

difference in the frequency scale between corresponding
plots in Fig. 2�, which is quite clear from the physical point
of view, because the long paths are eliminated in this case.
For higher frequencies, the effect of absorption is much less
pronounced, that can be explained by a decrease of the wave
energy accumulated inside resonant clusters in this regime. A
number of examples for the mean intensity profiles in the
diffusion regime are shown in Fig. 3. As can be seen, the
increase of absorption leads to shorter impulse response and
smaller delay time.

The first temporal moments of the mean intensity for the
Gaussian model can be presented in an analytical form. In
particular, the delay time �̃ given by Eq. �4.3� in the absence
of absorption is written as

�̃ =
	�

8
�1 − e−�2

+
	�

2
� erfc ����

2L2/cl�. �5.9�

Although we have performed all the calculations for an infi-
nite absorptionless media, it is instructive to compare this
result with known experimental data obtained for finite
samples. It makes sense because the effective geometry of
the problem we solve here is rather similar to a finite length
slab due to suppressing the contribution of scattering from
the areas located far enough from both the source and the
observation point. In a slab geometry, the diffusion theory
approximates the delay time by �̃�L2 /6D, where D is the
diffusion constant �31�. Note that the same asymptotic be-
havior �although with a different coefficient� has also been
predicted for the time-dependent radiative transfer equation
with an impulsive point source located in an infinite medium
�26�. Inasmuch as Eq. �5.9� reproduces correctly the L2 de-
pendence of the delay time, which is observed also in experi-
ments, we could estimate the diffusion constant by connect-
ing it to the microstructure of a specified random medium.
We have tested the calculated values of the diffusion constant
against the results of the measurements performed for ultra-
sound �28�, microwaves �29�, and optical waves �30�, see the
details summarized in Table I. Taking, rather arbitrarily, l� to
be equal to the particle diameter, and setting ���1 �high
contrast media�, we obtain the diffusion constant estimate of
the same order of magnitude as the measured values of D.
This fact is especially surprising since in all these experi-
ments the radiation is of a vector nature, in contrast to the
scalar model adopted here.

TABLE I. Diffusion constant �theoretical estimates calculated according to the relation D�L2 /6�̃ and Eq.
�5.9�, vs. a number of experimentally measured values reported in the literature�.

Parameters Ultrasound �28� Microwaves �29� Optics �30�

Random system
composition

glass beads in watera

�impedance ratio 10�
polystyrene spheres

�n�1.6� in air
rutile TiO2 particles

�n�2.8� in air

Diameter of particles �0.5 mm 0.5 inch 150–290 nm

Volume filling factor 0.63 0.52 not available

Frequency 2.5 MHz 16.8–17.8 GHz 387 THz

Measured value of D 0.4 m2 /s 3.3
106 m2 /s 25 m2 /s

Estimate of D 1 m2 /s 2
106 m2 /s 20 m2 /s

aSound velocity in water is approximately 1.5 km /s, while the longitudinal and transverse velocities of sound
in glass are 5.7 and 3.4 km /s, respectively �28�.

FIG. 3. �Color online� Profiles of the mean intensity J�t� deep in
the diffusion regime �L / ls=50� calculated for different values of the
normalized wave number: �a� �=0.1; �b� �=1.0. Time scales are
different for the two plots. In both cases, the increase in absorption
corresponds to shorter intensity profiles with higher maxima.
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Both coherence function and impulse response are rather
sensitive to the form of the correlation function B��r�. Here
we confine the calculations to the delay time for the expo-
nential model

B��r� = ��
2 exp�− r/l�� , �5.10�

first proposed by Debye and co-workers who believed that it
should correspond to structures in which one phase consists
of “random shapes and sizes,” see Ref. �25�. In this case, the
power spectrum takes the form

���K� =
��

2l�
3

�2 �1 + K2l�
2�−2 �5.11�

and decreases as K−4 for large wave numbers �a kind of
fractal behavior� reflecting the fact that, at least theoretically,
whatever small features can be found in any realization of
the scattering medium. Substituting this spectrum into Eq.
�4.3� leads to

�̃ = �ln�1 + 4�2� + 2���/2 − arctan�2������
2L2/16cl�.

�5.12�

Thus, in the high-frequency limit the delay time grows loga-
rithmically as a function of �, in contrast to single-scale cor-
relation functions such as the Gaussian model demonstrating
a saturation in this regime.

VI. SUMMARY

In this work, the crossover from the ballistic to diffusive
regime of wave propagation has been studied in the frame-
work of a universal model, valid for random media of any
dimensionality. The analytical results describing spectral co-
herence and time-domain transport of wave fields in random
media, were obtained from first principles, without any resort
to the radiative transfer equation, or its derivative, the diffu-
sion model.

For rather large distances, the predictions of our theory
are consistent with a classical diffusion paradigm and experi-
mental data available in the literature. Although deep in the
diffusion regime, our model is not accurate enough since the
higher temporal moments are not reproduced correctly, the
first two moments �namely, the delay time and the pulse
width� are sufficiently viable. In particular, the delay time
evaluated analytically is in a good agreement with the results
of known measurements even for very strongly scattering
media. This allows for the diffusion constant to be related
directly to the statistics of the disorder. Moreover, it can be
shown that the integral transform relating the delay time to
the power spectrum is invertible, which allows one, in prin-
ciple, to reconstruct the correlation function of a heteroge-
neous medium by measuring the angular distributions of the
diffuse time for waves of different frequencies �32�.

A similar analysis of spectral correlation and pulse evolu-
tion can be performed also for two-dimensional media. Since
the coherence function has been expressed via the power
spectrum of arbitrary form, the results obtained in the work
open a new avenue in studying wave transport in anisotropic
and/or fractally correlated systems.
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APPENDIX A

The simplest trick for the effective evaluation of the path
integral in Eq. �3.15� is to present the last exponential factor
entering this equation in the form �7�

exp�iK · �ri�t1� − r j�t2��� = exp�ik�
0

L

dtw�t� · �ij�t�


 exp�iK · �r̃i�t1� − r̃ j�t2��� ,

�A1�

where

�ij�t� = �
i��t1 − t� − 
 j��t2 − t��K/k , �A2�

��z� is the Heaviside step function, and the paths r̃�t� are
obtained by dropping the w�t� term in Eqs. �3.8�. As can be
easily verified, this is just an identical transformation. In Eq.
�3.15� we then replace the � function containing w�z� by its
spectral expansion and, using the definition of the � func-
tional �3�,

��v�t�� =� Dw�t�exp�ik�
0

L

dtw�t� · v�t�
 , �A3�

perform sequentially the path integration over w�z� and v�z�.
As a result, neglecting the small term proportional to �r in
the exponent, we arrive at

f ij�K,�,	� = �4�kL�−1�
0

L

dt1�
0

L

dt2


exp�i
��
it1 − 
 jt2�K · r/L�


exp�− i�ij�t1,t2�K2/2k� , �A4�

where the functions �ij have the form

�ii�t1,t2� = �− 1�i−1
i
2�t1�1 − t1/L� + t2�1 − t2/L�

− 2 min�t1,t2� + 2t1t2/L� , �A5a�

�12�t1,t2� = 
1
2t1�1 − t1/L� − 
2

2t2�1 − t2/L� . �A5b�

To simplify the expressions for the filtering functions f11
and f22, we introduce a new pair of integration variables

t = �t1 + t2�/2, � = t1 − t2. �A6�

Then, the integration domain in the �t ,�� plane represents a
rhombus confined by the lines t= �� /2 and t=L�� /2, see
Fig. 4�a�. Since the functions �ii�t1 , t2� are converted into

�ii��� = �− 1�i−1
i
2����1 − ���/L� �A7�

and, therefore, the integrands turn out to be independent of t,
the integration becomes trivial and we have
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f ii�K,�,	� = �2�k�−1�
0

L

d��1 − �/L�cos��

i/
1
2��K · r/L�


 exp��− 1�ii
i
2��1 − �/L�K2/2k� . �A8�

The evaluation of the filtering function f12 is a bit more
intricate. In order to obtain a linear dependence on t in the
exponent, we first rescale the integration variables as 
1t1
→ t1 and 
2t2→ t2, and only after that introduce the pair �t ,��
defined by Eqs. �A6�. Then, the filtering function f12 reduces
to the form

f12�K,�,	� = �4�kL�−1�� �
R

dtd� exp�i
��K · r/L�


 exp�− i�
� + �t − 2�t/L�K2/2k� , �A9�

where the integration domain R in the �t ,�� plane is a par-
allelogram confined by the lines t= �� /2, t=
1L−� /2, and
t=
2L+� /2, see Fig. 4�b�. For an arbitrary function ��t ,��,
this parallelogram can be decomposed into three triangles as

� �
R

dtd���t,�� = �
0


1L

d��
�/2


1L−�/2

dt��t,��

+ �
0


2L

d��
�/2


2L−�/2

dt��t,− ��

− �
0

�L

d��

2L+�/2


1L−�/2

dt��t,�� . �A10�

Evaluating the corresponding integrals over t leads to

f12�K,�,	�

= �4�k�−1��
�
0


1L

d��1 − x1/L�exp�i
��K · r/L�S
�x1�

+ 
�
0


2L

d��1 − x2/L�exp�− i
��K · r/L�S
�x2�

− ��/2��
0

�L

d��1 − x3/L�exp�i
��K · r/L�S�/2�x3�
 ,

�A11�

where

x1 = 
� + �L/2, x2 = 
� − �L/2, x3 = ��/2 + �L/2,

�A12�

and

Sq�x� = exp�− i�L�1 − x/L�K2/4k�sinc�q2x�1 − x/L�K2/2k� .

�A13�

Hereafter, we denote �=
� and sinc�x�=sin�x� /x. Now, ap-
propriately changing the integration variables, we find

f12�K,�,	� = �4�k�−1� exp�i��K · r/2��
2�
−�L/2


L

d��1 − �/L�exp�i
2��K · r/L�S
���

+ 
2�
�L/2


L

d��1 − �/L�exp�− i
2��K · r/L�S
��� − ��/2�2�
−L

L

d��1 − �/L�exp�i���K · r/2L�S�/2���
 .

�A14�

Substituting formulas �A8� and �A14� for the filtering func-
tions f ij into Eqs. �3.14� and then �3.13�, we obtain a general
expression for the cumulant ��� ,	�, valid for arbitrary fre-
quency shift and receiver location. Further simplification
could be performed if we assume that the normalized fre-
quency shift � is rather small, while the path length L and the
value of vector r=Lk /k are large �to simplify the notation,
we assign the direction of r to the wave vector k�. Then, it is
reasonable to keep the dependence on frequency shift � only
in combination �L, and to neglect simultaneously the depen-
dence on � by putting 
1=
2=1 in all other cases. Taking
into account also that �=−	 /2ck�2, we arrive at

f�K,�,	� = ��k�−1�
0

L

d��1 − �/L�cos��K · k/k�


�cos���1 − �/L�K2/2k�

− sinc���1 − �/L�K2/2k�


exp�i	L�1 − �/L�K2/8ck2 − i	LK · k/4ck2�� .

�A15�

In fact, the procedure of obtaining the latter equation can be
justified only if the dimensionless parameter LK2 /4k is large.

t

τL− L

L

0

t

τ

1Lα

0 1Lα

2Lα

2L−α

(a) (b)

FIG. 4. �Color online� �a� Integration domain for evaluating the
filtering functions f11 and f22. �b� Integration domain for evaluating
the filtering function f12.
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This condition is obviously violated in the high-frequency
limit K /2k→0, hence the approximation �A15� cannot be
suitable for the description of directed waves. On the other
hand, in the situation we are interested in here, namely, when
the radiation wavelength is comparable with the correlation
scale of the disorder, the approximation used cannot disturb
essentially the accuracy of the final result, since in this case
not too much energy of the spectrum ���K� is concentrated
near the origin of the Fourier space. Moreover, as is seen
from the latter equation, this does not affect the final result
also because the difference of the two terms tends to zero for
small arguments.

At the next step, we increase the size of the system by
setting formally L→� �this means actually a transfer to a
plane wave expansion� while keeping the value of 	L finite.
Mathematically this is possible due to the factor
cos��K ·k /k� which becomes highly oscillatory for large �.
For directed waves, vector K is not only small but is always
perpendicular to the direction of wave propagation, and
transfer to infinite L cannot be validated. For diffuselike
waves, however, the fraction of such scattering events is van-
ishingly small, and, therefore, we can neglect the contribu-
tions of the � /L terms with respect to unity, and extend the
upper limit of the integral to infinity. By changing also the
integration variable as �=2kx /K we finally obtain Eq. �3.16�
of the main text.

APPENDIX B

It is convenient to calculate the two terms constituting the
filtering function

f�K,�,	� = f1�K,�,	� − f2�K,�,	� �B1�

separately. The first term, after integrating over azimuthal
angle, is of the form

f1�K,�,	� = k
2

�
�

0

�

dx cos�xK��
0

�

d� sin � cos�2kx cos �� .

�B2�

The integration over � leads to a spherical Bessel function
sinc�2kx� and Eq. �B2� is reduced to the step function

f1�K,�,	� = ��2k − K� . �B3�

The second term reads

f2�K,�,	� = k exp�i	LK2/8ck2�
2

�
�

0

�

dx sinc�xK�


�
0

�

d� sin � cos�2kx cos ��


exp�− i	L�K/4ck�cos �� . �B4�

Presenting the cosine as a half-sum of two imaginary expo-
nents and performing the integration over � leads to

f2�K,�,	� = k exp�i	LK2/8ck2�
2

�
�

0

�

dx sinc�xK�


 �sinc�2kx + 	LK/4ck�

+ sinc�2kx − 	LK/4ck�� . �B5�

Replacing each of the two sinc functions in the square brack-
ets by an auxiliary integral as

sincx = �
0

1

d� cos�x�� , �B6�

we arrive at

f2�K,�,	� = �2k/K�exp�i	LK2/8ck2�


�
0

1

d� cos�	LK�/4ck�



2

�
�

0

�

dxx−1 sin�xK�cos�2kx�� . �B7�

Since the internal integral gives the step function
��K−2k��, the remaining integration is trivial and we have

f2�K,�,	� = exp�i	LK2/8ck2�
sin�	L�K/8ck2�min�K,2k��

	LK2/8ck2 .

�B8�

Finally, combining the two terms of the filtering function we
obtain Eq. �3.20� of the main text.
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