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High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam
production. At current densities exceeding a several kA �m−2, the beam propagation is maintained by an
almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed
flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper
proposes an analytical description of the filamentation instability of an electron beam propagating through an
insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the
ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast
beam provides free electrons for the neutralization current.
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I. INTRODUCTION

The laser is becoming an efficient tool for acceleration of
electrons and ions to high energies. This new technique
could be more efficient and less cumbersome than conven-
tional accelerators. Many applications of laser-accelerated
particles can be found spreading from medicine to fast igni-
tion in inertial confinement fusion �ICF�. In the medical ap-
plications, the electron or ion beams are used to reach and to
destroy a tumor without damaging a significant number of
healthy cells. In the ICF case, the electron �or ion� beam has
to transport the laser energy from critical density to the high-
density core to ignite the deuterium-tritium fuel. Moreover,
the ion beams can be produced in the sheath electric field
generated by the electron beam. Thus, a reliable control of all
the electron beam parameters is needed, i.e., the density, the
divergence, and the energy spectrum of the beam.

A high-density current can be easily destroyed by self-
consistent electric and magnetic fields in vacuum. However,
it can propagate a long distance in a dense target if a neu-
tralization current of target electrons is created by the longi-
tudinal electric field of the incident beam. In metals, the
neutralization current is set up by the free electrons in the
time scale �=�0 /��0.1 fs, where � is the electrical conduc-
tivity and �0 is the void permittivity. In insulator targets,
ionization is needed to provide the electrons for the return
current. This effect considerably increases the neutralization
time ���1 fs� and the target resistivity.

Concerning the propagation of the fast electrons, experi-
ments with metal targets have shown a homogeneous and
stable beam penetration through the solids �1–4�. In plastic
targets, despite the fact that the penetration depth is compa-
rable with that of metals, the beam becomes filamented after
a propagation of several tens of micrometers �4–9�. The ori-
gin of this filamentation has not clearly been identified yet,
since it can be related to the Weibel instability, or the resis-
tive instability, or the ionization instability. This last has been
recently suggested for explanation of the experimental re-
sults in �5� and is based on an analytical model developed
quantitatively for high wave numbers �10�. The instability
finds its origin in the dependence of the local beam velocity
on the local beam density.

We propose an analytical model for the ionization insta-
bility in a more general case, taking into account the mag-
netic field, the fast electron kinetics, and the collisional ion-
ization of atoms by the plasma electrons. It is based on a
previous work describing the propagation of fast electrons
through dielectric targets �11� and allows us to consider the
filamentation and ionization instabilities within the same for-
malism. The article is developed as follows. Section II pre-
sents a brief recall of the one-dimensional �1D� stationary
beam propagation model developed in �11� and validated in
�12�. It describes the background state and the main physical
assumptions. The instability description is presented in Sec.
III. It considers the limit of small wave numbers, where the
perturbation wavelength is larger than the ionization front
thickness. The relative role of electric and magnetic fields is
analyzed and two limits of the resistive and field ionization
instabilities are discussed. The main results are summarized
in the Conclusion.

II. STATIONARY BEAM PROPAGATION MODEL:
RECALL

The relativistic electrons are supposed to be collisionless.
The beam can be divided into two main parts: the head and
the body. In the beam head, the fast electrons evolve in a
neutral matter and generate an electric field sufficient to ion-
ize a part of the atoms. The newly created electrons, accel-
erated in the opposite direction, create a return current. In the
beam body, the electric field ionization stops and it is fol-
lowed by a collisional ionization of atoms by the thermal
plasma electrons. This ionization is controlled by the plasma
heating due to the highly collisional return current. Figure 1
presents a schematic view of the beam characteristics, sup-
posing their variation in one dimension along the propaga-
tion direction.

Approximate solutions can be found by assuming a con-
stant beam velocity v f, which implies that beam energy
losses are small. In the reference frame related to the ioniza-
tion front, the propagation process is stationary. In the labo-
ratory reference frame, the fast electrons enter the front with
the initial velocity vb0

+ higher than the front velocity v f, and
slow down there by creating an electric field. They leave the
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front with velocity vb0
− lower than the beam velocity. In what

follows we suppose that the difference �vb0
� −v f � �c is small,

that is, the beam is nonrelativistic in the front reference
frame.

A. Basic set of equations

Let us consider a monoenergetic beam of fast electrons
propagating in the positive x direction with an initial density
nb0, initial energy 	b0=mc2�
b0−1�, and the relativistic factor

b0= �1−vb0

2 /c2�−1/2, in the laboratory reference frame. The
ionization front structure can be better described in the front
reference frame �marked with a prime in what follows�. In
the beam head, region I in Fig. 1, the negative charge accu-
mulation −e�nb�

++nb�
−� increases the longitudinal electric

field Ex according to the Poisson equationn

�0
dEx

dx�
= e��n� − nb�� , �1�

where �n�=ni�−ne� is the charge density, ni� is the ion density,
ne� is the plasma electron density and nb�=nb�

++nb�
− is the total

fast electron density in the front, including the entering and
the reflected electrons. The polarization term that described
the ionization losses is neglected as we are interested here in
sufficiently weak beam currents �11�. The fast electron kinet-
ics is described by the current conservation and the momen-
tum conservation equations:

mevb�
�dvb�

�

dx�
= − eEx, nb�

�vb�
� = � nb0� vb0� . �2�

The charge accumulation occurs on a short length �xf�
�1 �m. The electric field rises above the threshold and it
ionizes atoms in the tunnel regime in a thin region �xi�
��xf�. These newly created electrons are accelerated back-
ward and create the return current. This process is described
by the following set of equations:

ve� = −
eEx

me�e
 f
2 , �3�

d�ne��ve� − v f��
dx�

= − v f

dni�

dx�
= �ana

Ea

Ex
e−2Ea/3Ex. �4�

Here, na is the density of neutral atoms, �a=12vaJa /aBJh is
the characteristic bound electron frequency, va=e2 /4
�0� is
the characteristic bound electron velocity, aB=4
�0�2 /mee

2

is the Bohr radius, Ea= �e /4
�0aB
2��Ja /Jh�3/2 is the atomic

field, 
 f = �1−v f
2 /c2�−1/2 is the Lorentz factor of the front ref-

erence frame, and Ja and Jh are the atom ionization potential
and the hydrogen ionization potential, respectively. The
plasma electron inertia is neglected in Eq. �3�, since the elec-
tron collision time 1 /�e�1 fs is supposed to be much
shorter than the characteristic time of electron beam evolu-
tion. According the relativistic velocity transformation, the
electron drift velocity in the laboratory reference frame, ve
=−eEx /me�e, becomes ve��−v f +ve� with ve��ve /
 f

2 in the
front reference frame.

After the zone of tunnel ionization, the plasma charge
separation �n�=ni�−ne��nb� screens the electric field created
by the beam electrons. The electric field ionization is fol-
lowed by the plasma electron heating and the secondary col-
lisional ionization. This process is described by the following
set of equations:

d�ne��ve� − v f��
dx�

= − v f

dni�

dx�
= Weani�na − ni� , �5�

− v f
3

2

d�ne�Te�
dx�

= jeEx + v f�Ja

dni�

dx�
, �6�

where je=−eneve is the plasma electron current density, and
Wea�6aB

2va�Te /Ja�1/2e−Ja/Te �13� is the collisional ionization
rate, averaged over a Maxwellian distribution. The electron-
electron-ion recombination rate is neglected because of the
high electron plasma temperature Te�Ja �11�. The Ohmic
heating jeEx increases the plasma electron temperature Te,
while the collisional ionization of the atoms reduces the total
heating rate. The factor ��2 accounts for the excitation of
atoms.

B. Beam structure in the 1D model

The self-generated electric field by the negative charge
accumulation in the beam head slows down the fast electrons
as long as the ionization has not been started ��n�=0�. The
relation between the local electron density nb� and the electric
potential −d�� /dx�=Ex follows from the fast electron equa-
tions �2�: nb�����=2nb0� �1+e�� /�b0� �−1/2, where �b0� =
 f��b0
+mec

2−v fpb0�−mec
2 is the fast electron energy in the front

reference frame and pb0=me
b0vb0 is the fast electron mo-
mentum.

The maximum electric field Em in the charge accumula-
tion zone and the ionization level ni max� follow from Eqs. �1�
and �4� integrated over the beam front thickness �xf� �see
Fig. 1�:

Em
2 = Ea

2 nb0

ncE

vb0�
2

2c2
 f
, �7�

FIG. 1. �Color online� Qualitative profiles of the longitudinal
electric field Ex, the ion density ni�, the beam density nb�, and the
charge separation ni�−ne�=�n� in the front reference frame centered
around the electric field maximum Em. The zone I, of thickness �xf�,
corresponds to the beam head where occurs the fast charge accu-
mulation and the electric field ionization. The zone II corresponds
to the beam body where occurs the collisional ionization. ni max is
the ion density after the electric field ionization.
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ni max� = 2	3
me�0�a�ena
 f
2/4e2e−Ea/3Em. �8�

Equation �7� describes the energy conversion of fast elec-
trons in the electrostatic field. The characteristic beam den-
sity ncE=�0Ea

2 /8mec
2 required to reach the electric ionization

level is approximately 5�1018 cm−3. In order to close the
system and to find the front velocity v f, one needs a third
equation, which comes from the charge neutralization: The
electric field achieves its maximum in the point where the
negative charge accumulation in the front is balanced by the
positive plasma charge separation �n��ve�ni� /v f deduced
from Eq. �4�. Then, according to the Poisson equation �1�,
the ion density at the electric field maximum reads

ni max� � − 4nb0�
v f

ve��Em�
= nb0

4
 fme�ev f

eEm
. �9�

This relation �9� is equivalent to the current neutralization in
the laboratory reference frame, that is, nive=2nb0v f. The so-
lution of the system of equations �7�–�9� provides the formu-
las for the front velocity, the ionization level, and the electric
field maximum depending on the beam energy and density.
Asymptotically, one finds

� f = �b0 −	 2ncE


b0
3 nb0

1

3�ln ��
, �10�

Em =
1

3
Ea�ln ��−1 � �0.04 − 0.1�Ea, �11�

where �=�b0
	6�enb0

2 /
�ancEna�1, � f =v f /c, and �b0
=vb0 /c.

The front velocity increases with the beam density. The
characteristic parameter is the dimensionless derivative D
=d ln v f /d ln nb0:

D �
1

�b0
	 2ncE


b0
3 nb0


1

2
−

1

�ln ��� . �12�

It is a small parameter, D�10−2, and it is inversely propor-
tional to the square root of the beam current density. It does
not depend on the target density, and increases with the mean
ionization potential as D�Ja

3/2. For high beam densities, v f is
close to vb0, and D becomes very small.

Our theory supposes that the beam density is small com-
pared to the plasma electron density. According to Eq. �9�,
nb0 /ni max=ve�Em� /4v f �10−2–10−3. Therefore, the assump-
tion of weak ionization in the front is verified as long as
jb0�evb0nave�Em� /v f �40 kA �m−2. The electron beam ve-
locity in the front reference frame is written

vb0�

v f
� 
b0

2 ��b0 − � f� � �ln ��−1	2
b0
ncE

nb0
. �13�

Thus, the nonrelativistic approximation vb0� /v f �1 is valid as
long as jb0�0.03encEvb0
b0. For a 1 MeV beam, the mini-
mum beam current density is a few A �m−2.

Knowing the beam density nb�, one can estimate the front
thickness �xf� from the Poisson equation �1�. Neglecting the
charge separation term �n� and integrating �1� along the
front thickness, one finds

�xf� =
�0Em
 f

6enb0
. �14�

The front thickness expressed in the laboratory reference
frame, �xf =�xf� /
 f, is plotted in Fig. 2�a�. It is smaller than
1 �m and it decreases with the beam density. It is strongly
sensitive to the mean ionization energy, �xf �Ja

3/2, as for a
lower ionization energy, the ionization probability is higher
and, consequently, the charge accumulation thickness
smaller. The newly created electrons, which have a mean
energy of several eV, are highly collisional. The collisional
ionization follows the electric field ionization �see region II
in Fig. 1�. This process is described by Eqs. �5� and �6�,
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FIG. 2. Dependence of the front thickness �a�, and the plasma conductivity behind the ionization front �b� on the beam current for
different beam energies and target parameters. The elastic collision frequency of plasma electrons is set to �e=1 fs−1.
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assuming the current neutralization jb=−je with jb=
−2enb0v f. This hypothesis is reasonable as the neutralization
distance is small compared with the beam length. According
to Eq. �1�, the neutralization length ls=�0me�e
 f

2v f /e2ni max� is
of the order of a few micrometers for a low beam density
nb0�1018 cm−3. Behind the ionization front, the electric field
tends to the resistive electric field limit, Er=Em /2.

As the ionization is initialized by the electric field, the
plasma electrons are not in a local thermodynamic equilib-
rium with the atoms and ions. Their temperature is too high
compared with the ionization level. All the energy deposited
by Ohmic heating is converted into the ionization, and the
temperature remains approximately constant. Thus the
plasma electron energy equation �6� simplifies to

1

ni�

dni�

dx�
= −

1

L0

ni max�2

ni�
2 , �15�

where L0=e2v f�Jani max�2 /me�ejb
2
 f is the characteristic ion-

ization length. As the fast electrons slowly lose their energy,
the current density jb is approximately constant and the
plasma density is written

ni0�x�� = ni max� 	1 + 2x�/L0. �16�

This ionization regime occurs as long as the recombination is
weak. The conductivity just after the ionization front is writ-
ten �min=e2ni max /me�e. It is typically a hundred times lower
than in metals �see Fig. 2�b�� and it does not depend on the
beam energy and the target density.

III. IONIZATION INSTABILITY

The electric field ionization results in increasing front ve-
locity with the beam density. This dependence could create a
front rippling, if the fast electron current is amplified in re-
gions where the density is higher. Therefore, the main chal-
lenge lies in describing the processes that deflect fast elec-
trons toward the high local beam density regions. Two cases
are considered below. For a perturbation that grows with a
characteristic time large compared with the time of electron
crossing the amplification length �Sec. III B�, the electro-
magnetic field coupling can be neglected and the fast elec-
tron beam current is neutralized. The fast electrons are accu-
mulated by the electrostatic field, which is itself created by
the return current. For a faster-growing instability �Sec.
III C�, the electromagnetic field coupling is dominant and the
hypothesis of a complete beam neutralization is no longer
valid. In the laboratory reference frame, the fast electrons are
deflected by the self-consistent magnetic field, which is gen-
erated by the net current.

A. Basic set of equations

Let us assume that the electric field ionization region is a
thin interface ��y , t�� centered at x�= ���y , t��
=0. The thick-
ness of the ionization region �xf� is supposed to be much
smaller than the front perturbation wavelength �=2
 /ky. Be-
hind the beam front, the fast electrons evolve in a plasma

where the collisional ionization of atoms by the plasma elec-
trons is the dominant process.

The transport equations are written in a two-dimensional
geometry. The stationary 1D solutions are presented in Sec.
II, and the 2D equations are linearized by introducing a per-
turbation for each quantity along the transverse direction y
such as A�x� ,y , t��=A0�x��+�A�x��e−i��t�+ikyy. Then the fast
electrons satisfy the following equations:

− i���nb�
� � vb0�

d�nb�
�

dx�
+ nb0� 
d�vbx�

�

dx�
+ iky�vby�

�� = 0,

�17�

− i���vbx�
� � vb0�

d�vbx�
�

dx�
= −

e

me
�Ex, �18�

− i���vby�
� � vb0�

d�vb�
�

dx�
= −

e

me
�Ey�. �19�

The fast electron deflection by the magnetic field is neglected
since they are not relativistic in the front reference frame.
Concerning the Maxwell’s equations for the electric and
magnetic fields, several simplifications can be made. First,
we are interested in perturbations with the wavelength much
longer than the Debye length. Then, the Poisson equation
reduces to the charge neutrality condition

��n� = �nb�
+ + �nb�

−, �20�

where ��n�=�ni�−�ne�. Moreover, considering low-
frequency perturbations, �����kyc, the displacement current
can be neglected in the Ampère equation. Then the perturba-
tions of electric and magnetic field are described by two
equations:

d�Ey�

dx�
− iky�Ex = i���Bz�, �21�

−
iky

e�0
�Bz� = ��n�v f + ni0� �vex� + �ni�ve0� + nb0� ��vbx�

+ + �vbx�
−� .

�22�

A part of the beam current density perturbation is neglected
in the Ampère equation. Indeed, the charge neutralization
�20� implies that v f��n��vb0� ��nb�

+−�nb�
−�. Another compo-

nent of the Ampère equation along the y axis is not needed
here since the system is closed with the plasma charge con-
tinuity equation:

− i����n� − v f
d��n�

dx�
=

d

dx�
��ni�ve0� � +

d

dx�
�ni0� �vex� �

+ ikyni0� �vey� . �23�

The temperature perturbation has been neglected since iso-
thermal collisional ionization is assumed. The plasma elec-
tron momentum equation in the front reference frame is writ-
ten
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�vex�

ve0�
�

�Ex

Er
,

�vey�

ve0�
� 
 f

2�Ey� + v f�Bz�

Er
, �24�

where Er=Em /2 is the resistive electric field. The plasma
electron inertia is neglected since it is supposed that �e /
 f
���. The friction force acting on electrons is not collinear
with their relative velocity with respect to ions in the front
reference frame, which has the components �vex� and �vey� .
This is due to the relativistic transformation of the velocity.
Finally, the plasma electron energy equation �6�, in the iso-
thermal regime describes the ion density variation due to the
collisional ionization:

− i���ni� − v f

d�ni�

dx�
=

me�e
 f
3

�Ja
�ve0�

2�ni� + 2ve0� ni0� �vex� �

=
ni0� v f

L0

�ni�

ni0�
+ 2

�vex�

ve0�
� . �25�

This system of 12 differential equations is completed with
the boundary conditions at the interface x�=�
=�0 exp�−i��t�+ ikyy� and the evanescent conditions at x�
→−�. A solution to this system will provide a dispersion
relation for the eigenfrequency ��ky�. The instability occurs
if the perturbation increases in time, i.e., Im ���0.

B. Electric-field-driven ionization instability

Let us consider the case where the electrostatic field
dominates the instability development assuming an irrota-
tional electric field and a low frequency perturbation, that is,
ky��Ex�� ����Bz��. Then, Eq. �21� is written

d�Ey�

dx�
= iky�Ex. �26�

This important assumption will be verified at the end of this
section. Using the relations �9� and �15�, the equation for the
ion density perturbation �25� can be written as

d

dx�

�ni�

ni�
= −

2

L0

�Ex

Er
. �27�

The plasma charge conservation equation �23� in the quasi-
static regime, accounting for the quasineutrality condition
�20�, reads

d

dx�

�nb�
+ + �nb�

−

2nb0�
=

d

dx�

�ni�

ni0�
+

d

dx�

�Ex

Er
+ iky
 f

2�Ey� + v f�Bz�

Er
.

�28�

These equations for the perturbed quantities along with Eqs.
�17�–�19� for fast electrons can be solved assuming that the
collisional ionization length L0 is much larger than perturba-
tion wavelength 2
 /ky. Then, solutions for the homogeneous
system of equations can be presented in the form �A�x��
=A exp�i�kx�dx��, where kx� are the complex eigenvalues of
the system.

The beam velocity perturbations are found from the mo-
mentum conservation equations �19�:

�vb�
�

vb0�
� � i

�

kx�

1 �

��

kx�vb0�
��E�

Er
, �29�

where the parameter �=�e
 f
2 �ve0� � /vb0�

2= �3�xf��
−1 defines the

maximum wave number of the model �ky ���. The beam
density perturbations follow from Eq. �17� coupled to Eqs.
�26� and �29�:

�nb�
�

nb0�
� − i�

kx�
2 + ky

2

kx�
3 
1 � 2

��

kx�vb0�
��Ex

Er
. �30�

The magnetic field perturbation can be evaluated from the
Ampère equation. However, in this case, instead of Eq. �22�,
it is more appropriate to use the projection of Ampère equa-
tion on the y axis:

− ikx�
Q

�

v f�Bz�

Er
=

�vey�

ve0�
−

vb0�

v f

�vby�
+ + �vby�

−

2vb0�
, �31�

where Q=
 f� /�0�minv f is the magnetic field screening pa-
rameter. The last term related to the fast electron current is
small, because vb0� �v f, and it can be neglected. Moreover,
knowing the expressions for � and �min, one can show that
Q�1, and therefore, the term in the left-hand side of Eq.
�31� is also small. Then using Eq. �24� we find the magnetic
field perturbation

v f�Bz� � − �Ey�
1 − i
kx�Q

�
 f
2� , �32�

where the second term in the parentheses in the right-hand
side is a small correction. Thus, the magnetic field amplitude,
in the front reference frame, is �Bz��−�Ey� /v f. This result
can be readily interpreted in the laboratory reference frame.
As the plasma neutrality is assumed, the neutralization time
of the beam by the plasma electrons is very short, that is,
���pe where �pe=	e2ne /me�0 is the plasma frequency.
Thus, there is no transverse displacement of the plasma elec-
trons that is, �Ey =0. In the front reference frame, this is
equivalent to the condition �Ey�=−v f�Bz�. Moreover, the ex-
pression �32� justifies our assumption that the magnetic field
does not affect the fast electrons, that is, vb0� �Bz���Ey�.

Injecting the expressions for the beam velocities �29� and
densities �30� in the plasma charge conservation equation
�28�, one obtains the characteristic equation for the parallel
wave number kx�:

�kx�
2 + ky

2�
�

kx�
2 = ikx� −

2

L0
− ky

2Q

�
. �33�

Three terms in the right-hand side account, respectively, for
the perturbation of the total beam density due to the longitu-
dinal return current, the collisional ionization, and the trans-
verse component of the return current. This equation has to
be solved in the small wave number limit corresponding to
the thin front approximation, ky�xf��1 i.e., ky ��. More-
over, the stationary 1D model is valid if the collisional ion-
ization length is larger than the field ionization front thick-
ness, that is, L0��1. This latter condition requires a
sufficiently strong current or a low ionization energy of the
media:
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jb0 � encEvb0
2eEac

3�eJa
�ln ��−3 � 
 Ja

Jh
�7/2

kA �m−2. �34�

The right-hand side of Eq. �33� contains two small param-
eters 1 /L0� and ky

2Q, which allow us to construct an approxi-
mate solution. The dominant term in the left-hand side pro-
vides the zero-order solution, kx0� �−iky, where the sign is
chosen by the evanescent condition at x�→−�. Considering
the right-hand side terms as corrections to this solution, one
finds

kx� � − iky − i
ky

2

2�
+ i

ky

L0�
+ i

ky
3Q

2�2 . �35�

This solution in the collisional ionization region has to verify
the boundary condition at the beam front, x�=�, which ac-
counts for the process of electric field ionization. Since we
have selected only one eigenvalue kx�, one boundary condi-
tion is sufficient. The front velocity is defined by the fast
electrons, which enter and leave the electric field ionization
region: 1

2 �vbx
+ +vbx

− �=v f +�v f. Moreover, the perturbation of
the front velocity can be related to the beam density pertur-
bation. Combining these two conditions, and knowing that
�vbx�

�=�vbx
�
 f

2, according the relativistic velocity transforma-
tion, one finds

1

2
��vbx�

+�0� + �vbx�
−�0�� = 
 f

2�v f = 
 f
2 dv f

dnb0�
��nb�

+�0� + �nb�
−�0�� .

�36�

The fast electron velocity and density perturbations follow
from Eqs. �29� and �30�. Then Eq. �36� leads to the following
dispersion equation:

��kx� = − 2v f
 f
2D�kx�

2 + ky
2� , �37�

where kx��ky� is defined by Eq. �35�. In the low-frequency
limit ���kyvb0� , the frequency is written

�� = 4i
 f
2Dkyv f
 ky

2�
−

1

L0�
−

ky
2Q

2�2 � � 6i
 f
2Dv f�xf�ky

2.

�38�

The latter approximation in �38� is valid if 1 /L0�ky ��, i.e.,
the instability develops in the domain of wavelengths, which
are larger than the ionization front thickness and smaller than
the collisional ionization length. The magnetic field pertur-
bation and the collisional ionization play stabilizing roles.
The electrostatic assumption in �26� is verified if the param-
eter D, estimated in Eq. �12�, is small.

The ionization instability described above is of the same
nature as was derived recently in Ref. �10�. However, the
stabilizing role of the collisional ionization and the magnetic
field perturbations was not considered there. In the labora-
tory reference frame, the instability is convective, since it
moves with the front at the velocity v f. Indeed, the perturba-
tions in the linear regime are of the form exp�ikx�x�− i��t��.
As the phase in the exponential is invariant, it is written

ikxx − i�t � ky
 f�x − v ft� +
����

 f

t . �39�

Thus, the instability growth rate in the laboratory reference
frame is ���= ���� /
 f, and the perturbation is attached to the
beam head. Behind the front, the perturbation decreases with
time. This result is consistent with the evanescent condition
in the front reference frame.

The dependence of the instability growth rate, in the labo-
ratory reference frame, on the beam and target characteristics
is plotted in Fig. 3 for the typical parameters of present day
experiments. It increases with the beam density, which is
consistent with the qualitative description presented in the
beginning of Sec. III. The growth rate weakly depends on the
beam energy, however, the hypothesis of the nonrelativistic
fast electrons in the front reference frame is restricted by a
maximum beam energy of several tens of MeV, according to
Eq. �13�. Concerning the dependence on target characteris-
tics, the instability growth rate increases with the ionization
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FIG. 3. Dependence of the electrostatic instability growth rate Im � on the wave number ky for different beam current densities and beam
energies: �a� �e=1 fs−1, na=5�1022 cm−3, Ja=7 eV; �b� jb=4.5 kA �m−2, 	b=1 MeV, and �e=1 fs−1.
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potential, according to the formula �����xf�D�Ja
3. Qualita-

tively, the beam corrugates faster as more energy is required
to locally ionize the matter. The instability growth rate
weakly depends on the target density, which is consistent
with our assumption of a weak field ionization, ni�na.

1. Interpretation of the instability

In order to demonstrate the instability mechanism, we ex-
plicitly relate the beam characteristics with the front dis-
placement in the front reference frame, by using the expres-
sions for the growth rate �38� and the parallel wave number
kx� �35�. The fast electron trajectories are schematically rep-
resented in Fig. 4�a�. The front displacement �0 cos kyye−i��t�

is defined by the relation �t��=
 f
2�v f. It is symbolized by the

dark green solid line in Fig. 4�a�. Let us assume a positive
local perturbation of the beam density �nb�

+. According to the
condition Eq. �36�, the electric field ionization is enhanced
and the interface is accelerated. Consequently, the mean fast
electron velocity, and therefore the fast electron current are
increased. As the instability evolves at a low frequency, the
current is neutralized and the return current also increases.
Thus, the perturbation of the resistive longitudinal electric
field is enhanced and is written

�Ex

Er
= 3�xf�ky

2�0 cos kyye����t�+kyx�. �40�

The Faraday equation �26� provides the relation between the
components of the electric field, �Ey�= i�Ex, and for the y
component of the electric field:

�Ey�

Er
= − 3�xf�ky

2�0 sin kyye����t�+kyx�. �41�

The resistive electric field, represented by the red vectors in
Fig. 4�a�, points toward the high front velocity regions. Then,
the fast electron trajectories are perturbed by the electric field
according to Eqs. �29�:

�vb�
�

vb0�
=

1

3�xf�ky
2vb0�

��kyvb0� + �����
�E�

Er
. �42�

Two forces acting on the fast electrons play role in the insta-
bility. First, the fast electrons, which come from the beam
body with the velocity vb0� +�vb�

+ �light blue dashed lines in
Fig. 4�a��, are deflected towards the valleys of the front cor-
rugation by the transverse electrostatic field. When reaching
the beam front, they are reflected by the strong electric field
with the angle �= ��vb�

++�vb�
−� /vb0� �sin kyy, normal to the

beam head surface. In the hill and the valley of the front
corrugation, points A and B, respectively, the angle is equal
to zero, while it is positive at the point C and negative at the
point D. Thus, in these two latter cases, the fast electrons are
reflected towards the hill of the corrugation �dark blue solid
lines�. Then, the local beam density �nb�

− and the current
density increase. This effect amplifies the return current that
strenghtens the resistive electric field. Second, the electrons
faster than the front are slown down by the longitudinal elec-
trostatic field in the hill of the corrugated front �behind point
A�, while those coming in the region behind the valley �point
B� are accelerated. Consequently, the local charge density
�nb�

+ in the hill front corrugation is increased, while it is
decreased in the valley front corrugation. This effect can be
clearly seen when inspecting the reflection condition �36�:

�nb�
+ + �nb0�

−

2nb0�
= 3�xf�ky

2�0 cos kyye����t�+kyx�. �43�

The beam density perturbations are in the phase with the
front displacement, thus, the front corrugation amplitude in-
creases. This is a positive feedback, which strengthens the
perturbation and corresponds to an unstable front evolution.
In the nonlinear regime, it could lead to a full beam filamen-
tation as the fast electrons preferentially propagate in higher
conducting target regions where the return current losses are
smaller.

In the laboratory reference frame, according the discus-
sion after the expression �32�, the transverse electric field
�Ey is equal to zero and the magnetic field is transformed
into �Bz=−�Ey� /
 fv f. Thus, in the laboratory reference

FIG. 4. �Color online� �a� Mechanism of the electric-field-driven ionization instability in the front reference frame. The beam front is
symbolized by the green solid line. Behind the perturbed beam front, in region II, the electric field Er�+�E� is represented by red arrows,
the fast electrons entering the front with the velocity vb0� +�vb�

+ are shown with light blue dashed lines, and the fast electrons leaving the
front with the velocity −vb0� +�vb�

− are shown with dark blue long dashed lines. �b� Mechanism of the ionization resistive instability in the
laboratory reference frame. Two circles with the dot and the cross show the positive and negative magnetic field, respectively. The other
symbols are the same as in �a�.
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frame, the deflection of the fast electrons is due to the mag-
netic field, which is generated by the longitudinal electric
field moving with the ionization front. This effect is de-
scribed by the displacement current in the Ampère equation,
c2curlB=�tE. For higher beam energies, the transverse Lor-
entz force �Fy =−evb0�Ey� /
 fv f decreases and the longitudi-
nal fast electron inertia increases. Consequently, the fast
electron deflection is reduced, which, in turn, decreases the
instability growth rate. Thus, although our present model is
restricted to electron energies smaller than a few tens of
MeV, a slower instability is expected for higher energies.

We can estimate the beam propagation distance required
for the instability excitation assuming that the instability be-
comes visible for an amplification factor exp���t�10. For a
beam with an electron energy of 500 keV and a current den-
sity of 450 A �m−2 propagating through a dielectric target
with the ionization potential of 7 eV, the instability with the
wavelength �=1 �m is excited after the propagation dis-
tance Li=2v f / ����300 �m. This length is larger than the
characteristic length of the filament development observed in
the experiments �5–7� ��100 �m�. Moreover, the perturba-
tion wavelength predicted by the model is one order of mag-
nitude smaller than that seen in the experiments, where �
�10 �m.

In addition to this electrostatic and a relatively slow insta-
bility, ����1 ps−1, localized near the ionization front, �kx��
�ky, the dispersion equation has another unstable branch,
which corresponds to perturbations that penetrate deeply in
the beam, �kx���ky. It is related to the magnetic field pertur-
bations and the beam filamentation.

C. The ionization-resistive instability

The propagation of a relativistic electron beam in a
weakly conducting homogeneous plasma gives rise to the
filamentation instability �14,15�. There, the wave vector ky is
perpendicular to the direction of the beam propagation, and
the perturbations do not depend on the x coordinate, kx�→0.
Here we will demonstrate that the perturbations of the ion-
ization front are coupled to the magnetic field perturbations
and may excite the resistive filamentation instability.

We consider the stability problem in the WKB approxi-
mation, assuming now that kx� is small compared to �� /vb0� ,
but still the condition kx�L0�1 is verified. The Ampère equa-
tion �22� takes the following form:

− iky
Q

�

v f�Bz�

Er
=

�nb�
+ + �nb�

−

2nb0�
−

�ni�

ni0�
−

�Ex

Er
+

vb0�

v f

�vbx�
+ + �vbx�

−

2vb0�
,

�44�

where the contribution of the fast electron density perturba-
tion is neglected because of a small electron velocity, vb0�
�v f, and the charge neutralization condition �20�. The
plasma charge continuity equation �23� can be simplified by
taking into account the quasineutrality condition:


��

v f
+ kx���nb�

+ + �nb�
−

2nb0�
= kx�
�ni�

ni0�
+

�Ex

Er
� + ky
 f

2�Ey� + v f�Bz�

Er
.

�45�

It is complemented with the ionization equation


��

v f
+ kx���ni�

ni0�
�

2i

L0

�Ex

Er
. �46�

The total beam charge density and the total longitudinal
beam velocity follow from Eqs. �17� and �19�. In the limit
���kx�vb0� one finds

�nb�
+ + �nb�

−

2nb0�
� −

i�vb0�
2

��2

kx��Ex + ky�Ey�

Er
, �47�

�vbx�
+ + �vbx�

−

2vb0�
� −

i�vb0�

��

�Ex

Er
. �48�

The Faraday equation �21� closes this system of equations
for the perturbations.

1. Resistive instability, case kx�=0

It is instructive first to consider the case of a homoge-
neous beam and a perturbation in the limit kx�=0. In this case
Eq. �46� gives �ni�=0 and the rest of equations can be re-
duced to the dispersion relation


Q − i
���

ky
2v f

+
�2vb0�

2

ky
2v f

2 �
1 + i
�vb0�

2

��v f
 f
2� = −

�2vb0�
2

��2 . �49�

In the limit �Ey��−v f�Bz�, i.e. ����vb0�
2 /v f
 f

2, according to
Eq. �45�, this equation can be written in the form

R���,ky� = i
�min


 f�0�b0�

��3

�b0�
3 − 
1 +

ky
2c2

�b0�
2 ���2

�b0�
2 −

ky
2v f

2

�b0�
2 = 0,

�50�

where �b0� =	2e2nb0� /m�0 is the fast electron plasma fre-
quency in the front reference frame. This equation is equiva-
lent to the dispersion equation introduced in Ref. �15� in the
laboratory reference frame. For sufficiently high wave num-
bers, ky ���vb0� /v f�1/2Q3/4, this equation has a solution cor-
responding to an instability: ��� i�vb0� /Q1/2=�b0� v f /c. This
growth rate, which is of the order of the beam plasma fre-
quency, is consistent with the fact that the fast electrons per-
turbation cannot grow faster than their characteristic betatron
time. For the smaller wavelengths, �0
 f�b0�

2 /�minv f �ky
��b0� /c, the growth rate takes the form ��
= ��0
 f�b0�

2v f
2ky

2 /�min�1/3, as is shown in the Appendix. This
solution is consistent with the assumption ����vb0�

2 /v f
 f
2,

which corresponds to the wave numbers ky
��0�b0�

2 /�min v f
 f
2. The return current is not deflected as

�Ey�+v f�Bz�=0, which agrees with the assumption �Ey =0
made in Ref. �15�.

2. Ionization resistive instability, case kx�vb0� ™��, kx�™ky

Let us consider now the effect of the ionization front on
this instability, assuming that kx��ky. One can construct the
characteristic equation for the parallel wave number kx� from
the system �21� and �44�–�48� by applying the simplifying
hypotheses that we have verified in the limit kx�=0. Accord-
ingly, we limit ourselves to the first order expansion in kx� and
the continuity equation �45� can be simplified to �Ey�=
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−v f�Bz�. The longitudinal field variation is set up by the Far-
aday law �21�, i.e. ky�Ex= ��� /v f +kx���Ey�. Then, the last
equation �44� coupled to the ionization equation �46� and the
total beam velocity equation �48� provides the characteristic
equation

− i
��2v f

2

�b0�
2vb0�

2�
kx� = R���,ky� −

2

L0�

v f
2

vb0�
2

��2

�b0�
2 . �51�

It reduces to the dispersion equation for the dissipative insta-
bility of a semi-infinite electron beam in the limit �→�,
which corresponds to the infinitely thin ionization layer.
Since the longitudinal wave number kx� is assumed to be
larger than 1 /L0, the right-hand term proportional to 1 /L0�
in Eq. �51� can be considered as a perturbation. Knowing the
longitudinal wave number, one can use the boundary condi-
tion �36� to find the dispersion equation

kx� +
��

v f
= 2
 f

2D
v fky

2

��
. �52�

Excluding the parallel wave number from these two equa-
tions we obtain finally the dispersion equation for the fre-
quency �� in function of ky:

vb0�
2ky

2

��2 +
Qky

2

�2 = −
2

L0�
+ 2i
 f

2D
v fky

2

���
. �53�

The conductivity does not appear in this dispersion equation
because, in the electric field ionization model, it is defined by
the beam characteristics, and hence, it does not act as an
independent parameter. Without the collisional ionization
term 2 /L0�, two limits are rather evident. In the case of the
fast ionization wave, where, Dv f /vb0� �1, the electric field
ionization effect is not important and the resistive instability
dominates. It is described by the left hand terms in Eq. �53�.
In the contrary, for the case where 
 f

2Dv f /vb0� �1, the ioniza-
tion front enhances the growth rate, ���2i
 f

2D�v f /Q. Tak-
ing into account the collisional ionization term, the solution
of the dispersion equation �53� can be presented in two
asymptotic forms:

Im �� = ��b0�
v f

c

1 + 
 f

2D
c�

Q�b0�
−

1

L0

�

ky
2Q

� for 
 f
2D

v f

vb0�
� 1, �54�

2
 f
2D

Q
�v f
1 −

2

L0

�

Qky
2� for 
 f

2D
v f

vb0�
� 1. �55� �

As in the case of the electrostatic instability presented in Sec.
III B, the collisional ionization decreases the instability
growth rate. This effect is amplified for small wave numbers.
For beam parameters of present day experiments, the crite-
rion 
 f

2Dv f /vb0� �1 is valid and the growth rate is defined by
Eq. �54�. The growth rate in the laboratory reference frame is
plotted in Fig. 5 in the domain of validity of the model, that
is, 	� /L0�ky ��. In the limit of high wave numbers, the
instability growth rate saturates at the beam plasma fre-
quency Im �=�b0v f /c
 f

3/2�1+
 f
2D�c /Q�b0� �. It is not sensi-

tive to the target ionization potential, contrary to the electro-
static instability.

It is convenient to describe the ionization-resistive insta-
bility mechanism in the laboratory reference frame �see the
scheme presented in Fig. 4�b��. Let us assume a positive
perturbation of the incoming electron density, �nb

+. The elec-
tric field ionization is enhanced and the beam front velocity
increases as well as the mean fast electron velocity. The fast
electron current density is amplified and, since the instability
occurs at a high frequency, the return current does not neu-
tralize the incident beam, consequently a focusing magnetic
field is generated �two orange circle symbols, with a dot for
the positive magnetic field, and a cross for the negative one�.

The fast electrons moving with the velocity vb0
+ �light blue

long dashed lines� are deflected by the transverse electric

field towards the hill. They are reflected at the ionization
front and move slower than it with the velocity vb0

− �dark
blue dashed lines�, where vb0�2vf −vb0. Consequently, the
total fast electron density �nb increases behind the hill, while
it decreases behind the valley. The ionization in the front
becomes more efficient, the front is accelerated. This pro-
vides a positive feedback for the instability.

Compared to the classical resistive instability, the ioniza-
tion resistive instability corresponds to the high-frequency
regime, where the beam pinch effect is dominant. This latter
is amplified by the corrugation of the ionization front due to
the electric field ionization.

The growth rate is proportional to the square root of the
beam density and inversely proportional to 
b0

3/2. For a beam
current density of 450 A �m−2 and for the electrons with an
energy of 500 keV, the perturbation growth rate at the wave-
length of �=1 �m can be estimated as Im ��1013 s−1. In
the laboratory reference frame, according to the discussion of
Sec. III B, the instability is convective and the front corru-
gation occurs very quickly, after several tens of �m of
propagation. The growth rate for high wavelengths can be
found for sufficiently high beam energies. A beam with a
current density of 450 A �m−2 and an energy of 5 MeV cor-
rugates on the distance of Li=2v f / ����300 �m for a pertur-
bation wavelength of �=6 �m. Similarly to the electric field
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driven instability, the model is not valid for higher wave-
lengths. However our analysis shows that this electromag-
netic instability is dominant for small perturbation size of the
order of 1 �m.

IV. CONCLUSION

We analyzed here the stability of a monoenergetic fast
electron beam propagation through a dielectric target. The
particularity of the fast electron propagation in a dielectric
target is due to the electric field ionization that takes place in
a narrow region in the beam head. It provides the return
plasma electron current, which continues the ionization pro-
cess by electron-atom collisions. The fast electrons are
slowed down in the electric field ionization region. These
two populations of fast electrons, incoming ones and slowed
down ones, play an important role in the instability mecha-
nism.

Assuming that the perturbation wavelengths are larger
than the electric field ionization front thickness, two insta-
bilities are found.

In the low-frequency regime, the corrugation of the front
increases the fast electron current. Then, the return current is
increased and it amplifies the electrostatic field. This latter
creates a magnetic field because this electric field is moving
with the ionization front. Two effects are driving the insta-
bility. First, the specular reflection of the fast electrons in the
ionization front and their concentration in the high front ve-
locity region by the magnetic field, reinforce the return cur-
rent and thus amplify the resistive electric field. Second, the
longitudinal electric field, which is higher behind the high
front velocity region, concentrates the fast electrons entering
the front that amplifies the front corrugation. The fast elec-
tron current increases and that provides the instability feed-
back. The instability occurs near the beam head. Its growth
rate is relatively weak, �1012–1013 s−1 and depends strongly
on the target ionization potential. For instance, in a beam

with a current density of jb�450 A �m−2 and a mean elec-
tron energy of 	b=500 keV, the front corrugation with a size
of 0.6 �m appears after a propagation over 100 �m for a
target ionization potential of 7 eV. This amplification length
agrees with the observations �4,5,7–9�, however for the fila-
ments of ten times smaller size.

In the high-frequency regime, the instability is driven by
the magnetic field. It is similar to the pinch effect of the
resistive instability �14,15�, but it is amplified by the front
corrugation due to the beam density perturbation. The corru-
gation of the ionization front increases the fast electron cur-
rent and amplifies the magnetic field. The fast electrons are
deflected by the magnetic field toward the high beam density
region, which locally enhances the electric field ionization in
the front. The front corrugation is amplified, which makes a
positive feedback for the instability. The growth rates of this
instability are more than an order of magnitude higher than
those of the electrostatic instability. However, due to the re-
stricted domain of validity of the model, our analytical cal-
culations are limited to sufficiently high beam energies or
high beam densities. For a beam with a current density of
450 A �m−2 and an electron energy of 5 MeV, the front cor-
rugates into filaments of 5 �m in diameter after one hundred
�m of propagation. For a lower mean electron energy of
1 MeV, the beam front corrugation with the size of �
�1 �m appears very quickly after 30 �m of propagation.
This instability develops faster compared to the electric field
driven instability. However, due to the collisional ionization
which increases the plasma electron density, this instability is
restricted to relatively short wavelengths. Thus, although the
predicted growth rate is comparable with the numerical
simulations and observations �16–19�, this instability cannot
explain the large scale beam filamentation ���10 �m�.

The electric-field-driven instability decreases for higher
beam densities and it does not depend on the beam energy.
The ionization-resistive instability increases with the beam
density and is strongly reduced for higher mean electron en-
ergies. However, in both cases, for a given instability growth
rate, the higher the beam density, the smaller the character-
istic perturbation wavelength.

Several other effects, which have not been studied here,
could modify the instability characteristics. First, in our mo-
noenergetic fast electron model, all incoming fast electrons
penetrate the ionization front since they are all moving at a
velocity vb0 higher than the front velocity v f. A more realistic
fast electron distribution function may modify the beam front
velocity dependence on the beam density, since, only the
fastest electrons in the beam would contribute to the electric
field ionization in the front. Second, our present theory is
valid in the WKB approximation, which assumes a weak
collisional ionization. A more detailed, quantitative analysis
is needed for calculating the growth rates for smaller wave
numbers and smaller beam currents.

APPENDIX

The resistive filamentation of an electron current is due to
the fast electron deviation in the electric and magnetic field
created by a return electron current. Its growth rate depends
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FIG. 5. Dependence of the ionization resistive instability growth
rate Im � on the transverse wave number ky for different beam
energies and beam current densities. The parameters are the same as
presented in Fig. 3�a�.
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on the plasma resistivity. This instability was considered in
Refs. �14,15� in the laboratory frame. We demonstrate here
how this instability can be described in the front reference
frame. Similarly to the initial condition of Ref. �15�, we as-
sume a full plasma charge neutralization and identify the
frame velocity with the velocity of a monoenergetic electron
beam. Then the dispersion equation for the resistive filamen-
tation instability reads:

i
�min


 f�0�b0�

��3

�b0�
3 − 
1 +

ky
2c2

�b0�
2 ���2

�b0�
2 −

ky
2v f

2

�b0�
2 = 0, �A1�

where �min=e2ni max /m�e is the electrical plasma conductiv-
ity introduced in Sec. II B.

Note that this equation differs from the one presented in
Ref. �15� as the perturbation of the conductivity, ���Er
�ky�

2v f
2 /�b0�

2, is not negligible in the front reference frame. In
the limit of long wavelengths, kyc��b0� , one has

i��3 =
�0
 f�b0�

2

�min
���2 + ky

2v f
2� . �A2�

Considering also the case of low frequencies, ���kyv f, we
find the instable root

�� = 
�0
 f�b0�
2ky

2v f
2

�min
�1/3

, �A3�

which is valid as long as �0
 f�b0�
2 /�min v f �ky ��b0� /c.
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