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It is shown that for super intense laser pulses propagating in a hot plasma, the action of the radiation reaction
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cooling �intense cooling� of the plasma. The effects are demonstrated through explicit analytical calculations.
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I. INTRODUCTION

The bulk acceleration of a plasma to relativistic velocities
represents one of the central issues of modern plasma phys-
ics and astrophysics. In most literature, devoted to the dy-
namics of plasmas embedded in the field of electromagnetic
�EM� radiation, the radiation reaction force �RRF� acting on
the plasma particles is neglected; it is ordered small com-
pared to the Lorentz force, and is not expected to be a major
determinant of plasma dynamics. There are two distinct
cases when this assumption may not be justified: �1� Several
astrophysical situations in which the spatiotemporal scales of
plasma motion are sufficiently large, and �2� when the inten-
sity of radiation is relativistically strong.

The modern petawatt lasers systems are already capable
of producing ultrashort pulses with the focal intensities I
=1021–1022 W /cm2 �1�. Pulses of even higher intensities ex-
ceeding I=1024 W /cm2 �2� and lasting from a few femtosec-
onds to picoseconds �in the energy range 1 J–1 kJ� are likely
to be available soon. The power radiated by charged par-
ticles, accelerated in the EM field, increases with energy.
Since the scattered radiation carries away the energy and
momentum, the recoil force felt by the radiating charge �i.e.,
the radiation reaction, or the radiation “damping”� could be-
come significant. Recently Zhidkov et al. �3� studied the ef-
fect of radiation reaction on the interaction of an ultraintense
laser pulse with an overdense plasma slab via a relativistic
particle-in-cell simulation. Applying the Landau and Lifshitz
expression for the force it was shown that the effects of
radiation reaction become significant if the laser intensity
exceeds 1022 W /cm2 �corresponding to the normalized laser
amplitude eE0 /mec��50, see also �4��. For higher intensi-
ties considerable modification of the scattered radiation spec-
trum is expected, in particular, a burst of incoherent x rays
could be emitted.

The radiation pressure could also be important in astro-
physical conditions. In fact, the acceleration of plasma by
radiation pressure force has been considered as a possible
mechanism for producing relativistic outflows �jets� from
very luminous radiation sources, such as the active galactic
nuclei �AGNs� or compact galactic objects �see �5� and ref-

erences therein�. In astrophysical community it is customary
to use the term “the radiation pressure” as a pressure arising
on the plasma particles through Compton scattering of inco-
herent photon fluxes generated by those objects. Through
scattering of external photons, individual particles in a plas-
mas lose energy simultaneous with momentum transfer to the
plasma. The bulk flow can be either accelerated or deceler-
ated �i.e., radiative drag�. The radiative drag force is derived
by resorting to a phenomenological, test-particle approach.
In this approach the energy-momentum conservation �in the
Thompson or the Compton-Klein-Nishina regime� is invoked
to treat the particle-photon interaction with subsequent inte-
gration of the obtained force over the distribution function.

It is interesting to remark that Landau and Lifshitz �6�
�see also �7�� demonstrated that the radiation drag force, act-
ing on an electron which scatters photons, can be derived �in
the Thompson regime� not only through the energy-
momentum considerations but also by averaging the RRF.
Thus, the test particle approach �based on semiclassical treat-
ment of recoil arising from photon scattering� is equivalent
to the classical treatment �including RRF in the equation of
motion� as long as the photon energy in the particle rest
frame ���mc2, and the strength of EM fields is kept below
the Schwinger limit. Though this statement sounds trivial,
the discovery that the inclusion of radiation reaction in the
equation of motion of a charged particle �in Lorentz-
Abraham-Dirac �LAD� form �8�, and variety of its approxi-
mations and/or modifications �6,9�� could, in certain cases,
lead to particle energy gain �see, for instance, �4,10,11�� was
labeled “surprising” and, in fact, counterintuitive. Indeed, the
accelerated charged particles radiate the EM field, and con-
sequently their motion should dampen. According to
Zel’dovich �12� a systematic acceleration of charged par-
ticles, in the direction of EM wave propagation, is the main
consequence of inclusion of RRF force in the equation of
motion. The origin of this effect is related to the fact that the
charged particle, absorbing energy from the wave, also ab-
sorbs a corresponding momentum. The energy is not accu-
mulated by the particle but is reemitted. However, the re-
emitted energy is not “directed” exactly forward; the
momentum lost by the particle is less than the momentum
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gain. Keitel et al. �13� conducted careful analytical and nu-
merical analysis of the electron motion in the field of a
strong laser pulse, and confirmed that the damping of elec-
tron motion takes place in the laser field polarization direc-
tion, while in the propagation direction electrons are accel-
erated due to the absorption and reabsorption of emitted
radiation.

In this paper the radiative acceleration to relativistic ve-
locities of a hot, optically thin, underdense plasma, exposed
to a relativistic strong laser pulse, is investigated. We use the
plasma dynamics model, recently developed in �14� in which
the RRF is consistently included in the relativistic fluid equa-
tions. By taking moments of the relativistic kinetic equation
�RRF in the Landau-Lifshitz form� the authors derived a
manifestly covariant relativistic hydrodynamic equations for
a multispecies relativistic plasma in an external EM field. It
was found that the derived equations, in the limit of a plasma
embedded in the field of incoherent photon fluxes, can be
reduced to the equations for plasma bulk motion, obtained
�in astrophysical context� in previous literature by adopting
the test particle approach �5�.

It has been shown by O’Dell �15� that a hot �relativistic�
plasma, immersed in the photon fluxes from astrophysical
objects, feels a much larger radiation pressure than a cold
�nonrelativistic� gas, and tends to drive itself away from the
radiation source with momentum derived largely from the
anisotropic loss of its own internal energy. This “Compton
rocket” is, however, always accompanied by “Compton cool-
ing” of the plasma �see Phinney in Ref. �5��.

Similar effect could be operative in laser plasma as well.
Laser sources generate highly coherent but anisotropic pho-
ton fluxes. We will soon demonstrate that ultrastrong laser
pulses, impinging on a hot plasma, can indeed strongly ac-
celerate as well as cool the bulk plasma via the action of
RRF. It turns out that, under certain simplified assumptions,
the effect can be demonstrated analytically.

II. BASIC EQUATIONS

We use the set of relativistic hydrodynamic equations de-
rived in �14� for optically thin multispecies plasma. Through-
out this paper, we adopt the notations and conventions used
in �14� excepting the metric that is chosen to be g��

= �1,−1,−1,−1�. The fluid equations, valid for each species,
can be written in a manifestly covariant form

�T��

�x� − qF��nU� = Frad
� , �1�

where the greek indices go from 0 to 3; ��=� /�x�

= �c−1� /�t ,��; T�� is the energy-momentum tensor of plasma
species with charge q and mass M, and U�= �� ,�V /c� is the
local four velocity with �= �1−V2 /c2�−1/2 �U�U�=1�; the
rest-frame particle density n satisfies the continuity equation
�nU� /�x�=0. Note that we do not label the fluid species by
an additional index for brevity. The EM field tensor can be
formally written as F��= �E ,B� and it satisfies the Maxwell
equations ��F��=−�4� /c�J�, ����	��F�	=0, where J�

= �c
 ,J�, 
 and J are, respectively, the total charge and the

current density of plasma and ����	 is the antisymmetric ten-
sor.

Equation �1�, expressing the conservation of momentum
and energy, has, in addition to the conventional terms �left-
hand side�, an extra term Frad

� ; the latter represents the
4-force density related to the radiation reaction �emission
and/or scattering�, and is necessary to correct the momentum
energy balance. Note that the momentum change due to col-
lisions is ignored in Eq. �1�. This assumption can be justified
by the fact that with increase of EM radiation intensity, the
role of collisional processes decreases and they can be ig-
nored in comparison to the radiation reaction that scales up
with the intensity of the electromagnetic wave.

The energy momentum tensor T�� is assumed to be that of
an ideal isotropic fluid: T��=wU�U�−g��p, where w=E+ p
is the enthalpy per unit volume, and E�p� is the proper inter-
nal energy density �pressure� of the fluid. For a Maxwellian
plasma, w=nc2MG�z̄� while p=nT �16� with G
=K3�z̄� /K3�z̄� where K2 and K3 are, respectively, the modi-
fied Bessel functions of the second and third order. The ar-
gument z̄=Mc2 /T, and T is the temperature measured in the
rest frame of a fluid element. The function G�z̄� defines the
“effective” temperature-dependent mass of the particles, and
has the following limiting expressions: G�1+5 /2z̄ for z̄
�1, and G�4 / z̄ for z̄�1. The expression for Frad

� has been
derived in �14�, and is

Frad
� =

2q3

3M2c4

�F��

�x� T�
� + �n��1 + 2G�z̄�/z̄�T̄��U�

− �1 + 6G�z̄�/z̄�T̄��U�U�U�� , �2�

where �=8�q4 /3M2c4 is the Thomson cross section, and

T̄��= 1
4� �−F��F�

�+ 1
4g��F�	F�	� is the energy momentum ten-

sors of the EM field.
Equations �1� and �2� along with the continuity and Max-

well’s equations form the closed set describing consistently
the bulk motion of a multispecies relativistic plasma in the
presence of strong EM radiation. It is convenient to intro-
duce the following dimensionless variable: x��= �� /c�x�

�i.e., t�=�t, r�= �� /c�r�, T�=T /Mc2 �z̄=1 /T��, F���

= �q /Mc��F�� �i.e., E�= �q /Mc��E, B�= �q /Mc��B�, n�
=n /N0, p�= p /N0Mc2, V�=V /c, and �=	1−V�2 �U��

= �� ,�V���, T���=T�� / �N0Mc2�, T̄���=4��q /Mc��2T̄��,
J��=J� / �qN0c�. In this notation, N0 is the equilibrium den-
sity of the plasma and � is the characteristic frequency of the
EM field. Suppressing the superscripts, we arrive at the di-
mensionless equations

�T��

�x� − F��nU� = Frad
� , �3�

Frad
� = 


�F��

�x� T�
� + 
n��1 + 2G�z̄�/z̄�T̄��U�

− �1 + 6G�z̄�/z̄�T̄��U�U�U�� , �4�

where 
=��0 and �0=2q2 /3Mc3 �for electrons �M =me ,q
=−
e
� �0=0.6�10−23 s�.
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In order to explicitly display the content of these equa-
tions, it helps to go to the more familiar notation of space
and time components. In what follows we work in terms of
three vectors sacrificing manifest covariance. We begin by
writing the EM field tensor in the matrix form

T̄�� � �W , S

S , − �ik

 , �5�

where W= T̄00= 1
2 �E2+B2� is the EM field energy density, S

= �E�B� is the pointing vector and �ik is a stress tensor
given by the expression �ik= �− 1

2	ik�E2+B2�+EiEk+BiBk�
�i ,k=1,2 ,3�. Simple algebra leads to the following identity:

T̄��U� = ���E2 + B2�/2 − V · �E � B�
AL1 + V�B2 − E2�/2 
 , �6�

where AL1= �E�B�+B� �B�V�+E�V ·E�. By similar ma-

nipulations, we derive T̄��U�U�=�2AL2+ 1
2 �B2−E2�, where

AL2= �E+ �V�B��2− �V ·E�2, and

U�T̄��U�U� = �2�AL2 +
1

2�2 �B2 − E2��� �

�V

 . �7�

The remaining terms, appearing explicitly in Eqs. �3� and
�4�, are T�

���F�� and ��T��. One can show that T�
���F��

=�nGU�dF�� /dt− p��F�� �here d /dt=� /�t+ �V ·���. Using
the Maxwell equation ��F��=−�L

2J� �where �L
= �4�q2N0 /M�1/2 /� is the normalized plasma frequency� and
applying the useful relation F��U�=��E ·V ,E+ �V�B��, we
get

T�
� �F��

�x� = �2nG� V
dE

dt

dE

dt
+ �V �

dB

dt

 � + p�L

2�


J

 �8�

while for ��T�� we have the identity

�T��

�x� = n�
d

dt
�GU�� −

�p

�x�

. �9�

The preceding preparation is enough to spell out Eq. �3�
into space and time components; the spatial component reads
as

d

dt
�G�V� +

1

N
� p = E + �V � B� + R , �10�

where

R = 

1

�z̄
�L

2J − 

2G

z̄
V�B2 − E2� + 
G��dE

dt
+ �V �

dB

dt
�


+ 
�1 + 2G/z̄���E � B� + B � �B � V� + E�V · E��

− 
�2�1 + 6G/z̄�V��E + �V � B��2 − �V · E�2� . �11�

Here N=�n is the density in the laboratory frame and pres-
sure is p=N / z̄� �p=NT /� in dimensional units�. Equation
�10� is the vector fluid equation of a relativistic plasma gen-
eralized to include the radiation reaction force R.

The temporal �zero� component of Eq. �3� can be readily
written, and we do not display it here. We will, instead, com-
plete the fluid system by deriving the �equivalent� equation
for entropy by projecting Eq. �3� “along” the four velocity
U�. Multiplying �3� by U�, and using the obvious identity
F��U�U�=0, we get

U�

�T��

�x� = U�Frad
� , �12�

that, in three vector notation, becomes �S is the entropy per
particle�

dS

dt
= 
�L

2�
 − V · J� − 
�2G��−1�B2 − E2�

− 
�4G����E + �V � B��2 − �V · E�2� , �13�

where

S = ln��K2 exp�z̄G�/z̄N� + const. �14�

Deriving Eq. �13� we used the relations U�J�=��
−V ·J�
and identity �17�

d

dt
G −

�

N

d

dt
� N

z̄�
� =

1

z̄

dS

dt
. �15�

One can see that without the RRF �
=0� the plasma dynam-
ics is isentropic with a corresponding relativistic adiabatic
equation of state. With radiation reaction, the entropy is no
longer a constant along the streamline.

In dimensionless form the Maxwell equations are ��E
=−�tB, � ·B=0 and

� · E = − �L
2
 , �16�

� � B =
�E

�t
− �L

2J . �17�

These equations along with Eqs. �10� and �13�, and the con-
tinuity equation

�N

�t
+ � · �NV� = 0, �18�

represent the closed system of Maxwell and relativistic fluid
equations.

The RRF force explicitly depends on the plasma tempera-
ture. It is interesting to remark that in the cold plasma limit
�T→0�, z̄→�, and G→1, the first two terms on the right-
hand side of Eq. �11� vanish and R reduces to the Landau
and Lifshitz �6� expression for the force acting on a single
particle:

R = 
��dE

dt
+ �V �

dB

dt
�
 + 
��E � B� + B � �B � V�

+ E�V · E�� − 
�2V��E + �V � B��2 − �V · E�2� . �19�

For high temperatures, however, the Landau-Lifshitz expres-
sion is modified by the temperature-dependent factors, and
new terms appear �11�.

For ultrarelativistic temperature T�1 �z̄→0� the effective
mass of the fluid element enhanced to G�4T. Consequently
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the Lorentz force on a fluid element becomes weaker in con-
tradistinction to the RRF at ultrarelativistic temperature,

R = 
�−1T�L
2J + 4
T��dE

dt
+ �V �

dB

dt
�


− 8
T2V�B2 − E2� + 8
T2��E � B� + B � �B � V�

+ E�V · E�� − 24
�2T2V��E + �V � B��2 − �V · E�2�
�20�

that becomes stronger because it scales as �T2 �see last three
terms on the right-hand side of Eq. �20��. At sufficiently high
temperatures T��1�, RRF can match or even beat the Lor-
entz force.

The temperature enhancement of the radiation drag is
consistent with the results of O’Dell �15� �see also �5��, who
demonstrated that a hot �relativistic� plasma embedded in the
photon fluxes from the astrophysical objects feels a much
larger radiation pressure than a cold �nonrelativistic� gas. The
main equations derived in Refs. �15,5� by test particle ap-
proach can be recovered by averaging Eqs. �3� and �4� over
the random phases of incoherent “photons” �14�. In the av-
eraging procedure the Lorentz force vanishes, and the high
frequency components in U� are ignored. Strictly speaking in
such an averaging procedure, one neglects the effects related
to the high-frequency pressure �ponderomotive pressure�
arising, for instance, by averaging the magnetic part of the
Lorentz force ���V�B��. However, the corresponding force
is a gradient force which vanishes for the uniform spatiotem-
poral structure of the radiation fluxes, i.e., the case that is
mostly considered in astrophysical situations.

For a monochromatic EM pulse, the dynamics of plasma
acceleration is ruled by the Lorentz force, while in the ex-
pression of RRF all terms can be equally important. In most
cases of interest RRF can be ignored since it is considerably
smaller than the Lorentz force. Indeed, Eq. �20� contains a
small parameter 
=��0 which �for electrons� can be esti-
mated to be 
=1.2�10−8 /� ��m�, where � ��m� is the
vacuum wavelength in �m. Thus, for available laser sources

�10−8–10−9 and consequently the action of RRF can be
ignored even for the laser pulses with intensities as high as
I=1020 W /cm2 �note that such intensities have already been
achieved in several laboratories worldwide�. It is only at
higher intensities that the RRF becomes comparable to the
Lorentz force. A feature RRF worth emphasizing is that it is
a nonpotential force and the plasma particles will be left with
residual energies after interaction with the entire pulse. In
this case, the bulk plasma is set in motion. If the plasma is
relativistically hot �or is heated by the laser pulse itself� the
RRF is stronger and it could provide a mechanism for the
plasma bulk energy to grow at the expense of its internal
energy and intensive plasma cooling will be the conse-
quence.

To extract all the above-mentioned physics, one will have
to resort to numerical methods to solve the complex system
of Eqs. �10�–�19�. However, under certain simplified as-
sumption, the system is amenable to analytical solutions.

III. TRANSPARENT PLASMAS

The simplest nontrivial example is the EM pulse propa-
gation in an underdense unmagnetized electron-positron
plasma. We have chosen this system not only for its relative
simplicity, but also due to the fact that in the ultrarelativistic
limit �due to the strong laser field or due to the relativistic
temperatures�, the electron-ion plasma also behaves similarly
to the electron-positron one. The electron-positron plasma is
further relevant because the electron-ion collisions give rise
to copious pair creation via Bremsstrahlung photons, or by
the trident processes �18�.

We consider a transversely polarized 1D pulse E
= �E� ,0� propagating along z axis in a highly transparent
plasma ��L�1�. The group velocity of such a pulse is vg
= �1−1 /�L

2�1/2�1. We assume that the EM pulse profile is
“given” and does not change in the course of propagation.
The equilibrium state of the plasma is characterized by an
overall charge neutrality Ne0=Np0=N0, where Ne0 and Np0
are the unperturbed number densities of the electrons and
positrons. In most mechanisms for creating e-p plasmas, the
pairs appear simultaneously and due to the symmetry of the
problem it is natural to assume that Te0=Tp0=T0, where Te0
and Tp0 are the respective equilibrium temperatures. The lon-
gitudinal motion of plasma is driven by the ponderomotive
pressure, and RRF. Being the same for the electrons and
positrons, these forces do not cause charge separation. Be-
cause of the symmetry between the electron and positron
fluids, their temperatures, being initially equal, will also re-
main equal during the evolution of the system. It follows,
then, that Ne=Np=N and Te=Tp=T, and consequently Ez
=
=Jz=0.

Assuming that all variables depend on �= �t−z� and taking
into account the relations B= �ẑ�E��, AL1= ẑE�

2 �1−Vz� and
AL2=E�

2 �1−Vz�2 �where ẑ is the unit vector directed along z
axis�, Eq. �10� can be reduced to the following equation for
the transverse momentum of the fluid

d

d�
�GP�� = E� + 
G

dE�

d�
�� − Pz�

− 
�1 + 6G/z̄�E�
2 �� − Pz�P� �21�

Here P=�V is the momentum of the fluid. The evolution
of the longitudinal component of the momentum is governed
by

�� − Pz�
d

d�
�GPz� −

�

N

d

d�
� N

�z̄
�

= P� · �E� + 
G
dE�

d�
�� − Pz�� + 
E�

2 �� − Pz�

���1 + 2G/z̄� − �1 + 6G/z̄�Pz�� − Pz�� , �22�

and of the entropy �13�, by

dS

d�
= z̄� d

d�
G −

�

N

d

d�
� N

�z̄
�
 = − 4
GE�

2 �� − Pz� . �23�

Note that in the system of equations �21�–�23� the charge
and the mass of the particle species cannot be seen explicitly
since they are hidden in normalizations employed in the first
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section. It is now convenient to attribute this system to the
positron fluid so that the normalizations are with respect to
q= 
e
 and M =me. To write the corresponding set of electron
equations, we need to make the trivial replacement in
�21�–�23�: E�⇒−E� and J�⇒−J�. One can easily see that
the longitudinal momentum of electrons Pz

e= Pz while P�
e =

−P� and consequently �e=�= �1+ Pz
2+P�

2 �1/2 and Vz
e=Vz.

Taking the scalar product of Eq. �21� with P�, subtracting
the result from Eq. �22� and applying Eq. �23�, we find

d

d�
� 1

G�� − Pz�
� = 
E�

2 G−2�1 + 6G/z̄� . �24�

Equation �24� can be readily integrated. For the initial con-
ditions �at �=0, the plasma is at rest�, P�=0= Pz, while T
=T0 �G=G0�T0��, the solution is

G�� − Pz� − K��� = 0, �25�

where

K��� =
1


�0
�E�

2 G−2�1 + 6G/z̄�d�� + G0
−1 . �26�

After straightforward algebra, Eq. �25� yields the important
relations

Pz =
G2�1 + P�

2 � − K2

2GK
, �27�

� =
G2�1 + P�

2 � + K2

2GK
. �28�

Now we can simplify Eqs. �21� and �23� further. Using
these relations and Eq. �25�, the equation for the transverse
momentum can be written as

d

d�
�GP�

K
− 
E�� =

E�

K
. �29�

To find the equation for the evolution of the plasma tem-
perature, we will invoke the entropy equation �23�. Integrat-
ing the continuity equation, and assuming that N��=0�=1 we
obtain N=� / ��− Pz�=�G /K���. Using this expression, and
Eqs. �14� and �25�, we find that the temperature evolves as

d

d�
�F�z̄�K� = − 4
E�

2 K2F�z̄� , �30�

where the function F depends on temperature T�=z̄−1� via

F�z̄� =
K2�z̄�exp�z̄G�z̄��

z̄G�z̄�
. �31�

In what follows we integrate the basic system of ordinary
differential equations �26�–�31�. For simplicity the incident
pulse will be taken to be circularly polarized; the electric
field of the pulse is given by E�= �x̂ sin �+ ŷ cos ��E����,
where E���� is the slowly varying envelope ����E�� /E�

�1� and x̂ and ŷ are the unit vectors. Since, for this choice
of the pulse, E�

2 =E�
2 ��� does not contain high harmonics, K

and T are also slowly varying. Equation �29�, then, yields

�GP��2 = �1 + 
2K2�E�
2 ��� . �32�

Interestingly one can use the preceding equation to eliminate
the transverse momentum in Eqs. �27� and �28� to obtain

Pz =
G2 − K2 + �1 + 
2K2�E�

2 ���
2GK

, �33�

� =
G2 + K2 + �1 + 
2K2�E�

2 ���
2GK

�34�

giving Pz and � entirely in terms of the field intensity of the
EM wave.

In the cold plasma limit T→0 �G=G0=1�, Eq. �26� yields

K =
1


�0
�E�

2 ����d�� + 1

= � �
E0
2� + 1�−1 if 0 � � � �d

�
E0
2�d + 1�−1 = const if � � �d

� . �35�

Since 
�1 and K�1, we can neglect terms 
2K2 in �33� and
�34�. The plasma momentum in the body of the pulse �i.e.,
0����d� is found to be

Pz =
1 + E0

2 − K2

2K
=

1

2
�1 + 
E0

2���1 + E0
2� −

1

2�1 + 
E0
2��

�36�

while the residual momentum acquired by the plasma after
the pulse is gone is calculated to be

Pz�res� =
1

2
�1 + 
E0

2�d� −
1

2�1 + 
E0
2�d�

. �37�

Similarly,

� =
1

2
�1 + 
E0

2���1 + E0
2� +

1

2�1 + 
E0
2��

if 0 � � � �d

�38�

and

��res� =
1

2
�1 + 
E0

2�d� +
1

2�1 + 
E0
2�d�

if � � �d. �39�

The expression for the plasma density variation �	N=N
−1� is

	N =
�

K���
− 1 =

1

2
�1 + 
E0

2��2�1 + E0
2� −

1

2
if 0 � � � �d

�40�

and

	N�res� = 1
2 �1 + 
E0

2�d�2 − 1
2 if � � �d. �41�

In the absence of RRF we recover the well-known results
�19�. For instance, if 
=0, we have Pz=E0

2 /2, and Pz�res�
=0, which implies that the plasma particles are temporally
accelerated only inside the region occupied by the pulse; the
result is a consequence of the fact that the magnetic part of
the Lorentz force �that is responsible for the longitudinal
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acceleration of the plasma� is a potential force. The action of
RRF manifest itself not only by the enhancement of accel-
eration but also as the residual momentum that the whole
plasma acquires. The pulse leaves in its wake an accelerated
plasma which follows the pulse; its momentum, energy, and
density are given by Eqs. �37�, �39�, and �41�.

The strength of the acceleration caused by RRF is deter-
mined by the parameter 
E0

2 and the duration of the pulse.
The generated plasma flow becomes relativistic �Pz�res�
�1� when the pulse duration �d��acc, where the “accelera-
tion” time is given by

�acc =
1


E0
2 . �42�

It turns out that the magnitude of the zero temperature
results are quite insensitive to small but finite temperature
�T�1�. However, a new qualitative feature emerges for finite
temperature plasmas; the acceleration, now, is accompanied
by a cooling of the plasma. Indeed, in the nonrelativistic
limit z̄�1 �T�1� we can use the asymptotic form of the
modified Bessel function K2�z̄���� /2z̄�e−z̄ and G�1
+5 / �2z̄� in Eq. �31�, and approximate F��� /2�1/2T3/2. On
substituting F into Eq. �30�, and applying the relation
d�K−1� /d�=
E�

2 , we get for the plasma temperature

T =
T0

�
E0
2� + 1�2 if 0 � � � �d, �43�

Td =
T0

�
E0
2�d + 1�2 if � � �d �44�

implying that the cooling begins immediately with the pulse
interaction and the temperature keeps its minimum value
�Td� after the pulse is gone.

It should be emphasized that in the relatively simple sce-
nario of the “given” pulse, cooling is inhomogeneous in the
sense that it is limited to the region that the pulse occupies.
In a self-consistent treatment �i.e., when the pulse undergoes
structural changes and/or modification, or depletion�, how-
ever, plasma cooling will be more profoundly inhomoge-
neous.

When the plasma has ultrarelativistic temperatures �T
�1�, the temperature function F�27T2, and Eq. �26� sim-
plifies to

K =
4T0

6
T0�0
�E�

2 ����d�� + 1
, �45�

while the equation for temperature �30� reduces to

d

d�
�T2K���� = − 4
E�

2 K2T2; �46�

the latter can be readily integrated �using the relation
d�K−1� /d�=3
E�

2 /2� for the temperature T,

T =
T0

�6
E0
2T0� + 1�5/6 if 0 � � � �d, �47�

Td =
T0

�6
E0
2T0�d + 1�5/6 if � � �d. �48�

It follows from �47� and �48� that even in this ultrahot
limit the plasma temperature begins to fall via RRF as soon
as the plasma begins to interact with the laser pulse; the
temperature remains at the lowest value achieved after the
pulse is long gone.

In this ultrarelativistic limit, Eq. �34� for � factor can be
approximated by �
2K2�1�

� =
�4T�2 + K2 + E0

2���
2�4T�K

. �49�

Note that at the initial stage of interaction �small ��, although
K�4T0�1 is large, the inequality �
2K2�1� still holds and
cannot be violated for any known physical conditions be-
cause 
�10−8–10−9 is so exceedingly small for laser pulses.

From Eqs. �45�–�49� we can extract detailed expressions
for the relativistic factor,

� =
1

2
�6
E0

2T0� + 1�1/6 +
1

2�6
E0
2T0� + 1�1/6

+ �6
E0
2T0� + 1�11/6 E0

2

32T0
2 �50�

if 0����d, and

��res� =
1

2
�6
E0

2T0�d + 1�1/6 +
1

2�6
E0
2T0�d + 1�1/6 �51�

if ���d. Evidently the high temperature not only enhances
the bulk plasma acceleration, it also makes it faster; the time
of acceleration �acc=1 / �6
E0

2T0� is reduced by the factor
T0��1�. We would like to reiterate that the acceleration of
the plasma is augmented by its intensive cooling �47� and
�48�. The physical origin of the bulk motion can be traced to
the fact that the hot particles in the fluid cell radiate most of
their energy in the direction of the radiation source, and part
of the energy of relativistic thermal motion is converted into
the bulk motion. One must beware that cooling reduces the
temperature, and at some stage, the relativistic temperature
approximation will be violated especially if the duration of
the pulse far exceeds the acceleration time �d�6
E0

2T0. For
long pulses, therefore, we must numerically solve the prob-
lem to obtain quantitative results. Qualitative features of the
system are not likely to be much affected since we have
already shown that the acceleration goes on �but at a slower
ate� even for temperatures that are nonrelativistic.

Let us now go back to the cold plasma and estimate the
acceleration and/or cooling efficiency that depends on the
following dimensionless parameters 
, E0, T0, and �. The
strength of the radiation field is related to the intensity by I
= �c /4���E�

2 � were �¯� means averaging over the radiation
high frequency periods. In terms of intensity, the dimension-
less strength of the field E0�=eE0 /mc� in units� is given by
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E0
2 = 3.65 � 10−19I�W/cm2� � �2��m� �52�

implying that the acceleration time �42�, the time required
for plasma flow to acquire relativistic velocities, can be esti-
mated as

�acc�fs� =
1.2 � 1026

I�W/cm2�
=

1.2 � 105

I21
, �53�

where I21= I �W /cm2� /1021. Note that �acc does not depend
on the frequency of the EM field. At currently achievable
intensities I=1021 W /cm2, E0�20 for �=1 �m leading to a
�acc=100 ps. Since �acc is much longer than the typical dura-
tions of such laser pulses, radiative acceleration will be mini-
mal and not quite observable. However, for the future super-
intensity pulses, �acc could be considerably smaller than �d.
Indeed, for the laser field intensity I=1023 W /cm2 �E0
�190 for �=1 �m� we have �acc�1 ps, while for I
=1024 W /cm2 �E0�600�, �acc will be several tens of femto-
seconds. Then, plasma will be strongly accelerated acquiring
relativistic bulk motion whose magnitude may be estimated
to be �res=�d /�acc�1.

Here we would like to emphasize that the validity of the
classical treatment of the problem must be checked carefully
for super-intense fields. Classical treatment of the problem is
valid provided the energy of the photon involved in the pro-
cess of interaction is smaller than the electron energy, i.e.,
L=��em /�emec

2�1 �for ultrarelativistic case �e=E0�. Since
the characteristic frequency of the photons emitted by accel-
erated electrons in the field of a circularly polarized laser
field is �em�E0

3�, the factor L�0.1 is for I=1023 W /cm2

approaching L�1 when the intensities rise to I
=1024 W /cm2. Thus, for I�1024 W /cm2, classical treatment
becomes questionable. Recently Bulanov et al. �see Ref. �4��
demonstrated phenomenologically that inclusion of quantum
effects in the RRF do not alter significantly the result ob-
tained via the classical approximation up to laser intensities
I=1.38�1025 W /cm2 �E0=2500 for �=1 �m�. In general,
rigorous treatment of quantum correction in the problem of
RRF is challenging and is beyond the scope of the current
paper.

Our entire calculation has been based on the “given field”
approximation. This approximation, surely, breaks down
when a large part of the radiation energy is converted into the
kinetic energy of the plasma, or is scattered away. We will
now derive the conditions under which the “given field” ap-
proach may be valid. Assuming that the radiation losses due
to scattering are the same order as the energy needed for
plasma acceleration, we can make a reasonable estimate of
depletion length for the pulse. Comparing the initial energy
of the pulse with the plasma residual energy,

E�
2

4�
cTL � mec

2N�resLD �54�

we find for the pulse depletion length LD,

LD � D�c�d� , �55�

where

D =
�acc

�d

Nc

N
E0

2. �56�

Here Nc is the critical density of the plasma. For strong ac-
celeration we should have ��acc /�d��1 but for a transparent
plasma, the critical density Nc�N. With E0

2�1, D can be
considerably larger unity implying that the pulse depletion
length can be much longer than the pulse width. Thus, if the
plasma slab is shorter than the LD, the laser pump depletion
may be ignored and the ignored, i.e., the “given field” ap-
proximation will give approximately correct results.

By dwelling on a relatively simple hot optically thin, un-
derdense electron-positron plasma, exposed to a relativistic
strong laser pulse, we have analytically demonstrated that the
radiation reaction force �that becomes stronger with high
tempearture� can cause an increase in the bulk kinetic energy
of the fluid �that may be boosted up to relativistic values�
accompanied by a corresponding cooling or intense cooling
as the case may be.

When the super-intensity laser pulses �I�1024 W /cm2�
become available in the future, it will be possible to create
conditions in the laboratory such that the workings of the
mechanism of the simultaneous gain of kinetic energy and
loss of thermal energy �conjectured to play a fundamental
role in advancing understanding of a variety of astrophysical
phenomena� could be explored; the predictions of this and
similar works can, then, be experimentally tested.

There are many ways by which this simple analytical
work can be augmented. More detailed studies should be
undertaken that include: �1� fluids with different masses, �2�
denser plasmas, �3� giving up the “given field” approxima-
tion �a self-consistent calculation where the field intensity is
also evolved�, and �4� multidimensional effects.

We end this paper by giving the gist of our preliminary
studies on an electron-ion plasma irradiated by super-strong
laser pulses. We will continue assuming a radiation intensity
of �I�1024 W /cm2�. We find that the electrons are cooled
and accelerated rapidly to relativistic speeds while ions lag
behind owing to their larger inertia. The ensuing strong
charge separation electrostatic fields cause a considerable
slow down of the process of electron acceleration initially.
However, at the subsequent stage, the strong charge separa-
tion field effectively accelerates the ions. When the ions
catch up with the electrons the charge separation field be-
comes small, and the electrons are, once again, rapidly reac-
celerated by the radiation field. The reported sequence of
events takes place at �acc.
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