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We experimentally report the cyclic scenario of birth and annihilation of periodic orbits in a photonic
integrated circuit as the feedback phase of the electric field varies. The latter is also shown to result in minimal
alterations in the statistical properties of the chaotic attractor, with simultaneously transiting the Hurst exponent
H, erratically, below and above the critical value of H=0.5 that indicates regular Brownian motion. Conse-
quently there is an indication of the most effective operating regions with minimized predictability, which
hinders eavesdropping and the progress of forecasting the development of the chaotic light carrier.
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The rekindled interest on the chaotic dynamics of semi-
conductor lasers is primarily ascribed to their innate aptitude
of encrypting data on the physical layer [1,2]. In optical
communications, chaotic carriers are most frequently gener-
ated using semiconductor lasers with optical injection [3],
all-optical [4], and optoelectronic feedback [5]. The contem-
porary need for faster and additionally compact optical sys-
tems leads to the development of integrated photonics [6,7]
that will be expectantly elevated to the verge of physical
layer data encryption. The photonic integrated circuit (PIC)
examined in this paper is identical with the one that was
recently presented in Ref. [7] except for the distributed feed-
back (DFB) laser itself that acquired a higher linewidth en-
hancement factor, close to 8, due to 1572 nm wavelength
operation instead of 1561 nm. In Ref. [7] the PIC’s chaotic
properties were examined regarding the calculation of chao-
ticity and complexity of the strange attractors, showing—
under specific conditions—high-dimensional broadband
chaos.

In this paper, we examine experimentally the effects of
the feedback phase on the period-doubling cascades, on the
statistical properties of chaotic carriers and on the latter’s
predictability. The concurrent birth and annihilation of peri-
odic orbits is presented as the phase of the electric field var-
ies. It is shown that the dynamics exhibit forward and inverse
period doublings, together with windows of periodicity. Fur-
thermore, the Hurst exponent H [8,9] of the electric field is
calculated for the same range of the feedback phase indicat-
ing regions of 0.2 <<H < 0.8 for the chaotic cases. Analogous
attempt for the calculation of the Hurst exponent took place
in Ref. [10] but from different dynamics outlook, since H
was calculated for the phase dynamics of the electric field
that was derived mathematically with the Hilbert transform
from experimentally recorded intensity series. Herein, we
calculate H directly from the intensity (electric field) series
and point out an indirect link with entropy.

The PIC examined herein consists of four successive sec-
tions depicted in Fig. 1: a DFB InGaAsP semiconductor laser
operating at 1572 nm, followed by a gain-absorption section
(G/As), a phase section (PHs), and a l-cm-long passive
waveguide (PW). The overall resonator length is defined by
the internal laser facet and the chip facet of the waveguide
which is highly reflective coated (HRC) (R=97%). Crite-
rion of the selection of the cavity length is the ability of the
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device to produce chaotic dynamics [4,7]. The necessity of
integrating a G/ As outcomes from the requirement to control
the optical feedback strength. For further details of the PIC
see Ref. [7].

The phenomenon of forward and reverse period doublings
is a scarcely frequent phenomenon for differential equations.
It has been demonstrated theoretically and experimentally in
electronic configurations [11], two-section lasers [12], and
erbium doped fiber lasers. For all these examples see the
references in Refs. [10,11]. For time-delayed systems, the
cyclic scenario was experimentally demonstrated in Ref. [5]
using optoelectronic feedback; however, this is the first ex-
perimental presentation, to our knowledge, of this phenom-
enon for an integrated semiconductor laser subjected to all-
optical feedback. For an all-optical feedback experiment [13]
this phenomenon was demonstrated, whereas though the cav-
ity length was almost half of the one used herein and also
comparable to its laser cavity length in contrast to the setup
herein, therefore operating at nearly 800 wm wavelength and
hence inappropriate for high-speed and long-haul telecom-
munications applications.

The laser is pumped at a current of /=50 mA (3/yy) and
the current of the G/As section is kept constant to Iga
=0 mA. Hence the free control parameter throughout the ex-
periment is the feedback phase controlled by the current Ipy;
of the PHs. In Fig. 2 we present the time series of the electric
amplitude from (a) to (h) for Ipy,=4.1 mA to 11.3 mA,
where the system was found to enter and exit chaos via suc-
cessive period-doubling cascades. For 4.1 mA <Ipy,
<5.2 mA we noticed only limit cycles with periodicities up
to 4. This is due to the stochastic noise sources that obviate
the identification of periodic states with periodicities greater
than 4 but also limit cycles with period 1 since noise adds
slight peaks between two rotative extrema in a time series
and hence visualization is addled. Nevertheless this transit to
chaos is evidently a period-doubling one confirmed also
from the power specta (not shown herein). While increasing
Ipy, from 5.2 to 7.8 mA the PIC behavior was maintained
fully chaotic and a window of periodicity appeared for
7.8 mA <Ipy,<8.6 mA which also experienced nearly inter-
mittent behavior [Fig. 2(d)]; common feature for chaotic sys-
tems that exhibit this cyclic behavior [14]. With continuously
increasing Ipy, chaotic persistent behavior was observed for
8.6 mA <Ipy,< 10 mA and the system exits the chaotic re-
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gime with an inverse period-doubling route to chaos to CW
operation finally at Ipy,=11.3 mA. It should be noted that the
phenomenon of forward and reverse period doublings was
present for laser currents / <4y and Ig /A, <0.5 mA but ab-
sent for values greater than these (and especially the Iga)
since persistent chaos behavior, independent of the feedback
phase was observed. In Fig. 3 the zoomed cases for the be-
ginning and ending of the period doubling cascades [of Figs.
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FIG. 2. Cyclic scenario: Experimental electric amplitude time-
series with increasing the phase current Ipy, from (a) 4.1 mA to (h)
11.3 mA. The system starts from CW operation (a), enters chaos via
period doubling cascades up to (c) showing also intermittent behav-
ior (d), shows periodicity pockets in (e) and exits chaos via reverse
period doublings until it reestablishes CW operation in (h).

2(b) and 2(g)] for the cyclic scenario are presented.

Since the investigated PIC is fabricated for chaotic com-
munications applications, it is prudent to examine the com-
plexity of the resulted chaotic light carriers. In order for a
carrier to be apt for encryption purposes, its chaotic proper-
ties should exhibit dynamics with high complexity (attractor
dimension) and chaoticity (Kolmogorov entropy), as mea-
sured in Ref. [7]. Tt is therefore plausible to pose a question
whether a given intensity time series is predictable, hence
safe from eavesdropping before an eavesdropper contem-
plates to model the data and endeavors to forecast its devel-
opment. The Hurst exponent is a numerical estimation tool
for the predictability of a time series. It is defined as the
relative tendency of a time series to either regress to a longer
term mean value or cluster in a direction. The reason the
Hurst exponent H is an estimate and not a definitive measure
is because the algorithm operates under the assumption that
the time series is a fractal, which is partly true for most
chaotic time series. This is, however, of minimal importance
and what really renders H such a valuable asset in such a
qualitative analysis is that it provides a means of classifying
time series in terms of predictability.

The values of the Hurst exponent range between 0 and 1.
A Hurst exponent with value close to 0.5 indicates a random
walk (a Brownian time series). In a random walk there is no
correlation between any element and a future element and
there is a 50% probability that future return values will go
either up or down. Hence, series of this type are hard to
predict and preferable for encryption techniques. A Hurst ex-
ponent value H between 0 and 0.5 exists for time series with
“antipersistent behavior.” The latter means that an increase
will tend to be followed by a decrease (or inversely). This
behavior is sometimes called “mean reversion” which means
that future values will have a tendency to return to a longer
term mean value. A Hurst exponent between 0.5 and 1 indi-
cates “persistent behavior,” meaning that the time series is
trending. If for a time series X there is an increase from X,_;
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FIG. 3. (a) Zoomed periodic time-trace from Fig. 2(b) and (b)
from Fig. 2(g), showing the beginning and the ending of the period-
doubling sequences for the cyclic scenario.
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to X, there will probably be an increase from X, to X,,;. The
same is factual for decreases, where a decrease will tend to
follow a decrease and the larger the H value is, the stronger
the trend. Series of this type are easier to predict than series
falling in the other two categories and hence should abstain
from encryption applications. It is professed that the Hurst
exponent H ought not to be bewilderedly connected with the
Kolmogorov entropy in a time-series analysis, albeit both
quantifiers deal with predictability issues despite their dis-
cernible disparity. One is a time-domain property whereas
the other is a topological property. Apropos of the above
discussion regarding persistence and predictability, it is ex-
pected that series which fall in the range 0.5<H<1 will
typically result in smaller values of entropy, also demon-
strated in Ref. [15] and shown next.

The ab initio calculation of the H exponent starts with
applying the rescaled range (or R/S) analysis [8]. Each time
series has a duration of 1 us and consists of 1.6 X 10° points,
therefore precluding significant statistical errors and errone-
ous estimates. One has to calculate the maximum excursion
R from the starting point and divide it with the series’ stan-
dard deviation. The H exponent is then equal to the slope of
least-squares fitting of the maximum excursion and the num-
ber of recorded points » in a log-log diagram. All logarithm
expressions herein are in base 10. In Fig. 4 we present three
cases with H>0.5 [Fig. 4(a)], H=0.5 [Fig. 4(b)], and H
< 0.5 [Fig. 4(c)] together with their corresponding autocor-
relation functions. It is interesting to observe that for long-
term memory processes [H>0.5, Fig. 4(a)] the “tails” of the
autocorrelation function C(7) experience (roughly due to
noise) a power scaling law C(7)= v7* where v is a constant
and a=2H-1 [8], whereas for the two other cases it exhibits
an erose trend, especially for H<<0.5. The multivariable fit-
ting resulted v=1.04 and @=0.46, hence H=0.73, a value
close to H=0.76 derived from the R/S analysis. The statisti-
cal standard error (SE) calculated for every case of H was
close (but never larger) to |[SE|<0.03. The Kolmogorov en-
tropy K, was additionally calculated together with the corre-
lation dimension D, (as done in Ref. [7]) for each case re-
sulting in (H,K,,D,)=(0.76,0.055 ps~',4.2+0.4) for Fig.

4(a), (0.53, 0.06 ps~!, 3.3+0.4) for Fig. 4(b), and (0.39,
0.08 ps~!, 3.8 =0.2) for Fig. 4(c). The chaoticity K, appears
to follow the H exponent in contrast to the complexity D, as
also shown in Ref. [15]. Therefore, since H is much easier to
calculate than K, it is anticipated to prove beneficial to ex-
perimentalists for qualitatively identifying the most chaotic
and unpredictable regions. Of course, this is not always the
case and some examples were found where H was not fol-
lowing K, consistently. Since the latter is greatly more diffi-
cult to calculate than H, it is concluded herein that H must be
considered as an additional independent chaos quantifier and
furthermore as a significant indicative measure for tracking
maximized entropy. Moreover, its relation with the attractor
dimension did not show any indication of correlation and this
is something to be expected. It should be noted that the val-
ues of K, are greater than the ones calculated for the PIC in
Ref. [7]. Most probably this has to do with the different DFB
laser itself since it is known that different material param-
eters are able to easily result in different values for the chao-
ticity of a system. For example, especially for the linewidth
enhancement factor that is known to dominate the chaoticity
of an optically driven laser system [16], it is known that it
increases as the wavelength rises and this increase is basi-
cally dependent on the carrier density due to the Coulomb
enhancement effect. This is the case herein since the wave-
length of the DFB laser is vaguely longer than the one stud-
ied in Ref. [7] expecting therefore different material param-
eters and hence different values for the entropy.

In Fig. 5 we present the effect of the feedback phase on
the statistical properties of the attractor (kurtosis and skew-
ness) and the calculation of the H exponent. The range of
0-10 mA for the current of the phase section could not be
adequately calculated (in rads) since the repeat of the ob-
served dynamics could not be noticed clearly, albeit it was
deduced from specta observations to correspond approxi-
mately to a 27 phase change. The kurtosis K is the degree of
peakedness of a distribution whereas the skewness S is a
measure of the degree of lopsidedness of the latter in a time
series.
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FIG. 5. (Color online) (a) Kurtosis, (b) skew-

ness, (c) standard deviation, and (d) Hurst expo-
nent H as the phase current /py varies covering
the range 0.2 < H <0.8. The calculated values are
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The standard deviation is also depicted since it is used in
the H calculation. The skewness seems to remain relatively
unaltered as the phase varies in contrast to the kurtosis ex-
hibiting slightly more sudden local extrema. On the other
hand, the H exponent is established to vary erratically above
and below the value of 0.5. No specific correlation is ex-
pected for the H exponent with the two statistical quantifiers
of kurtosis and skewness, but it is important for encryption
applications to be able to tune the unpredictability quantifier
(Hurst exponent) without simultaneously exhibiting notable
variations in the chaotic carrier’s statistical properties. Keep-
ing the phase stable (for example, with variations Alppg
< 0.1 mA assuring a temperature-independent system) it is
clear that one may choose safely the region to operate the
PIC. For example, an optimal region is 7.5 mA <Ipyg
<9.2 mA, where the H exponent is always H<0.5. Addi-
tionally, the connected lines do not imply a fitting between
the calculated values (with the diamonds) in the figure. The
H exponent was calculated only for selected chaotic cases.
Many regions of H=<0.5 exist, defined in the discussion
above as most suitable for complexity issues. It is expected
that as /g, increases, H will saturate to a value greater than
0.5 indicating thus persistent behavior as demonstrated in
Ref. [10], but our results indicate that H can be retained close
to 0.5 or even less if the phase is tuned appropriately. Lasers
with long external cavities (as examined in Ref. [10]) gener-
ate more complex dynamics (high Lyapunov dimensions)
and therefore considered apposite for chaotic communica-
tions. On the other hand, however, lasers with much shorter
cavities—as in our case—are attested to be fully controllable
and robust in operational regions that lead to less predictable
chaotic carriers with H=0.5, with simultaneously exhibiting
high values of entropy, since the latter is known to saturate to
a value independently of the cavity length for time-delayed
systems [4]. Tt should be stated that the chaotic series were
not filtered as in Ref. [7] since the predictability of the actual
chaotic carriers is of interest. Nevertheless, it is expected that
nonlinear filtering with state-space averaging would result in
biased results for the H exponent in contrast to K, as dem-
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onstrated in Ref. [7] for noise-contaminated chaotic carriers.
Depending on the signal-to-noise ratio (SNR), the exponent
would be dominated by one or the other process (noise or
chaos). Furthermore, filtering would typically change the ex-
ponent, and nonlinear filtering could accomplish almost any-
thing. One should note that the H exponent is defined only
for cases in which the probability distribution function fol-
lows a power law. That is usually the case with real-world
noise and often the case for chaos, but certainly not always.
Hence not any filtering attempt took place for these calcula-
tions.

In this paper we investigated some special dynamical
characteristics of a photonic integrated circuit with respect to
the field’s feedback phase. A cyclic scenario was initially
demonstrated. The variation of the phase furthermore re-
sulted in minimal alterations in the statistical properties of
the chaotic attractors and moreover revealed a variety of cha-
otic regions covering the range 0.2 <H <0.8. The Hurst ex-
ponent H is associated with the classification of a time series
in terms of predictability, and therefore introduced as an ad-
ditional important dynamical quantifier of a chaotic series in
addition to the entropy and the dimension, whereas a quali-
tative connection with entropy was attempted. It was demon-
strated that for the photonic integrated circuit described
herein and first examined in Ref. [7], the dynamics are now
pictured and may be tuned in the most desirable operating
regions in terms of complexity (dimension), chaoticity (en-
tropy), and predictability (Hurst exponent). The use of Hurst
exponents in quantifying chaos and complexity in other ex-
periments and in other fields is hence anticipated, together
with the comparison of their connection with the metric en-

tropy.
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