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Discrete chaotic states of a Bose-Einstein condensate
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We examine spatial chaos in a one-dimensional attractive Bose-Einstein condensate interacting with a
Gaussian-like laser barrier and perturbed by a weak optical lattice. For a low laser barrier, chaotic regions of
the parameters are demonstrated and the chaotic and regular states are illustrated numerically. In the high-
barrier case, bounded perturbed solutions that describe a set of discrete chaotic states are constructed for
discrete barrier heights and magic numbers of condensed atoms. Chaotic density profiles are exhibited numeri-
cally for the lowest quantum number, and analytically bounded but numerically unbounded Gaussian-like
configurations are confirmed. It is shown that the chaotic wave packets can be controlled experimentally by

adjusting the laser barrier potential.
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I. INTRODUCTION

It is well known that chaos in a nonlinear system not only
may play a destructive role, but also has many practical and
dramatic applications [1]. Chaos has been thoroughly studied
during the last century in many different fields of physics.
Very recently it has been recognized that the existence of
chaos is also possible in Bose-Einstein condensates (BECs)
described by the Gross-Pitaevskii equation (GPE) picture [2]
and in discretized systems describing trapped BECs within
the space-mode approximation [3]. Temporal chaos was re-
vealed in the time evolution of BECs trapped in a double-
well potential [4]. Spatial chaos with spatially disordered
configurations was investigated for the stationary states of
BECs held in an optical lattice [5]. Spatiotemporal chaos in
BECs interacting with different potentials has also been
found [6].

The mean-field stationary states of a BEC are dominated
by the time-independent one-dimensional (1D) GPE [7,8].
For a BEC in the ground state without current [7] the GPE is
a real equation and can be made identical with the celebrated
Duffing equation [9,10] by using time instead of the spatial
coordinate. In particular, when such a GPE is perturbed by a
weak periodic potential, Smale-horseshoe chaos may appear
for a certain parameter region of an extended dynamical sys-
tem [9,10]. The Melnikov chaos criterion gives the chaotic
parameter region in which the perturbation parameters are
allowed to vary their values continuously [11-14]. Gaussian-
like barrier potentials can be realized by a sharply focused
laser beam in experiments [15], which have been applied to
investigate the shock-wave formation in BECs [16], nonlin-
ear resonant transport [17], and deterministic chaos [18] of
BECs. Recently, using external fields to control quantum
states of BECs has become an important physical motivation
[19].

When a BEC is created initially in a time-independent
optical lattice, the stationary states of the GPE are deter-
mined by the boundary conditions and are adjusted by the
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system parameters. Different boundary conditions may be
established in a practical experiment, which cannot be set
accurately. In nonchaotic regimes, a small change of the
boundary conditions and/or system parameters brings to the
BEC state only a small correction, which can be neglected in
a good approximation. In chaotic regimes, however, the sta-
tionary state depends sensitively on the conditions and pa-
rameters. The sensitivity means that a small change of the
conditions and/or parameters may cause a great difference,
which is not negligible. For example, the periodic configu-
ration of the BEC density is changed to an aperiodic and
irregular one. It is important for applications to predict the
bounded states and to manipulate the corresponding density
distributions, which govern the beam profile of an atom laser
extracted from a BEC [20]. Therefore, investigation and con-
trol of spatial chaos are necessary and interesting for the
considered BEC system.

The main aim of this paper is to present analytical evi-
dence of a different type of spatial chaos which can be de-
fined as discrete chaotic states, and to establish a method for
controlling the chaotic states. By “discrete states” we mean a
denumerable set of bounded solutions in which any solution
is one-to-one with a value in the discrete set of parameter
values. If the discrete states meet the Melnikov chaos crite-
rion, we call them discrete chaotic states. By using a laser
beam modeled by a tanh?-shaped barrier potential [21],
which is known as the Rosen-Morse potential [22], we dem-
onstrate the existence of spatial chaos in a BEC held in a
weak optical lattice. Chaotic regions of the parameters are
exhibited and regular and disordered configurations of the
BEC are illustrated. It is shown that the width and site of the
strong barrier potential confine the width and site of the BEC
wave packet, and a denumerable set of barrier height values
corresponds to discrete chaotic states and magic numbers of
condensed atoms. Thus the possible chaotic states can be
controlled by adjusting the width, site, and height of the laser
barrier experimentally.

II. CHAOTIC AND REGULAR STATES
FOR A LOW LASER BARRIER

For the considered BEC system with transverse wave
function in the ground state of a harmonic oscillator of fre-
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quency w,, the governing time-independent quasi-1D GPE
reads

hZ
—ﬂlﬂxﬁ[V'(X)+g{D|¢|2]¢=/Mﬂ, (1)

where m is the atomic mass, u is the chemical potential, and
gip=8omw,/(2mh)=2hw,a, denotes the quasi-1D atom-
atom interaction intensity with a, being the s-wave scattering
length. Hereafter, by ¢, we mean the second derivative of ¢/
with respect to x. The external potential V’'(x)=
-V, tanh?[ B(x—x,)]+V, sin? kx contains a longitudinal bar-
rier potential of strength V,>0, width 87!, and center site x,.,
and a perturbed lattice potential with V; and k being the
intensity and wave vector. The former as a Gaussian-like
potential can be formed by a sharply focused laser beam in
experiments [15], and the latter is a laser standing wave.
Taking B! and S as the units of coordinate x and density
|yf?>, and normalizing the potential strengths V,,V;, and
chemical potential u by using Eg=%?5%/m, Eq. (1) becomes
the dimensionless equation

1
—Ellfxx+[V(X)+glo|</f|2]</f=Ml//- (2)

Here the interaction intensity is reduced to gip
=2hw,a,B/Eg=2a,/(Ba}) with a,=\h/(mw,) being the
transverse harmonic oscillator length, and the potential gets
the form

V(x) = — V, tanh?(x — x,) + V, sin” kx (3)

with £ measured in B.

We are interested in the real solution of the GPE (2),
which makes the GPE the perimeteri-perturbed Duffing
equation [10] in the spatial evolution and for a weak poten-
tial. It is well known that the existence of a periodic pertur-
bation is necessary for the appearance of chaos in the Duft-
ing system [11-13]. When a negative interaction and
negative chemical potential are taken, in the absence of an
external potential the system has the well-known homoclinic
(separatrix) solution [10-13]

o=\ 22 sech[N=2p(x - o),
81D
co= —; {xo - arcsech( 1/ gﬂ%(xo)) ] (4)
V=2p 2p ’

where ¢, is an arbitrary constant adjusted by the boundary
conditions at the boundary x=x,. For the BEC system gov-
erned by Eq. (2) the constant ¢, cannot be determined ex-
perimentally, because of the undetectable i(x,). The pres-
ence of a weak external potential leads to the Melnokov
function [10-13]
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M(co)=| 24 (x)V(x)dho(x)dx

—o0

_dpn- 2/.L<F K>V, sin(2ke,) ) )
8w 2w sinh(kr/ - 2u)

for 0<V,<1 and |V,|<<1, where iy, denotes the first de-
rivative of ¢y with respect to x. The constant F from the
barrier potential reads

4Vpe* 24 4A
= m{[:& +2A +8Ae* + (2A -3)e™]} (6)
ml(e™™ —

with A=cy—x.. The Melnikov function measures the distance
between the stable and unstable manifolds in the Poincaré
section of the equivalent phase space (¢, ,). For some c
values, if the Melnikov function has a simple zero, the lo-
cally stable and unstable manifolds intersect transversally
such that Smale-horseshoe chaos exists in the Poincaré map
[10-13]. The possibility of M(cy)=0 results in a chaotic re-
gion of parameter space

V| = 2@ sinh( ,kL) (7)
Tk =2 yn

When parameters are taken in the chaotic region, the Melni-
kov function has zero points and the stable and unstable
manifolds in the Poincaré section may intersect, which leads
to Smale-horseshoe chaos. It is possible that regular orbits
exist for both the chaotic and nonchaotic regions. The cha-
otic and regular orbits in the chaotic region depend on dif-
ferent boundary conditions.

As can be seen from Eq. (7), for any negative chemical
potential © <0 and any barrier potential strength in the re-
gion 0 <V,<<1, the chaotic region depends on the constant F
in the plane of parameters V| versus k. F is determined by
the parameters V, u, and cy—x, with the potential strength
V, and site x, being adjustable. In Fig. 1(a) we show F as a
function of cy—x,. for u=-2 and Vy=0.2 by using the MATH-
EMATICA code. From this figure it can be observed that |F|
has a maximum |F|=0.015 and a minimum |F|=0. The
former corresponds to the minimal chaotic region of Eq. (7),
and the latter is associated with the maximal chaotic region
|[Vi|>0. Taking u=-2 and F=0.005, 0.01, and 0.015 asso-
ciated with three different ¢, values, respectively, from Eq.
(7) we plot the boundary curves of the chaotic regions as the
dashed, solid, and dotted curves of Fig. 1(b). The corre-
sponding chaotic regions are above these curves. The mini-
mal chaotic region above the curve of |F|=0.015 is certainly
a chaotic region for an arbitrary c, value. But the other cha-
otic regions are related to the corresponding boundary con-
ditions, through the constant F(c).

A useful way of analyzing chaotic motion is to look at
what is called the Poincaré section, which is a discrete set
of phase space points at every period of the periodic poten-
tial, i.e., at x=2m/k,4m/k,67/k,.... Taking the parameters
n==2,g.p=—1, V4=02, V,=0.2, k=15, x.=1, and the
approximation [xg) , ¥ (x0)1=[ (10 000), 1f,(10 000)]
=(0.000 01,0.000 01) to the experimentally possible bound-
ary condition [ (), ¢.(°)]=(0,0), from Eq. (2) we numeri-
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FIG. 1. (a) The constant F as a function of ¢y—x, for parameters u=-2 and V,=0.2. (b) The boundaries of the chaotic regions for w
=-2, and F=0.005 (dashed curve), 0.01 (solid curve), and 0.015 (doted curve).

cally plot the Poincaré section on the equivalent phase space
(¢, ) and find the chaotic trajectory as in Fig. 2. Here the
lattice strength V; and wave vector k are evaluated in the
minimal chaotic region of Fig. 1(b). For the same parameters
as in Fig. 2 from Egs. (2) and (3) the potential and chaotic
state functions are plotted in Figs. 3(a) and 3(b), respectively.
From Fig. 3(a) we can see the profile of the combined po-
tential of the barrier potential and periodic lattice. In Fig.
3(b) we exhibit the aperiodicity and irregularity of the cha-
otic macroscopic wave function corresponding numerically
to Fig. 2. In order to confirm the sensitive dependence of the
chaotic system on the boundary conditions, we change only
the boundary condition to [¢(10000), (10 000)]
=(0,0.000 01) to plot the wave function. This small change
changes the irregular curve in Fig. 3(b) to the periodic one in
Fig. 3(c). When the lattice strength is decreased to V,
=0.005 and the other parameters are kept, from Fig. 1(b) we
observe that the parameter value is outside the given chaotic
region. After changing V, from 0.2 to 0.005, Figs. 3(a)-3(c)
are changed to Figs. 4(a)-4(c), respectively. Figure 4(a) dis-
plays a weak periodic potential compared to the laser barrier.
In Figs. 4(b) and 4(c) we illustrate that in the considered
parameter region the wave functions are periodic for the
given boundary conditions. It is interesting to note that the
regular wave functions in Fig. 4(b) have two different peri-
ods and two different amplitudes on both sides of the laser
barrier. This means that the atomic number [s|i(x)|?dx is
different for the integration region 3, on different sides. The
periodicity is varied with a change of the boundary condi-
tions from [¢(10 000), ¢,(10 000)]=(0.000 01,0.000 01) of

»ro? %
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FIG. 2. The Poincaré section on the equivalent phase space
(¢,4,) from Eq. (2) for the given parameters and boundary
conditions.

Fig. 4(b) to [¢(10000), (10 000)]=(0,0.000 01) of Fig.
4(c). Differing from Fig. 4(b), in Fig. 4(c) the period of the
wave function on both sides of the barrier is the same, and
the smaller of the amplitudes is enlarged compared to that of
Fig. 4(b). The results display the different profiles of the
macroscopic quantum states and reveal that the existence of
chaos means a sensitive dependence of the BEC system on
the boundary conditions and parameters.

III. DISCRETE CHAOTIC STATES
FOR A HIGH LASER BARRIER

The chaotic region of Eq. (7) is based on the perturbation
theory [11,12] so that it is valid only for very small potential
strengths V, and V,. When the strength V|, of the barrier
potential is continuously increased, e.g., V,>1, it can no
longer be treated as a part of the perturbations. In this case
we need to reconsider the perturbation problem of the sta-

tionary states. Applying the well-known Rayleigh-
Schrodinger expansions [23]
p=do+ b, p=pot+py for [gl Vi <1 (8)

to Eq. (2) with real ¢, we have the leading-order and the
first-order equations as

1
= St = Vo tanh?(x = x) = 100510 = oty (9)

1
- Elﬂlxx — [V tanh?(x — x.) = 381445 + tolth

=(m -V sin® ko) i (x). (10)

Noticing that Eq. (9) has many special solutions for fixed
values of V|, g1p, and x, and different w, values. Only the
homoclinic solution is related to the Melnikov chaos and the
other solutions are associated with the regular states of Eq.
(2). Here we are interested in chaos and consider only the
homoclinic solution thereby. It can be easily proved that the
homoclinic solution of Eq. (9) has the form

Vo+1 1
o= sech(x—x,) for ug=-Vy——.
— 81D 2

Unlike Eq. (4), Eq. (11) describes a wave packet whose
height and width are adjusted by the potential intensity V,,

(11)
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FIG. 3. (a) The potential function of Eq. (3) and (b) the aperiodic chaotic state of Eq. (2) for the same parameters and boundary
conditions as in Fig. 2. (c) When the value of (10 000) is changed from 0.000 01 to 0, we get the periodic wave function.

and width B8~! implied in the unit of x. Substitution of Eq.
(11) into Eq. (10) yields the nonhomogeneous equation

- %lplxx - ((2V0 + 3)SeCh2(x —xc) — %) (ﬁl

=— f(x) = (u; = V; sin® kx) (). (12)

The corresponding homogeneous equation for f=0 is a well-
known Schrédinger one with trapping potential —(2V,
+3)sech’(x—x,.) and eigenenergy E=-1/2. Given two lin-
early independent solutions of the homogeneous equation
such as ] and ¢/=4] [(i4;)"2dx, the exact general solution
of the nonhomogeneous equation (12) can be written in the
integral form [24]

=20 f W)= 2 f Jiwds, (13)
A B

where A and B are arbitrary constants determined by the
boundary and normalization conditions. This solution can be
directly proved by comparing the second derivative o,
from Eq. (13) with that in Eq. (12).

Boundedness of the perturbed correction ; is a physical
requirement, which depends on the bounded . In order to
seek such a ¢, we set [23]

) =[sech(x —x) ] u(z), z=-sinh*(x—-x,),

A=[V8(2V,+3) +1-1)4. (14)

Inserting Eq. (14) into the homogeneous part of Eq. (12)
with f=0 produces the hypergeometric equation
z2(1=2u_+[05-(a+ b+ 1)z]u,—abu=0, (15)

where a=0.5—-\, b=-0.5—-A\. Its two linear independent so-
lutions with finite terms read [23]

u,=F(0.5-N,-05-2,0.5,z) for\=0.5+n,

u =z F1-=\-\1572) forA=1+n.  (16)

Here F(a,b,c,z) is the hypergeometric function; u; and u/
with n=0,1,2,... denote even and odd functions of (x—x,),
respectively. Combining Eq. (16) with Eq. (14), we arrive at
the bounded solutions

P8 =[sech(x — x.)]"**"u’

n°

Vo=[(3 +4n)*-25]/16,

#° = [sech(x — x) 22l Vo=[(5+4n)>-25]/16

ne

for Vo >0, n=1,2,.... (17)

Note that ¢, of Eq. (17) tends to zero, and ¢/
=y [(¢})2dx of Eq. (13) is infinity at x=*=oo. Thus the
second term of Eq. (13) is in the form of zero multiplying
infinity at x= * %, so we can use the 1’Hopital rule to calcu-
late the limit and to prove the boundedness of this term. For
the first term of Eq. (13) we have to establish the bounded-
ness condition

I. = lim f W (Vy sin® kx — ) hpdx = 0. (18)
A

x— oo

The necessity of Eq. (18) is obvious for the boundedness of
Eq. (13), because of the unboundedness of /. Under condi-
tion (18) we can apply the I’Hopital rule to both terms of Eq.
(13), obtaining [24] lim,_, ..¢;=2lim,_ ..f(x)=0. This
limit implies that Eq. (18) is also sufficient and the macro-
scopic wave function obtained satisfies the usual boundary
condition ¢ )= i(*=)+ %(ioo) =0. Noticing the corre-
spondence between f(x) and skl)(x) in Eq. (9) of the second
paper of Ref. [24], the above proof of sufficiency is clear.
The integration of the first term in Eq. (13) is insoluable
and cannot be expressed by finite elementary functions.
Hence, in a numerical computation based on Eq. (13), the
small deviation from the exact value of the integration satis-

0 g 2 § 2
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0 g :
X 0.1 5 0 30
> (=] (S|
-0.15 o -1 o -1
2 :
-0.2 g 2 - = -2
-10 -5 0 5 10 40 -20 0 20 40 ~40 -20 0 20 40
(a) X (b) X (c) x

FIG. 4. The same as in Fig. 3 after a change of the parameter V; from 0.2 to 0.005.
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fying condition (18) is avoidable. The small deviation will be
amplified exponentially fast by the unbounded function ¢//(x)
up to infinity as x— £ oo, which exhibits the numerical in-
stability. The analytical insoluability and numerical instabil-
ity can cause unpredictable chaotic behavior [14]. The differ-
ence I,—I_ of the integration in Eq. (18) is similar to the
Melnikov function of Eq. (5); hence I,—I_=0 can be called
the generalized Melnikov criterion for chaos. In fact, given
Eq. (18), the undetermined form y/(*o0) X[ =X 0 ap-
pears in Eq. (13) as |x| tends to infinity, which leads to the
feature of analytical boundedness but numerical unbounded-
ness, namely, the evidenced incomputability and unpredict-
ability of the chaotic behavior [14]. Therefore, under the
condition (18) the solution ¢{(x)=ty(x)+¢;(x) in terms of
Egs. (11) and (13) is called the chaotic solution [14]. If the
zero boundary condition [(*), ¢ (F£%)]=(0,0) is re-
quired theoretically, the uniqueness theorem implies that the
chaotic solution is the unique one of the system. On the other
hand, from the formula of the energy functional [7,8],

1 1
H=f W(‘ EVZ + V() + 581D|¢|2)¢d3x
1 1
- [ (2 e vioior s el

1
—E(WV@EW (19)

we know that, unlike the unbounded solution with
|f(£)|=, the analytically bounded solution with
i (=0)=0 is associated with a finite energy functional and
may therefore be metastable [7]. Although the chaotic solu-
tion is not very stable, due to the sensitive dependence on the
parameters and boundary conditions, it may also be meta-
stable compared to the analytically unbounded solution. In
particular, these bounded solutions are valid only for discrete
V, values of Eq. (17). This means that the corresponding
analytically bounded chaotic states become discrete with in-
crease of the barrier height.

The above-mentioned results imply that, when the barrier
potential is strong enough, its strength values must be dis-
crete for bounded perturbed solutions. For discrete V=V,
values the leading number density I,ﬁ(z) is proportional to Vj,
and the leading chemical potential is given by ,u,0n=—%
-V, by Eq. (11); both are also discrete. The parameters V,
k, x., and g|p can vary their values continually in a certain
parameter region. Given a set of values of V|, k,x,, the first
correction w; is determined by the boundedness condition of
Eq. (18). In Eq. (10) the discrete chemical potential wu
= (o, + M 1S equivalent to the energy of a Schrodinger sys-
tem. In quantum mechanics [23], it is known that the bound-
edness of a wave function may lead the energy to take dis-
crete values. Mathematically, the relationship between the
discrete values of the potential strength V=V, and the ex-
actly bounded solutions of Eq. (12) agrees qualitatively with
that of a 2D Coulomb correlated system [26], where the
Schrodinger equation is exactly soluble only for a denumer-
ably infinite set of values of magnetic strength (or the corre-
sponding oscillator frequency). Physically, we well know
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that for a 2D electron gas in a semiconductor heterojunction
the integral and fractional quantum Hall plateaus are associ-
ated with a discrete set of values of the magnetic strength
[27].

We now investigate the physical effect of discrete laser
strength V;=V,, on the considered BEC system. Application
of Eq. (11) to the normalization condition yields the number
of condensed atoms N,= [|p,|*dx=2(1+V,,)/|g\p|=(1
+Vp,)Ba’/|a,| for the metastable states given by Eq. (8) with
Egs. (11) and (17), which results in the relation

Nya)| = (1 + V,,)Ba> (20)

with V,,, given in Eq. (17). Here the special values N, can be
called the magic numbers for the macroscopic many-body
system to stay in metastable states. Unlike the magic num-
bers of a microscopic many-body system (e.g., the atomic
nucleus), N, denotes some approximate values, because of
the approximation N*1=N in the mean-field theory of
macroscopic many-body systems [7,8]. For a harmonically
confined BEC system, the supercritical number N of con-
densed atoms obeys [7] N|a,|=0.575ay0 with ayg being the
3D harmonic oscillator length. The magic number N, may
exceed the supercritical number N, by increase in the laser
strength V), and/or by decrease in the laser barrier width 8.
The approximate magic numbers of the considered many-
body system warrant experimental investigation.

Let us take the simplest even solution of (x—x.) with
quantum number n=1 as an example to show the features of
the chaotic solutions. From Egs. (17) and (16) such a solu-
tion is derived as

Y1, = P15 = sech® y(1 - 4 sinh? y) (21)

for y=x-x., Vy=3/2, and py=—1/2-Vy=-2. Obviously,
this solution tends to zero as x— *oo. The corresponding
unbounded solution reads

o= vis=vis | wiia

1
= sech® y(36y — 24y cosh 2y

+ 28 sinh 2y — sinh 4y), (22)

in which the term 6]—486Ch3 ysinh 4y tends to *oc and the
other terms tend to zero as x— * . Applying Egs. (21) and
(22) to Eq. (13), the exact general solution of Eq. (12) be-
comes

=205 [ igoas—20ii [ wiiroar, @3
A B

where f(x)=—(u,-V, sin® kx)iy(x) is equal to zero at x
=t oo, because y(*=)=0. Applying the 1’Hpdital rule to
Eq. (23), we easily verify its boundedness [24], through the
limit lim, ... ¢,(x)=0 for u, obeying Eq. (18) accurately.
Inserting ¢{ and Eq. (11) into Eq. (18), from the generalized
Melnikov chaos criterion /,—1_=0, one derives
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FIG. 5. (a) The chaotic density profiles of atomic number for
x.=1 (solid curve) and 2 (dashed curve). (b) The analytically
bounded density profiles from (a) obtained by replacing the parts of
|x—x.|>2 with sketch maps of the chaotic density regions.

Atomic density

w1 = 0.5V, cos(2kx,)k(5k* — 1)csch(kr) (24)

which can be adjusted by the laser site x. and has a maxi-
mum and a minimum at cos(2kx,)= =* 1, respectively.

In order to obtain the bounded numerical solution of Eq.
(23), the parameter w; must obey Eq. (24). However, in any
numerical computation, for a set of fixed parameters Vy, k,
and x, it is impossible to take the value of w; accurately,
because of the irrational 7 with an infinite sequence of digits
in Eq. (24). This implies a small deviation from the accurate
boundedness condition (18) and the small deviation will lead
the numerical solution of Eq. (23) to be exponentially ampli-
fied by the unbounded function /| until infinity as x
— * o0, So the analytically bounded chaotic solution (23) is
numerically unbounded and incomputable for sufficiently
large |x| values [14]. For a small |x| value ¢/ is finite and
Eq. (23) is certainly bounded. At x= %o the boundedness
condition (18) and I’Hpoital rule lead Eq. (23) to zero ana-
lytically. The unpredictability of the chaotic solution (23)
may occur only near the spatial range |y|=|x—x.| € (|y,,*),
where y,=x,—x,. can be estimated from the starting point of
the numerical incomputability, after which the solution tends
to infinity rapidly. In this spatial range, the chaotic region
of the  atomic  density may be [(y)]
€ (2|1//0(iw)¢{111(i00)|’2|¢O(ys)¢i1(y3)|):(0y2|Ir//O(ys)%](ys)D
with width 8(y) tending to zero with increase of |y|. The
maximal width reads 8(y,) = 2|y (y,)¢;,(y,)| which is in or-
der of perturbation V;, since [#{(y)|* equates to |i(y)
+ i P = )P +2](0) ¥4, ()| and [¢(y)]* is predict-
able for any y. The effective first-order correction to the
Gaussian-like profile is analytically bounded, and can be ob-
tained by cutting the infinity from the numerical solution of
Eq. (23). This will be illustrated numerically as follows.

As an instance, setting the parameters V=V, =3/2, V,
=0.05, k=1.5, gi;p=—1, upy=—-2, and a boundary condition
that is equivalent to A=-o0, B=0, from Egs. (11) and (23) we
plot the chaotic atomic density |#*=(gy+4;,)* as in Fig.
5(a). Here the solid and dashed curves correspond to x.=1,
m1=-0.021 48 and x.=2, u;=0.020 83, respectively, which
satisfy the generalized Melnikov chaos criteria (18) and (24)
approximately. The dashed curve has the same approximate
shape as the solid one and can be regarded as the latter after
a translation of distance 1. The numerically unbounded first

PHYSICAL REVIEW E 78, 066214 (2008)

corrections are incomputable for sufficiently large |y|=|x
—x.| values, and the starting points of the incomputability are
shown to be about y= * y,~ * 2 after which the atomic den-
sities may be irregular and tend to infinity rapidly. By using
the wide black curves instead of infinity in the range |x
-x./=2 of Fig. 5(a), we obtain the Gaussian-like wave pack-
ets as in Fig. 5(b) which describe the analytically bounded
atomic density better. The wide black parts are the sketch
maps of the chaotic regions of density distributions, whose
width varies from the maximal value &(y,)~ V, to the mini-
mal one &(*)=0. In the chaotic regions of density, the
atomic density is unpredictable. The effective first correc-
tions in the range x € (=0.5,3) are exhibited by the inset of
Fig. 5(b), which are plotted from Eq. (23) for the range |y|
<2 and the parameters adopted in Fig. 5(a). It should be
emphasized that the analytically bounded chaotic states are
discrete and can be manipulated experimentally by taking the
barrier heights V), in Eq. (17) discontinuously and adjusting
the barrier site x, continuously. In particular, by increasing x,.
adiabatically [28], we can move the Gaussian-like wave
packets slowly for the purpose of BEC transport [17].

IV. CONCLUSIONS AND DISCUSSIONS

We have investigated the spatial structure of a 1D attrac-
tive BEC interacting with a tanh?>-shaped laser barrier poten-
tial and perturbed by a weak laser standing wave. The exis-
tence of Smale-horseshoe chaos is demonstrated and
Melnikov chaotic regions of parameter space are displayed.
In the low-laser-barrier case, aperiodic chaotic states and pe-
riodic regular states are illustrated numerically. For a suffi-
ciently strong barrier potential a set of discrete chaotic solu-
tions is constructed formally. Any chaotic solution is a
combination of a Gaussian-like wave packet with the corre-
sponding perturbed correction. The discrete chaotic solutions
are analytically bounded only for discrete barrier height val-
ues and special magic numbers of condensed atoms. The
density profiles of a BEC in discrete chaotic states are inves-
tigated numerically for the lowest quantum number, and nu-
merical instability is revealed. The Gaussian-like wave can
be translated by varying the laser-barrier site adiabatically,
which is similar to the bright soliton of an attractive BEC
with a parabolic barrier potential [25]. The periodic struc-
tures of the BEC can be detected by the Bragg scattering of
an optical probe beam [29] and the Gaussian-like potential
used can be generated by a sharply focused laser beam in
experiments [15]. Thus the irregular chaotic states could be
observed and controlled readily with current experimental
capability.

The existence of chaos means a sensitive dependence of
the BEC system on the boundary conditions and parameters
in the chaotic region. The sensitivity causes unpredictability
of the spatial distributions of the BEC atoms, since the
boundary conditions cannot be set accurately in a real experi-
ment. The above results reveal the possible bounded states
associated with the spatial distributions, and suggest a
method to control the irregular chaotic states by adjusting the
lattice strength and laser barrier parameters.
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It is worth noting that discrete chaotic states may appear
in many different physical systems with different Gaussian-
like potentials and may also exist in the temporal and spa-
tiotemporal evolutions of time-dependent systems.
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