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Hyperchaos occurs in a dynamical system with more than one positive Lyapunov exponent. When the
equations governing the time evolution of the dynamical system are known, the transition from chaos to

hyperchaos can be readily obtained when the second largest Lyapunov exponent crosses zero. If the only
information available on the system is a time series, however, such method is difficult to apply. We propose the
use of recurrence quantification analysis of a time series to characterize the chaos-hyperchaos transition. We
present results obtained from recurrence plots of coupled chaotic piecewise-linear maps and Chua-Matsumoto
circuits, but the method can be applied as well to other systems, even when one does not know their dynamical

equations.
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I. INTRODUCTION

Hyperchaotic attractors have at least two positive
Lyapunov exponents [1], and hyperchaos is expected to be
rather ubiquitous in higher-dimensional systems like coupled
oscillators and maps [2]. Moreover, hyperchaotic behavior
has been experimentally observed in electronic circuits [3],
NMR lasers [4], p-Ge semiconductor systems [5], and
chemical reactions [6]. When the equations governing the
time evolution of the dynamical system are known (either in
continuous or discrete time) the chaos-hyperchaos transition
can be investigated as a system parameter is varied so as to
reach a critical value, for which the second largest Lyapunov
exponent, \,, crosses zero [7]. On the other hand, if the
dynamical equations are not known a priori, as it is often the
case in a physical experiment, the task of determining the
chaos-hyperchaos transition becomes considerably more dif-
ficult.

Let us first imagine that one tries to use delay coordinates
and a phase-space embedding from a single scalar time series
of the system under study, using a measurement function
h:R4—R™[8]. Since the minimal phase-space dimension for
observing a hyperchaotic attractor is four (for a continuous
system), the embedding process introduces spurious fold-
ings. The projection of a hyperchaotic attractor in RY onto R
thus results in false neighbors which cannot be generally
removed by increasing the embedding dimension d [9]. An-
other problem related to the embedding of hyperchaotic at-
tractors occurs when the largest Lyapunov exponents are
such that N\, is sufficiently larger than A,>0. In this case,
measurements made a long time ago are not relevant to the
present state of the system, such that the reconstructed attrac-
tor diverges exponentially as the embedding dimension d
[10].

On account of the many problems that arise when the
chaos-hyperchaos transition is investigated in systems where
only a single scalar time series is available, it would be use-
ful to exploit other dynamical characterizations. In this paper
we propose the use of recurrences to investigate the param-
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eter value where the chaos-hyperchaos transition occurs in a
system, given only a univariate time series from which one
can make a d-dimensional embedding using the vectors X;
={X1 Xy Xix2rs -+ s Xin(a—1)-)» Where 7 is the delay [11].

Recurrence plots (RPs) are two-dimensional graphical
representations of the matrix [12-14] R; ;=0(e-|x;—x;]|),
i,j=1,2,...,N, where x; e R4 represents the reconstructed
dynamical state at time i, € is a predetermined threshold,
O(--+) is the unit step function, and |- -+|| stands for the Eu-
clidean norm, and N is the total number of points. The RP is
thus obtained by assigning a black (white) dot to the points
for which R; ;=1 (0) [10,12].

Recurrence quantification analysis (RQA) consists of a
series of measures obtained from a RP which can elucidate
various aspects of the system behavior [15]. As an example,
stationary time series yield RPs which are homogeneous
along a diagonal line. Moreover, if the RP shows a cloud of
points with a homogeneous yet irregular distribution, then
the time series has a pronounced stochastic nature. On the
other hand, the formation of patterns in RPs may indicate
stationary chaotic behavior, allowing the computation of dy-
namical invariants, such as the second-order Rényi entropy
and correlation dimension [16,17].

The key idea of this paper is that RQA furnish signatures
for the chaos-hyperchaos transition. We use a paradigmatic
example, a system of coupled chaotic maps, for which this
transition can be readily investigated using the conventional
approach, such that it is possible to compare the results with
those obtained from RQA. Moreover, as an example of a
chaotic system of physical interest we considered a system of
two coupled Chua-Matsumoto circuits, where the transition
from hyperchaos to chaos have been described from the cor-
responding Lyapunov spectrum [18]. The recurrence-based
diagnostics we consider show that, after the transition from a
hyperchaotic to a chaotic attractor, there is a marked increase
in our ability to quantify the deterministic content of the time
series. This allows recurrence-based diagnostics to be ap-
plied to detect this transition in time series from experimen-
tal systems, where we barely have a prior knowledge of the
governing dynamical equations.

The paper is organized as follows: In the second section
we briefly describe the RQA numerical diagnostics used to
analyze the time series. Section III analyzes systems of
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coupled chaotic maps as examples of systems undergoing
chaos-hyperchaos transitions from the Lyapunov spectrum
point of view. Section IV outlines our results for the chaos-
hyperchaos transition in systems of coupled chaotic maps
using recurrence quantification analysis. Section V presents
an application to coupled Chua-Matsumoto circuits. The last
section contains our conclusions.

II. RECURRENCE QUANTIFICATION ANALYSIS

In the framework of RQA we have a number of quantita-
tive diagnostics of the distribution of points in a RP, forming
there are three basic kinds of structures [14]. The first kind is
single, or isolated points, which occur if the dynamical states
are rare, do not persist for any time, or fluctuate heavily. The
recurrence rate (R,) is the probability of finding a black re-
currence point (for which R, ;=1), or

N
1
R.=— > R, (1)
Nzi,j:l;i#j "

where N? is the total number of pixels (black or white) in a
RP. We remark that the main diagonal points are excluded
from the double sum, since each point is recurrent with itself.

Diagonal lines are structures in a RP parallel to the main
diagonal R;;=1, i=1,2,...,N, and defined as

Ri+k,j+k=1 U=1’25'.'N;k=1’27”"€)a

R;;=Rips1j1641=0, (2)

where ¢ is the length of the diagonal line, which occurs when
a segment of a given trajectory (in phase space) runs parallel
to another segment. In other words, when a RP presents a
diagonal line, two pieces of a trajectory undergo for a certain
time (the length of the diagonal) a similar evolution and visit
the same region of phase space at different times. This is the
key idea of recurrence and thus a clearcut signature of deter-
minism. Accordingly, we compute P(€)={€;;i=1,2,...N,},
which is the frequency distribution of the lengths €; of diag-
onal lines, and N, is the absolute number of diagonal lines,
with the exception of the main diagonal line which always
exists by construction.
The determinism is defined as

€

> €P(0)
€=(min
D=—tr——, (3)
> R,

i,j=1,i#j

where €,,;,=2 is the minimum length allowed for a diagonal
line, whereas the maximum diagonal length is €,
=max({¢;,i=1,2,...N.}). Thus, the determinism measures
the percentage of points in a RP belonging to diagonal lines.
Other related quantities are the ratio between D and R, and
the average diagonal length,
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Following Eckmann et al. [12] the lengths of the diagonal
lines are related to the inverse of the largest positive
Lyapunov exponent of the system. Likewise, the divergence
1/€ ax 1s related with the Kolmogorov-Sinai (KS) entropy of
a dynamical system, or the sum of its positive Lyapunov
exponents.

III. CHAOS-HYPERCHAOS TRANSITION IN CHAOTIC
COUPLED MAPS

Coupled one-dimensional maps are a natural choice for
studying the chaos-hyperchaos transition, since the dynamics
of each uncoupled map may be chosen to be simple enough
to allow an analytical approach, even when the maps become
coupled. This is the case, for example, of piecewise linear
maps x+—> f(x)=Bx(mod 1) which, for 8> 1, exhibit strong
(transitive) chaos [19].

Let us consider first, for the sake of generality, a system of
N globally coupled piecewise-linear maps, for which all
maps are coupled with each other, regardless of their mutual
distance in a one-dimensional lattice,

N
D=+ S G (=12, 0.),

J=1j#i

(5)

where f(x)=px and the mod 1 operation is performed after
the application of Eq. (5) in order to keep the variable x in
the interval [0, 1]. In other words, each map is coupled with
the “mean field” of all the other maps with variable strength
K>0. This is a system extensively investigated, especially
due to its applications to neural networks [20].

The special form of coupling expressed by Eq. (5) enables
us to obtain some analytical results on the dynamics of the
coupled map system, like its Lyapunov spectrum and
Kolmogorov-Sinai entropy [21]. The former is comprised by
N Lyapunov exponents given by

A =InpB, (6)

1
B{I—K<1+N_

i.e., the Lyapunov spectrum is (N—1)-fold degenerate. For
B> 1 the system is chaotic since A; >0, and hyperchaotic for
N;>0. Hence the hyperchaos-chaos transition occurs for a
critical coupling strength K satisfying \;(Kc)=0, and so
given by

\=In 1)” (j=23,.N), (1)
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TABLE 1. Values of the critical coupling strength for different
lattice sizes and B=3.

N Kcy Ker
3 4 8
9 9
19 36 72
57 57
57 112 224
171 171

Ko = a*(N)<l - é) for Koy < a*,
Kc(B.N) = (8)

1
Ko = a*(N)(l + E) for K¢y > a*,

where

a*(N)=1+ )

N-1’

showing that the critical coupling strength values for obtain-
ing a chaos-hyperchaos transition depend both on B and the
lattice size N, i.e., K. is an extensive quantity. In the ther-
modynamic limit (N—o) we have that a* goes to unity.
From now on we shall use =3, such that K, :%a*(N) and
Kcz=%a*(N). Their values for some lattice sizes are indi-
cated in Table L.

The general aspects of the system dynamics can be under-
stood from this point of view, as follows. For small enough
values of the coupling strengths, i.e., K <K, the maps are
so weakly coupled that their chaotic evolutions are noncor-
related, and the system attractor is supposedly a high-
dimensional set in the N-dimensional phase space of the
coupled map system. As K crosses K-q, however, since the
Lyapunov spectrum presents a (N—1)-fold degeneracy, all
but one Lyapunov exponent becomes positive for K> K. In
this case the chaotic maps synchronize, such that the system
attractor collapses to the synchronization manifold, which is
a one-dimensional subspace given by [22]

x,(1) =x,(2) = -+ =x,(N) (10)
for any time n.

In fact, the synchronized state (10) exists for any value of
the coupling strength K, for it is a valid solution of the
coupled map lattice (5). If K<K_, it is not observed, how-
ever, because it is transversely unstable, i.e., the synchro-
nized state is unstable under infinitesimal displacements
along directions transversal to the synchronization manifold.
In other words, if a synchronized state is actually observed,
what happens for K <K <K, it is because of its transver-
sal stability. By the same token, when K=K, the synchro-
nized state loses transversal stability and we return to a non-
synchronized, high-dimensional hyperchaotic attractor.
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Hence, the hyperchaotic state refers to the nonsynchro-
nized attractor for the coupled system, whereas the chaotic
state is the synchronized one. This is a particular case of the
chaos-hyperchaos transition, namely when there is a syn-
chronization manifold for the coupled system. On the other
hand, this is not an extremely stringent requirement. It is
straightforward to derive necessary, albeit not sufficient con-
ditions for the existence of a synchronized state [23]. Let us
consider a general form of a coupled map lattice, for a state
variable x,(i) at discrete time n and attached to the site i
=1,2,...N,

Xt (0) = 20 Bigf (,()) = f,(0)) + 2 83/ (7).
J J
(11)

where the local dynamics is governed by the map x— f(x),
for x€[0,1], and g; are coupling coefficients. While the
uncoupled state variables are always bound to the unit inter-
val, for the coupled map lattice (11) in order to have
x(i), €[0,1] for all maps and further times, the following
necessary and sufficient conditions must hold for all i, j:

N

B;=0 and0<X B,<l, (12)
Jj=1

which are satisfied, for example, by the piecewise linear map
f(x)=Bx(mod1). The synchronization manifold defined in
(10) is invariant under the system dynamics if and only if the
summation in the second of conditions (12) is the same for
all rows of the matrix B;;. In view of Eq. (11) this implies
that Ejy:] 8ij=0, which is fulfilled by a large number of cou-
pling prescriptions, including Eq. (5) and other forms as
well, like local and power-law couplings for example.

IV. RECURRENCE-BASED SIGNATURES OF THE
CHAOS-HYPERCHAOS TRANSITION

The coupled map system can be regarded, at first, as a
black-box, which would give us only the output of some
map, like x,(2), as a function of discrete time n. This would
be the analogue of the situation encountered by an experi-
menter when he (or she) is measuring some physical quantity
from a supposedly complex system whose governing equa-
tions are poorly or not known in advance. We make recur-
rence plots of the time series so obtained for different values
of K, in order to investigate when and how the chaos-
hyperchaos transition occurs.

From Table I, in the case of N=3 coupled maps (with B8
=3), the values of K for which the chaos-hyperchaos transi-
tion occur are K= 0.44 and K, ~0.88. The time series for
values of K before the transition [Fig. 1(a)] and after [Fig.
1(b)] are hardly distinguishable. On the other hand, their
corresponding recurrence plots do show some different char-
acteristics, although a more precise characterization would
need the use of recurrence quantification analysis.

Special emphasis has been put on the following quantifi-
ers: (i) The recurrence rate (R,), the determinism (D), the
average diagonal length L, and the maximum diagonal length
€ max- All these quantities deal with the properties of diagonal
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FIG. 1. Time evolution (top) and recurrence plots (bottom) of
the variable x,(2) for a coupled map lattice with S=3, N=3 and (a)
K=0.3 and (b) K=0.8. We have used an embedding dimension d
=1 and delay 7=1, with a cutoff radius equal to 0.01 times the
phase-space diameter.

lines, since they measure our ability to detect the underlying
determinism of the time series. Figure 2 shows the variation
of these quantifiers with the coupling strength K for N=3
coupled maps.

The recurrence rate suffers a sudden increase exactly at
the point K-; when there is a transition from hyperchaos
(K<K¢;) to chaos (K> K ) [Fig. 2(a)]. A more pronounced
increase at the transition is exhibited by the determinism
[Fig. 2(b)]. The observed decrease of determinism before the
transition is basically a coupling effect, whereas the plateau
observed after the transition is a consequence of the station-
arity of the system, since it is now on the synchronization
subspace.

Similar conclusions hold for the average diagonal length
[Fig. 2(c)] and maximum diagonal length [Fig. 2(d)]. The
common information conveyed by these quantifiers is that
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FIG. 2. Dependence of some recurrence quantifiers with the
coupling strength for N=3 coupled map lattices with B8=3: (a) re-
currence rate; (b) determinism; (c) average diagonal length; (d)
maximum diagonal length.
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FIG. 3. Dependence of some recurrence quantifiers with the
coupling strength for N=57 coupled map lattices with B=3: (a)
Recurrence rate; (b) determinism; (c) average diagonal length; (d)
maximum diagonal length.

the degree of determinism increases as the system goes from
a large-dimensional and hyperchaotic attractor to a low-
dimensional chaotic one, actually located at the synchroniza-
tion manifold. This ability results from the strong contraction
suffered by the system attractor when K crosses K.;. Two
neighbor trajectories, after the transition, are constrained to
move strictly on the one-dimensional synchronization mani-
fold, thus increasing the probability of having recurrences.
From Fig. 2(a) this increase is very small (less than 8%) but
nevertheless easily detectable, going approximately from
0.54% to 0.58% of recurrent events.

As we have seen in the preceding section, the chaos-
hyperchaos transition point depends also on the lattice size,
when a chaotic coupled map lattice is considered. We have
verified this fact using recurrence quantification analysis, our
results being depicted in Fig. 3. All quantifiers are shown to
suffer a quite abrupt variation when K takes on its first criti-
cal value K-;=0.655. Notice that the second critical value is
not actually observed, since we have restricted the value of K
to be less than the unity. The recurrence has the most distinc-
tive behavior, for it presents a peak at K., having been
grown and decayed after this critical value [Fig. 3(a)]. This
behavior, absent for a few coupled maps, is expected only for
larger lattices, and the broad peak before the transition in-
creases its height with N (Fig. 4). The large fluctuations for
N=19 and N=57 are caused by an intermittent switching
between states close to the synchronization subspace and
nonsynchronized ones. This phenomenon has been called
chaos-hyperchaos intermittency in Ref. [18].

The determinism, on the other hand, increases almost
50% and it is clearly an indicator of the transition from hy-
perchaos to chaos, thanks to the dramatic shrinking of the
system attractor to just one phase-space dimension [Fig.
3(b)]; the other diagnostics leading to the same conclusion
[Figs. 3(c) and 3(d)]. The attractor shrinking seems not to be
uniform, as suggested by Fig. 5, where the bifurcation dia-
gram in the synchronization manifold is presented for differ-
ent lattice sizes. The hyperchaos-chaos transition coincides
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FIG. 4. Dependence of the recurrence with the coupling strength
for different values of the lattice size.

with the value of K where the natural measure in the syn-
chronization manifold extends over all of the [0, 1] interval.
Since before this value the natural measure occupies a
smaller interval this would mean that the shrinking of the
system attractor occurs mainly in the transversal directions.
Due to the large dimensionality of the phase space, however,
this prediction is quite difficult to be directly verified.

So far in this paper we have used stationary time series
(the parameters were kept fixed in the analyzed series). In
order to demonstrate that our results can also be applied to a
nonstationary time series, we have artificially created a non-
stationary series from the deterministic evolution equations
in the following way: We start our system using K=0 (un-
coupled maps). We allow the system to stay with the same K
value for Z time steps, where Z is an integer randomly (with
uniform probability) chosen in the interval 2<Z<21. After
Z time steps, a new K value is calculated as K,.,=K+AK,
where AK is a randomly chosen real number within the in-

(@)

K (®)

K ©

0.8

FIG. 5. Bifurcation diagrams in the synchronization manifold
for different lattice sizes: (a) N=3; (b) N=19; (c) N=57. The sud-
den increase of the density of points coincides with the hyperchaos-
chaos transition.
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FIG. 6. Dependence of some recurrence quantifiers with the
coupling strength for N=3 coupled map lattices with =3 and K is
randomly changed: (a) Recurrence rate; (b) determinism; (c) aver-
age diagonal length; (d) maximum diagonal length.

terval 107 <AK < 107>. This procedure results in a time se-
ries with 2.2 X 10° points that is analyzed in blocks of 1000
points. We have used a window shift equal to 2, such that a
large (998) number of points belonging to a block, belongs
also to the following block and so on until the end of the
entire time series. Figure 6 displays our results. As we can
observe the transition from hyperchaos to chaos is still ob-
served in the nonstationary series. Nevertheless the exact
value of K for the transition is blurred by our procedure.
Even so, a clear signature of the transition is still observable.

V. HYPERCHAOS-CHAOS TRANSITION IN COUPLED
CHUA-MATSUMOTO CIRCUITS

In order to see the application of recurrence quantification
analysis to locate the hyperchaos-chaos transition in a cha-
otic system of physical interest, we consider two coupled
identical Chua-Matsumoto circuits [24]. Let (x;,y;,z;) and
(x5,¥2,25) be the dimensionless dynamical variables for each
circuit. The coupled system is then described by the follow-
ing set of equations [18]:

dxl

Eza[)’l—xl—f@ﬁ)], (13)
d
%:xl—y1+z1+[((y2—y1), (14)
t
dz,
=By, 15
dr Byi (15)
dx
—r=aln-n-f). (16)
t
dy
7:=x2—y2+zz+M(y1—y2), (17)
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_=_By2’ (18)

where the piecewise-linear characteristic curve of each cir-
cuit is described by the normalized functions

fx) =bx; + %(a—b)(le +1|=]x; -1

), (19)

), (20)

where «, B, a, and b are constants. The specific type of
coupling assumed here acts as a negative feedback on each
circuit. In the following we shall consider the case in which
the coupling is unidirectional, i.e., M=0 with K#0, or a
master-slave configuration.

In the following we choose the same parameter values
as in Ref. [18], namely a=10.0, B=14.87, a=-1.27, and
b=-0.68, such that each circuit displays chaotic behavior
when uncoupled, with a double-scroll chaotic attractor cor-
responding to the initial conditions x;(0)=0.010, x,(0)
=0.011, y,(0)=z,(0)=y,(0)=2,(0)=0. The coupled system
(K#0) has a six-dimensional phase space where the syn-
chronized state, given by the simultaneous conditions x;(z)
=x,(1), y,(1)=y,(1), z,(t)=2,(¢), defines a three-dimensional
synchronization subspace.

The Lyapunov spectrum is comprised of two sets of ex-
ponents: {\j,\,}, where the first set, N\j={\;,\,,\3}, con-
tains the three ordered exponents related to the synchronized
orbit. The second set of conditional (and ordered) Lyapunov
exponents, N | ={\4,\s,\q}, is related to the directions trans-
versal to the synchronization subspace. If the maximal trans-
versal exponent is negative (A, <0) and the maximal parallel
exponent is positive (A;>0) there is a chaotic attractor em-
bedded in the synchronization subspace, whereas if A, >0
and \; >0 there is a hyperchaotic attractor. Fixing all param-
eters but increasing the coupling strength indicates that, at
K=K_.~1.17 the system attractor evolves from hyperchaos
to chaos, following the transition from a nonsynchronized to
a synchronized trajectory.

We have chosen the output x,(z) of the slave circuit as the
time series to apply recurrence quantification analysis (simi-
lar results were obtained from the other variables of the slave
circuit). In Fig. 7 we show the variation with the coupling
strength of the four recurrence-based diagnostics already
used for coupled maps. We observed a consistent increase of
all after the transition takes place (indicated as a dashed
line). In spite of the scales having been adjusted to ease of
visualization, the most dramatic increase after the
hyperchaos-chaos transition occurred with the determinism
(which when augmented 3 times is the value after the tran-
sition), followed by the maximum diagonal length (which
increase by 67%). Both the recurrence rate and the average
diagonal length have an increase of about 10% of its value
prior to the synchronization.

f(xy) =bx, + %(a— b)(|xy+ 1| =|x, = 1

VI. CONCLUSIONS

In this paper we have used the recurrence properties of
chaotic trajectory to give a precise localization of the transi-
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FIG. 7. Dependence of some recurrence quantifiers with the
coupling strength for two unidirectionally coupled Chua-
Matsumoto circuits using the same parameters as in Ref. [18] re-
currence rate; (b) determinism; (c) average diagonal length; (d)
maximum diagonal length. The dashed line indicates the
hyperchaos-chaos transition.

tion from a hyperchaotic to a chaotic attractor. Recurrence
quantification analysis can act as a telescope in order to re-
veal the fine structure of a time series. We investigated this
transition using coupled chaotic maps (using a global, or
mean-field coupling scheme, where a system interacts with
all other ones) and unidirectionally coupled Chua-
Matsumoto circuits.

When the coupling strength is comparatively low, the dy-
namics occurs at a typically high-dimensional chaotic attrac-
tor, with more than one positive Lyapunov exponent (hyper-
chaos). As the coupling strength increases past a critical
value (which we can predict analytically from the corre-
sponding Lyapunov spectrum) the maps become synchro-
nized and the attractor shrinks to a one-dimensional synchro-
nization subspace, where there is only one positive Lyapunov
exponent. Hence, the approach to a stable synchronization
state marks also the hyperchaos-chaos transition.

Since, in the low-dimensional synchronized state, the tra-
jectory is expected to present more recurrences than in a
higher-dimensional chaotic attractor, the recurrence-based di-
agnostics present a significant increase as this transition
takes place. This can be useful for describing chaos-
hyperchaos transition from univariate time series coming
from, e.g., measurements of some physical system behaving
chaotically. We remark that usual characterization methods
based on some form of phase-space reconstruction (as delay
coordinates) fail to give an accurate description of the tran-
sition to hyperchaos, when it is known to occur.

Our results have confirmed in a clear-cut fashion the in-
crease of recurrence properties following the transition to a
synchronized state, but we think that similar results can be
obtained even though the system does not present such a
dramatic dimension shrinking as that occurring in our
coupled map system. Hence, even though the physical sys-
tem under consideration does not exhibit a synchronization
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subspace or other low-dimensional submanifold where the
chaotic attractor lies, we claim that the recurrence based di-
agnostics are sensitive enough to detect the dimensional re-
duction characteristic of a chaos-hyperchaos transition.
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