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We investigate the spatiotemporal dynamics of a network of coupled nonlinear oscillators, modeled by
sine-circle maps, with varying degrees of randomness in coupling connections. We show that the change in the
basin of attraction of the spatiotemporal fixed point due to varying fraction of random links, p, is crucially
related to the nature of the local dynamics. Even the qualitative dependence of the spatiotemporal regularity on
p changes drastically as the angular frequency of the oscillators changes, ranging from a monotonic increase or
monotonic decrease to nonmonotonic variation. Thus it is evident here that the influence of random coupling
connections on spatiotemporal order is highly nonuniversal and depends very strongly on the nodal dynamics.
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I. INTRODUCTION

The dynamics of spatially extended systems has been a
focus of intense research activity in the past two decades. In
recent years it has become evident that modeling large inter-
active systems by finite-dimensional lattices on the one hand
and fully random networks on the other is inadequate, as
various networks, ranging from collaborations of scientists to
metabolic networks, do not fit in either paradigm �1,2�. Some
alternate scenarios have been suggested, and one of the most
popular ones is the small-world network �3�. Here one starts
with a structure on a lattice—for instance, regular nearest-
neighbor connections. Then each link from a site to its near-
est neighbor is rewired randomly with probability p, i.e., the
site is connected to another randomly chosen lattice site. This
model is proposed to mimic real-life situations in which non-
local connections exist along with predominantly local con-
nections.

There is much evidence that random nonlocal connec-
tions, even in a small fraction, significantly affect geometri-
cal properties, such as the characteristic path length �3�.
However, their implications for dynamical characteristics
are still unclear and even conflicting. While the dynamics of
coupled oscillators and coupled maps on regular lattices
�known as “coupled-map lattices” �CMLs�� has been exten-
sively investigated �4�, there have been far fewer studies on
the spatiotemporal dynamics of nonlinear elements on net-
works of different topologies �5�. Most studies so far have
indicated that the regularity of systems increases monotoni-
cally with p �6�.

In this paper we will provide evidence of a system where
the dependence of spatiotemporal regularity on the degree of
randomness in coupling connections is highly nonuniversal.
We will show how this dependence ranges from monotoni-
cally increasing to monotonically decreasing via nonmono-
tonic variation as the local dynamics changes. Thus we will
demonstrate that the interplay between local dynamics and
connectivity acts in nontrivial and nonintuitive ways, and so
even the qualitative effect of random links on spatiotemporal
regularity can be completely reversed by changing the nodal
dynamics.

II. MODEL

Here we consider nonlinear oscillators coupled to nearest
neighbors on a regular ring, with some fraction p of the

regular links rewired randomly. The individual sites �nodes�
are modeled by sine-circle maps, which have widespread rel-
evance for oscillatory phenomena �7� and are given as

f�x� = x + � −
K

2�
sin�2�x� ,

where K measures the strength of the nonlinear term and �
represents the natural frequency of the map in the absence of
nonlinearity �i.e., when K=0�. We restrict our studies to the
parameter region 0���

1
2� and K=1. In this region, the

single sine-circle map settles down to the spatiotemporal
fixed point x�= 1

2� sin−1� 2��
K �.

Under diffusive coupling, such a coupled sine-circle map
lattice is given as

xn+1�i� = �1 − ��f„xn�i�…

+
�

2
�f„xn�i − 1�… + f„xn�i + 1�…� �mod 1� , �1�

where i=1, . . . ,L denotes the site index, n denotes the time
index, and � represents the coupling strength between the
sites �0���1�. Periodic boundary conditions have been
used; namely, one has a ring of oscillators.

Earlier studies of this coupled-map lattice have been car-
ried out for various types of initial conditions �8�. In particu-
lar, the evolution of this coupled-map lattice with random
initial conditions shows interesting spatiotemporal dynamics
including spatiotemporal fixed points, spatial and spatiotem-
poral intermittency, and spatiotemporal chaos �9�.

Now we introduce randomness in this regular lattice by
rewiring the nearest-neighbor links with a probability p to
randomly chosen sites on the lattice. Namely, the connectiv-
ity matrix of the system, on average, has a fraction p of
random connections replacing the regular links. So each site
connects to two other sites, and with probability p these are
random sites in the system and with probability �1− p� they
are the regular nearest neighbors. The case of p=0 corre-
sponds to the completely regular lattice, and p=1 corre-
sponds to a completely random network of coupled maps.
Such a model of connectivity has seen much research focus
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in recent years, as many real networks, ranging from biologi-
cal to human engineered, have been found to fall in this class
�1�.

Also note that here we consider the behavior of the sys-
tem under static rewiring; namely, the randomness in spatial
coupling is quenched or “frozen” in time. Ensembles of such
randomly rewired systems are studied.

III. RESULTS

A. Basin of attraction for the spatiotemporal fixed point

We study the spatiotemporal dynamics of this system,
starting from random initial conditions under varying rewir-
ing probabilities p �0� p�1�, for different realizations of
static rewiring.

Specifically we obtain the basin of attraction for the spa-
tiotemporal fixed point, B, by calculating the fraction of re-
wiring configurations which leads to a spatiotemporally
steady state for different �� ,�� values. Figure 1 shows a
gray-scale plot of B in a large region of parameter space for
different values of p. The white areas indicate the parameter
regions, where all initial coupling configurations lead to a
spatiotemporal fixed point; namely, all the sites in the system
relax to the fixed point x� such that x�i�=x� for all i
=1, . . . ,N and for all time n. The black regions indicate pa-
rameter regions where none of the coupling configurations
yield a spatiotemporal fixed point. The gray areas indicate
parameter regimes where 0�B�1, i.e., the spatiotemporal

fixed point coexists with other dynamical behaviors, and the
spatiotemporal fixed point is not an attractor of the dynamics
for all coupling configurations.

Figure 1�a� shows the basin of attraction when the rewir-
ing fraction is equal to zero or, in other words, the ring has
only regular-nearest neighbor connections. As the rewiring
fraction p is varied, the spatiotemporal fixed-point regions
also show a change. Figures 1�b�–1�f� display the basin of
attraction of the spatiotemporal fixed point for p=0.04, 0.1,
0.3, 0.5, and 0.8. We see that the dependence of this basin of
attraction on the degree of random rewiring is qualitatively
very different for different values of � and �. Interestingly
this variation ranges from a monotonic increase to a mono-
tonic decrease, as well as nonmonotonic behavior, along dif-
ferent “cuts” in �� ,�� space.

Further, the dependence of spatiotemporal order on the
rewiring probability, averaged over a large parameter range,
varies nonmonotonically with p. This is clear from the fact
that the extent of the spatiotemporal fixed-point basin at in-
termediate p �p�0.1–0.3� in Figs. 1�c� and 1�d� is much
smaller than that for low and high p. So the gray-scale basin
plots in Figs. 1�c� and 1�d� appear far less “white” in general,
across large parameter regimes, as compared to Figs. 1�a�
and 1�f�.

Figure 2 shows the variation of the basin of attraction, B,
with rewiring fraction p at �=0.5 and for �=0.0, 0.02, 0.04,
and 0.06. These plots have been obtained for 50 rewiring
configurations for a lattice of size L=200 after discarding
10 000 transients. When the natural frequency of the circle
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FIG. 1. Basin of attraction of
the spatiotemporal fixed point x�

obtained for different random re-
wiring probabilities: �a� p=0.0,
�b� p=0.04, �c� p=0.1, �d� p=0.3,
�e� p=0.5, and �f� p=0.8. These
plots have been obtained for 50
rewiring configurations for a lat-
tice of size L=200 after discard-
ing 5000 transients.
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map is equal to zero ��=0�, the ring does not yield a spa-
tiotemporal fixed point when coupling connections are com-
pletely regular. However, the regularity of the system in-
creases as the rewiring fraction p is increased. This can be
seen in Fig. 2�a�, in which a global spatiotemporal fixed-
point attractor is obtained for values of the rewiring fraction
p�0.6.

The bifurcation diagram in Fig. 3�a�, showing the spa-
tiotemporal dynamics of the system with respect to the frac-
tion of random links p, further underscores this feature. Here
the system has a complex spatial pattern for lower values of
the random rewiring probability. However, it settles down to
the spatiotemporal fixed point �x�=0, in this case� as the
fraction of random links, p, approaches 1.

In contrast, the variation of the basin of attraction, B, in
the case where the frequency � is equal to 0.02 is shown in
Fig. 2�b�. Here, we see that the system yields a spatiotempo-
ral fixed point with probability 1 for zero rewiring fraction p,
but shows a nonmonotonic variation as the rewiring fraction
p is changed. We see that although the basin of attraction
decreases to zero in the interval p�0.1–0.4, it gradually
increases for rewiring fractions, p�0.4, until it again regis-
ters a decrease in the large-p limit �10�. Hence, the basin of
attraction, B, shows a nonmonotonic variation with change in
p. A similar nonmonotonic variation is seen in Fig. 2�c�,
where �=0.04.

In the case of �=0.06, as displayed in Fig. 2�d�, the basin
of attraction decreases to zero as the rewiring fraction is
increased. In this case, the system settles to the spatiotempo-
ral fixed point x� for smaller rewiring fractions, but exhibits
a complex spatial pattern when the degree of rewiring in the
system is increased. This is further illustrated in the bifurca-
tion diagram of the system shown in Fig. 3�b�. This is ex-

actly the opposite trend to that observed in the case of �
=0. So, as the local frequency of the nonlinear oscillator
changes, the effect of random rewiring on spatiotemporal
properties is completely reversed.

Hence, we see that for the same coupling strength � and
for the same set of rewired configurations, the basin of at-
traction of the spatiotemporal fixed point shows a very strong
dependence on the local dynamics—namely, on the fre-
quency � of the nonlinear oscillators. So it is evident that the
spatiotemporal regularity depends crucially, not just quanti-
tatively, but also qualitatively, on the nodal dynamics.

Similarly, when the nodal dynamics is fixed and the cou-
pling strength � is varied, we see that the basin of attraction
shows a nonmonotonic variation with change in rewiring
fraction p. This is illustrated in Fig. 4 where the basin of
attraction has been plotted for �=0.01 and for various rep-
resentative values of the coupling strength �.

Hence, the spatiotemporal regularity of the dynamics on a
network depends quite crucially on the interplay between the
nodal dynamics and the network topology. That is, coupling
configurations with the same degree of randomness may en-
hance or inhibit spatiotemporal order depending on the prop-
erties of the local oscillators.

Additionally we have checked the robustness of our ob-
servations for K close to 1. Qualitatively similar behavior is
observed for a band of K around 1.

B. Analysis

The coupled sine-circle map lattice can be written in vec-
tor form as

xn+1 = H · f�xn� , �2�

where n is the discrete time index, x is an N-dimensional
vector, f�x� is the sine-circle map, and H is the connectivity
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FIG. 2. Variation of the basin of attraction, B, with the rewiring fraction p plotted for the circle map frequencies �
=0,0.02,0.04,0.06 and coupling strength �=0.5.
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as a function of the fraction of random links, p,
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at �=0.5. Here, n=1, . . . ,5 iterations have been
plotted after discarding 5000 transients. Note that
for regions where 0�B�1, there are rewiring
configurations that lead to the spatiotemporal
fixed point, coexisting with rewiring configura-
tions that yield spatiotemporal chaos.
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matrix. For the case of regular rewiring p=0, H is defined as

H =�
�1 − �� �/2 0 ¯ 0 �/2

�/2 �1 − �� �/2 0 ¯ 0

0 �/2 �1 − �� ¯ 0 0

] ] ] ] ] ]

0 ¯ 0 �/2 �1 − �� �/2
�/2 0 ¯ 0 �/2 �1 − ��

� .

The Jacobian of the coupled-map lattice obtained after lin-
earizing around the fixed-point solution x�= 1

2� sin−1� 2��
K � is

then

J = D�H� · f��x�� .

Since H is a circulant matrix �11�, its eigenvalues are given
by

�l = �1 − �� +
�

2
�	l + 	l

−1� ,

where

	l = exp�2�il

N
	, l = 0, . . . ,N − 1.

Hence, the eigenvalues of the Jacobian J are as follows:


l = �1 − ��f��x�� + � cos�2�l

N
	 f��x�� .

The largest eigenvalue corresponds to the l=0 term—i.e.,

max= f��x��.

Now the single sine-circle map is stable in our interval of
interest, namely, 0���

1
2� and K=1.0, as

f��x�� = 1 − K cos�2�x�� = 1 − K
1 − 4�2�2 � 1.

So for all our cases, the analysis above indicates that the
synchronized fixed point is stable to small perturbations.

For the case of random rewiring—namely, p�0—one
can examine the linear stability of the spatiotemporal fixed
point by considering suitable connectivity matrices in Eq. �2�
�6�. For instance, for the case of fully random static connec-
tions p=1, one has H= �1−��I+ �

2C, where I is the identity
matrix and C is an N�N sparse nonsymmetric matrix with
two random entries of 1 on each row. Now the real part of
the eigenvalues of different realizations of the connectivity
matrix C is bounded between −2 and 2. So the eigenvalues
of the connectivity matrix H are bounded between −1 and 1
for 0���1. So again, as for p=0, linear stability indicates
that the spatiotemporal fixed point in this system is stable to
small perturbations.

However, importantly, information on the size of the basin
of attraction of the spatiotemporal fixed point cannot be ob-
tained from linear stability analysis in this system. Strictly
speaking, asymptotic analysis is justified only in a small
neighborhood of the attractor. Namely, the stability analysis
is relevant only to initial states very close to the spatiotem-
poral fixed point—i.e., with initial x�i� close to x� for all i.
Such initial states are, of course, of measure zero in the space
of all initial conditions in such large multivariable systems.
Typically, then, stability analysis is too local a criterion to
indicate any global properties, such as the size or boundaries
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FIG. 5. �Color online� Space-time plots obtained for various values of the circle map frequencies � and rewiring probabilities p with the
coupling strength fixed at �=0.5. �a� �=0.0, p=0.0, where the basin of attraction of the spatiotemporal fixed point B�0; �b� �=0.04, p
=0.5, where the basin of attraction of the spatiotemporal fixed point B�0.3; �c� �=0.06, p=0.2, where the basin of attraction of the
spatiotemporal fixed point B�0.2; and �d� �=0.06, p=0.8, where the basin of attraction of the spatiotemporal fixed point B�0.
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of the basin of attraction of different spatiotemporal states
here.

The inability of linear stability analysis to predict global
dynamical features holds true in many systems of coupled
nonlinear elements, as there typically exist multiple coexist-
ing attractors in such large interactive systems, often with
complicated �perhaps fractal� basin boundaries. Indeed the
dynamical states one obtains, apart from the spatiotemporal
fixed point, have very varied spatiotemporal patterns. Figure
5 shows some representative space-time plots of the rich va-
riety of coexisting spatiotemporal attractors in the parameter
regions where B�1. Some of the dynamical states compet-
ing with the spatiotemporal fixed point are reminiscent of
spatial intermittency �Fig. 5�a�� and spatiotemporal intermit-
tency �Fig. 5�c��.

Last, we reiterate that it is important to know the basin of
attraction of a state, as in most practical experimental situa-
tions the system cannot be prepared in definite random re-
wiring configurations, but evolves from some random con-
figuration. So the probability of obtaining a particular state
from a typical configuration �as reflected from numerics on
ensembles of rewiring configurations, such as we have pre-
sented� is most useful in order to make reasonable contact
with theoretical prediction.

IV. CONCLUSIONS

In summary, we have investigated the spatiotemporal dy-
namics of a network of coupled nonlinear oscillators, mod-
eled by sine-circle maps, with varying degrees of random-
ness in coupling connections. We showed that the variation
of the basin of attraction of the spatiotemporal fixed point,
with increasing fraction of random links p, crucially depends
on the nature of the local dynamics. Even the qualitative
relationship between spatiotemporal regularity and p changes
drastically as the angular frequency of the oscillators
changes, ranging from a monotonic increase or decrease to
nonmonotonic variation. Thus it is evident that the influence
of random coupling connections on spatiotemporal order is
highly nonuniversal here and depends strongly on the angu-
lar frequency of the nodal oscillators. This implies that the
delicate interplay between local dynamics and connectivity is
crucial in determining the emergence of spatiotemporal order
in complex networks of dynamical elements.
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