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We calculate analytically the critical connectivity Kc of random-threshold networks �RTNs� for homoge-
neous and inhomogeneous thresholds, and confirm the results by numerical simulations. We find a superlinear
increase of Kc with the �average� absolute threshold �h�, which approaches Kc��h���h2 / �2 ln�h�� for large �h�,
and show that this asymptotic scaling is universal for RTNs with Poissonian distributed connectivity and
threshold distributions with a variance that grows slower than h2. Interestingly, we find that inhomogeneous
distribution of thresholds leads to increased propagation of perturbations for sparsely connected networks,
while for densely connected networks damage is reduced; the crossover point yields a characteristic connec-
tivity Kd, that has no counterpart in Boolean networks with transition functions not restricted to threshold-
dependent switching. Last, local correlations between node thresholds and in-degree are introduced. Here,
numerical simulations show that even weak �anti�correlations can lead to a transition from ordered to chaotic
dynamics, and vice versa.
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I. INTRODUCTION

Many systems in nature, technology, and society can be
described as complex networks with some flow of matter,
energy, or information between the entities the system is
composed of; examples are neural networks, gene regulatory
networks, food webs, power grids, and friendship networks.
Often, in particular when the networks considered are very
large, many details of the topological structure as well as of
the dynamical interactions between units are unknown,
hence statistical methods have to be applied to gain insight
into the global properties of these systems. In this spirit,
Kauffman �1,2� introduced the notion of random-Boolean
networks �RBNs�, originally as a simplified model of gene
regulatory networks �GRNs�. In a RBN of size N, each node
i receives inputs from 0�k�N other nodes �with k usually
either considered to be constant, or distributed according to a

Poissonian with average K̄�N�, and updates its state accord-
ing to a Boolean function f i of its inputs; the subscript i
indicates that Boolean functions vary from site to site, usu-
ally assigned at random to each node. It was shown that
RBNs exhibit a percolation transition from ordered to cha-

otic dynamics at a critical connectivity K̄=Kc=2.
In the theory of equilibrium critical phenomena often

mean-field theories are applied as a first approach, neglecting
possible higher-order correlations in the system. This idea
also has been successfully applied to RBNs for analytical
calculation of critical points, for example using the so-called
annealed approximation introduced by Derrida and Pomeau
�3–5�. The basic premise of the annealed approximation is
that it neglects correlations between nodes and treats the sys-
tem as if links were rewired randomly at each time step. This
approximation has been applied for a variety of calculations,
but it has proven to work most successfully for the analytical
calculation of the propagation of perturbations �damage� �6�.
Recent research has revealed many surprising details of RBN
dynamics at criticality, e.g., superpolynomial scaling of the
number of different dynamical attractors �fixed points or pe-
riodic cycles� with N �7� �while Kauffman assumed it to

scale ��N �1��, as well as analytically derived scaling laws
for mean attractor periods �8� and for the number of frozen
and relevant nodes in RBNs �9,10�. Similarly, it was shown
recently that dynamics in finite RBNs exhibits considerable
deviations from the annealed approximation �that is, exact
only in the limit N→�� �11,12�. Boolean network models
have been applied successfully to model the dynamics of real
biological systems, e.g., the segment polarity network of
Drosophila �13�, dynamics and robustness of the yeast cell
cycle network �14�, damage spreading in knock-out experi-
ments �15�, as well as establishment of position information
�16� and cell differentiation �17� in development. Other mod-
els explicitly evolve RBN topology according to local rewir-
ing rules coupled to local order parameters of network dy-
namics �e.g., the local rate of state changes�, and investigate
the resulting self-organized critical state �18–20�.

A drawback of RBNs is the fact that, in spite of their
discrete nature �which makes them easy to simulate on the
computer in principle�, the time needed to compute their dy-

namics in many instances scales exponentially in N and K̄,
and often large statistical ensembles are needed for unbiased
statistics due to the strongly nonergodic character �21� of
RBN dynamics. For this reason, there exists considerable
interest in simplified models of RBN dynamics, as, for ex-
ample, random-threshold networks �RTNs�, that constitute a
subset of RBNs.

In RTNs, states of network nodes are updated according
to a weighted sum of their inputs plus a threshold h, while
interaction weights take �often discrete and binary� positive
or negative values assigned at random. The critical connec-
tivity, calculated by means of the annealed approximation,
was found to deviate slightly from RBNs �22–24�; this analy-
sis was extended to RTN dynamics including stochastic up-
date errors �25�. In particular, it was found that phase transi-
tions in RTNs with scale-free topologies �25,26� substantially
differ from both RTNs with homogeneous or Poissonian dis-
tributed connectivity and scale-free RBNs �27�. Further, dy-
namics in finite RTNs with k=const=2 inputs per node re-
cently was found to be surprisingly ordered, including, e.g.,
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globally synchronized oscillations �28�. Other approaches,
that apply learning algorithms as well as ensemble tech-
niques, present evidence that information processing of static
�29� or time-variant �30� external inputs is optimized at criti-
cality in both RBNs and RTNs.

In this paper, we extend the theoretical analysis of RTNs
in a number of respects. First, we calculate the critical con-
nectivity Kc for arbitrary thresholds h�0, and generalize this
derivation to inhomogeneously distributed thresholds hi that
can vary from node to node. This generalization, that intro-
duces an additional level of complexity to RTN dynamics, is
motivated by recent observations of strong variations in
regulatory dynamics from gene to gene in real GRNs, caused
by, for example, the frequent occurrence of canalizing func-
tions �21� and the abundance of regulatory RNA in multicel-
lular organisms which strongly influence the expression lev-
els and patterns of �regulatory� proteins �31–33�. Using the
annealed approximation and additional approximation tech-
niques, we derive a general scaling relationship between
critical connectivity Kc and �average� absolute node thresh-
old �h�, and show that Kc��h�� asymptotically approaches a
unique scaling law Kc��h���h2 / �2 ln�h�� for large �h�. Evi-
dence is presented that this asymptotic scaling law is univer-
sal for RTNs with Poissonian distributed connectivity and
threshold distributions with a variance that grows slower
than �h�2. Convergence against this scaling law is rather slow
�logarithmic in �h��; we show that, for finite �h�, scaling be-
havior can be approximated well locally by power laws
Kc��h����h�� with 3 /2���2.

Further, we establish that damage propagation functions
of RTNs with homogeneous thresholds �h� and of RTNs with

inhomogeneous thresholds with the same average �h̄�= �h� in-
tersect at characteristic connectivities Kd��h���Kc��h��,
which implies that for K̄�Kd, random distribution of thresh-

olds tends to increase damage, while for K̄�Kd, the opposite
holds. Evidence is presented that Kd��h�� converges to an
asymptotic scaling law Kd��h���h2. We compare the scaling
of Kd to the corresponding case of random-Boolean networks
�RBNs� with inhomogeneously distributed bias, param-
etrized in terms of a bias parameter 1 /2� p�1. It is shown
that Kd is not defined for RBNs in the limit p→1, which
corresponds to �h�→� in RTNs. Hence Kd constitutes an
interesting concept, yielding a different characteristic con-
nectivity which is well-defined only for RTNs.

Last, we investigate the effect of correlations between
thresholds hi and in-degree ki, while keeping all other net-
work parameters constant. We find that even small positive
correlations can induce a transition from supercritical �cha-
otic� to subcritical �ordered� dynamics, while anticorrelations
have the opposite effect. These observations also hold for
large initial perturbations, and positive correlations are
shown to have the same effect as a decrease in the average
wiring density of networks by several percent. Further, posi-
tive correlations significantly reduce the variance of the dam-
age, and hence may lead to a supression and better control of
extreme damage events.

The results of our study are summarized in Sec. IV and
possible implications for RTN-based models of gene regula-
tory networks �34–36� are discussed.

II. RANDOM-THRESHOLD NETWORKS

A random-threshold network �RTN� consists of N ran-
domly interconnected binary sites �spins� with states 	i
= 
1. For each site i, its state at time t+1 is a function of the
inputs it receives from other spins at time t:

	i�t + 1� = sgn�f i�t�� �1�

with

f i�t� = �
j=1

N

cij	 j�t� + hi, �2�

where cij are the interaction weights. If i does not receive
signals from j, one has cij =0, otherwise, interaction weights
take discrete values cij = 
1, +1, or −1 with equal probabil-
ity. In the following discussion we assume that the threshold
parameter takes integer values hi�0 �37�. Further, we define
sgn�0�=−1 �38�. The N network sites are updated synchro-
nously. Notice that we depart from the well-studied case hi
=const=0 in two respects: hi can take arbitrary values hi
�0, and it can differ from node to node �inhomogeneous
thresholds�.

Let us now have a closer look on network topology. Let K̄
be the average connectivity, i.e., the average number of in-
puts �outputs� per site, and let us assume that each interaction

weight has equal probability p= K̄ /N to take a nonzero value.
Further, let us consider the limit of sparsely connected net-

works with K̄�N. Under these assumptions, the statistical
distribution �k of in- and out-degrees follows a Poissonian:

�k =
K̄k

k!
e−K̄. �3�

Concerning thresholds hi, we will consider four cases:
constant, negative thresholds hi=const�0, thresholds dis-
tributed according to a Poissonian around the average �abso-

lute� threshold �h̄�, thresholds distributed according to a dis-
cretized Gaussian, and Poissonian distributed thresholds that
are correlated to k.

III. CALCULATING THE CRITICAL LINE

A. Uniform threshold h�0

We start with the simplest case and assume that all net-
work sites have identical integer threshold values hi	h�0.
The case h�0 is not studied here, as it may lead to the
pathological outcome of nodes set to an active state 	i= +1,
though they receive only inhibitory inputs cij �0.

Let us first calculate the probability for damage spreading
ps�k�, i.e., the probability that a node with k inputs changes
its state, if one of its input states is flipped. A straightforward
extension of the combinatorial analysis carried out in �24� for
the special case h=0 yields
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ps�k, �h�� = k−12−�k+1�
�k + �h� + 1�� k

k + �h� + 1

2
�

+ �k − �h� + 1�� k

k − �h� + 1

2
� �4�

=2−�k−1�� k − 1

k + �h� − 1

2
� �5�

for odd k− �h� with k� �h�, and

ps�k, �h�� = k−12−�k+1�
�k − �h��� k

k − �h�
2

�
+ �k + �h� + 2�� k

k + �h� + 2

2
� �6�

=2−�k−1�� k − 1

k + �h�
2

� �7�

for even k− �h� with k� �h� �for a detailed derivation, please
refer to Appendix A�. Notice that Eqs. �5� and �7� are similar,
yet not identical to the corresponding relations derived in
�25� for RTNs with probabilistic time evolution; in particular,
for the RTN with deterministic dynamics as studied here, the
relation ps

odd�k�= ps�k−1� holds only for the special case �h�
=0, whereas for �h��0, ps�k� exhibits an oscillatory behavior
�Fig. 1�.

If we know the statistical distribution function �k of the
in-degree, the average damage spreading probability �ps� per
link, where �·� indicates the average over the ensemble of all
possible network topologies that can be generated according
to the degree distribution �k, can be obtained by averaging

over the nodes’ individual damage spreading probabilities.
To calculate this quantity, one has to divide the expected

damage per node, d̄=�k=�h�
� k�kps�k , �h��, by the average num-

ber of links K̄, which gives for the probability that a ran-
domly picked link cij propagates damages from node j to
node i:

�ps��K̄, �h�� =
1

K̄
�
k=�h�

�

k�kps�k, �h�� . �8�

In particular, in the case of a Poisson distributed connectivity

with average degree K̄, it follows that

�ps��K̄, �h�� = e−K̄ �
k=�h�

N
K̄k

k!
ps�k + 1, �h�� . �9�

A derivation of this relation, together with a discussion of its
range of applicability, is provided in Appendix B �39�. Let us
now apply the annealed approximation �3�, which averages
the effect of perturbations over the whole ensemble of pos-
sible network topologies and all accessible state configura-
tions. Starting from a random initial state, the set of input
state configurations contributing to damage propagation cov-
ers all possible configurations. For the evaluation of the criti-
cal point, however, it is essential to consider the propagation
of a perturbation in the stationary state, and in this case more
care has to be applied. In the stationary state, one has to
average over all input states that have the correct proportion
of +1 and −1 states. For the networks considered in our
study, this set is identical with the full �binomial distributed�
set of input states, since half of the connections are inhibi-
tory, which means that a node sees inputs half of which are
+1 and half of which are −1 �on average�. Hence we can

approximate the expected damage d̄ after one update time
step, given that a one-bit perturbation at time t−1 is by

d̄�t + 1� = �ps��K̄, �h��K̄ , �10�

where .̄ denotes the average over all possible network topolo-
gies and all possible state configurations. If we apply a suf-
ficiently large �but finite� upper limit N to the sum in Eq. �9�,
we can numerically evaluate this formula with any desired
accuracy. Figure 2 shows the results for the first five values
of negative h of RTNs with Poissonian distributed connec-
tivity, compared to measurements obtained from numerical
simulations of large ensembles of randomly generated in-
stances of RTNs, indicating an excellent match between
theory and simulation.

B. Poisson distributed thresholds

Let us now consider the more general case of nonuniform
thresholds, i.e., networks where each site i has assigned an
individual threshold hi�0. In the simplest case, we can
imagine that the final thresholds resulted from iterated, ran-
dom decrementations �starting from h=0 for all sites�, until a

certain average threshold h̄ is reached—this process results
in Poisson distributed thresholds hi. If threshold assignment
is independent from the �also Poisson distributed� in-degree,

k

p
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,|
h|
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FIG. 1. Probability ps�k , �h � � of damage propagation, for differ-
ent values of the threshold �h�, as a function of the number of inputs
k. For large k, the curves asymptotically approach ps�1 /�k
�dashed line�. Notice the oscillatory behavior for �h � �0.
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the probabilities for k and h simply multiply, and the result-
ing average damage propagation probability is

�ps��K̄, �h̄�� = e−�K̄+�h̄�� �
�h�=0

N

�
k=�h�

N
K̄k�h̄��h�

k!�h�!
ps�k + 1, �h�� , �11�

where �h� is the average absolute threshold.
Figure 3 demonstrates that the expected damage

d̄t+1�K̄ , �h�� resulting from a one-bit perturbation at time t, as
predicted from this annealed approximation over both degree
and threshold distribution, exhibits excellent agreement with
the results obtained from numerical simulations of randomly
generated RTN ensembles. It is an interesting question how
the dynamics of RTNs with inhomogeneous thresholds com-
pares to RTNs with homogeneous thresholds. Figure 4 shows

d̄�K̄� for RTNs with different homogeneous �h � =const. and
the corresponding inhomogeneous RTNs with Poisson-
distributed thresholds with the same average �h�= �h�, as ob-
tained from the annealed approximation. One observes that

for small K̄, the curves for RTNs with inhomogeneously dis-
tributed thresholds are systematically above those of the cor-
responding homogeneous RTNs, i.e., the randomization of
node thresholds increases dynamical disorder—also, the

critical connectivities Kc��h � � �intersections with the line d̄
=1� are shifted to smaller values. However, one also realizes
that the curves intersect in the supercritical phase at charac-

teristic connectivities Kd��h � �, i.e., for K̄�Kd��h � �, inhomo-
geneity in thresholds actually reduces damage.

C. Universal scaling of the critical line

If we again assume a one-bit perturbation at time t, the
critical line Kc��h � �, that separates the ordered and the cha-
otic phase of RTN dynamics, is given by the condition

d̄�t + 1� = �ps��Kc��h��, �h��Kc��h�� = 1. �12�

Again, we can apply Eq. �9� to solve this equation for arbi-
trary h�0, however, numerical evaluation is almost impos-
sible for �h � �80 due to exponentially diverging computing

time caused by evaluation of the sum in Eq. �12� for large K̄
�40�. For estimation of the scaling behavior of Kc��h � � for
larger �h�, we are interested in a good approximation that
does not require summation over the whole network topol-
ogy, and hence neglect the variation in k, considering dam-

age propagation in the mean field limit k=const� K̄ �for de-
tails, see Appendix B�. Using the Stirling approximation,
n!�nne−n�2�n, this leads to the following approximation
for the logarithm of the damage:
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FIG. 2. Expectation value d̄ of damage one time step after a

one-bit perturbation, as a function of the average connectivity K̄,
and different �homogeneous� thresholds �h� ��h � =0 ���, �h � =1 ��,
�h � =2 �*�, �h � =3 ���, �h � =4 ����. Solid curves are the corre-
sponding analytical results obtained from the annealed
approximation.
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FIG. 3. Average damage d̄�K̄� one time step after a one-bit per-
turbation, for Poisson-distributed connectivity with average degree

K̄, and Poisson-distributed negative thresholds with average abso-
lute value �h�; points are data from numerical simulations of RTNs
�ensemble averages over 100 000 different network realizations for
each data point�, lined curves are analytical solutions �annealed
approximation�. Numerical data were sampled for �h�=0 ���, �h�
=0.3 ��, �h�=1.0 �*�, �h�=1.5 �squares�, �h�=2.5 ���, �h�=3.5 �tri-
angle�, and �h�=5.0 ���.
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FIG. 4. �Color online� Comparison of damage spreading in net-
works with homogenenous thresholds �h � =const �solid lines,
threshold values �h� as indicated� vs networks with inhomogeneous
thresholds distributed according to a Poissonian with the same av-
erage threshold �h� �curves with data points, �h�=1 ���, �h�=2 ��,
�h�=3 �*�, and �h�=4 ���; results obtained from the annealed
approximation.
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ln�d̄�K̄, �h��� �
1

2�ln K̄ − K̄ ln�1 − � �h�

K̄
�2�

− �h�ln� K̄ + �h�

K̄ − �h�
�� + C �13�

with C=ln��2 /��; solving this equation for

ln�d̄„Kc��h��, �h�…� = 0 �14�

then yields the critical connectivity Kc��h � �. Figure 5 shows
that this approximation is very accurate even for consider-
ably small, finite �h�. In particular, one can show that for
�h � �10 the relative error � between the approximation of
Eq. �14� and the result obtained from the annealed approxi-
mation vanishes ��h�−1 �Fig. 7�.

Still, Eq. �14� has to be solved numerically to calculate
Kc��h � �, and hence does not yield information about the scal-
ing behavior in the limit �h � →�. A first insight into the
expected scaling can be obtained from an analysis of the
scaling behavior of the maximum of ps�k , �h � � with respect to
�h�; if we restrict our analysis to even k− �h�, kmax is given by
the condition

�ps = ps�k, �h�� − ps�k − 2, �h�� � 0 �15�

or, more accurately, we have to find the minimum of the
absolute value ��ps /�k� of the “discrete derivative” of
ps�k , �h � � for even k− �h�, with �k=const=2. Inserting Eq. �7�
then yields

�ps = 2−k+3 �k − 3�!
��k + �h� − 3�/2�!��k − �h� − 3�/2�!

 � �k − 1��k − 2�
�k + �h� + 1��k − �h� − 1�

− 1� . �16�

Obviously, the prefactor on the right-hand side is always
positive; consequently, in order to determine the maximum
of ps�k , �h � �, we have to solve the equation

�k − 1��k − 2�
�k + �h� + 1��k − �h� − 1�

− 1 = 0. �17�

Using simple algebra, one can show that

kmax = �h�2 + 1 �18�

solves this equation, i.e., the maximum of ps�k , �h � � scales
quadratically with �h�. Since ps�k , �h � � for �h � �0 vanishes
both for small and large k, it is plausible that the scaling
behavior of Kc is dominated by the leading behavior of the
maximum of the distribution, i.e., should scale �f��h���h�2,
where contributions from the tails of the distribution are con-
sidered in f��h��.

A more detailed analysis carried out in Appendix D takes

into account that, for large K̄ and �h�, according to the central
limit theorem the Binomial distribution that characterizes the
damage propagation function Eq. �7� can be replaced by a
Gaussian, consequently, the expected damage is approxi-
mated very well by

d̄�K̄, �h�� = K̄� 1

2�K̄
exp�−

h2

2K̄
� . �19�

Taking logarithms and inserting into Eq. �14� then yields the
asymptotic scaling

lim
�h�→�

Kc��h�� =
h2

2 ln�h�
�20�

of the critical connectivity Kc. Figure 6 demonstrates the
convergence of the critical line �straight-lined curve and data
points� against this asymptote �dashed curve�.

For finite �h�, we notice that there are substantial contri-
butions from additional terms that vanish only logarithmi-
cally, and hence an approximation based on Eq. �20� would
substantially underestimate Kc. This can be appreciated

K
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[ d

(K
,|h

|)
]

−20
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FIG. 5. Logarithm of the average damage, ln�d̄�K̄��, as calcu-
lated from the annealed approximation, for different values of �h�
��h � =10 ���, �h � =20 ��, �h � =40 �*�, and �h � =60 ����. The cor-
responding solid curves are obtained from Eq. �13�. For not too

small K̄, one finds that Eq. �13� approximates the true damage func-
tion very well.
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FIG. 6. Scaling behavior of the critical connectivity Kc��h � � as a
function of the �homogeneous� node threshold �h�, log-log plot.
Data points � are solutions obtained from the annealed approxima-
tion of Eq. �12�, the solid curve is obtained from setting Eq. �13� to
zero. The dashed line shows the asymptotic scaling behavior stated
in Eq. �20�.
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clearly from Fig. 7, which demonstrates the slow �logarith-
mic� convergence of the error �2��h�� made by application of
Eq. �20� for finite �h�.

From Fig. 6, it is also evident that, for finite �h�, Eq. �20�
overestimates the slope dKc /d�h�. One can show that, for
finite �h�, Kc��h�� is better approximated locally by power
laws of the form

Kc��h�� � a��h���h����h�� �21�

with 3 /2���2. We confirmed this intuition by numerically
inserting candidate solutions with fixed � into Eq. �13�, and
solving for the values of �h� and a where the deviation from
the true curve Kc��h�� becomes minimal; inverting this rela-
tion, we obtain the optimal power law exponents ���h�� as a
function of �h� �Fig. 8, for details, see Appendix E�. Again,
we can apply the Gaussian approximation for the damage
propagation function to derive upper �lower� bounds for the

finite size scaling of ���h�� and a��h��, which yield �cf. Ap-
pendix E�

���h�� � 2 −
1

ln�h�
�22�

and

a��h�� �
e

2 ln�h�
. �23�

Figure 8 shows that the true optimal values are systemati-
cally below ��� or above �a� these curves, demonstrating the
nontrivial scaling behavior of the critical line for finite �h�,
which is significantly different from the simple asymptotic
behavior in the thermodynamic limit �Eq. �20��.

Let us now investigate the scaling behavior of Kc for net-
works with inhomogeneous thresholds. Figure 9 shows that,
for finite �h�, the critical line Kc��h�� for RTNs with inhomo-
geneous thresholds is always below the corresponding values
for homogeneous �h�; the absolute difference �Kc��h��
ª �Kc

h��h��−Kc
i ��h̄�= �h��� between both curves, however, in-

creases only linearly with �h� �inset of Fig. 9�, where Kc
h��h��

is the critical connectivity for homogeneous �h�, and Kc
i ��h̄��

is the corresponding value for inhomogeneously distributed

�h� with mean �h̄�= �h�.
Intuitively, this is straightforward to understand: since we

assumed that k and �h� are statistically independent, �Kc��h��
is determined solely by the variance 	h

2 of the threshold dis-

tribution around the mean threshold �h̄�= �h�—the smaller this

variance is, the more peaked this distribution is around �h̄�
= �h�, and hence the less it differs from the homogeneous
distribution. Since we assumed that �in the inhomogeneous

case� thresholds are Poisson distributed around �h̄�, we di-
rectly conclude

~1/|h|

~1/ ln|h|

|h|

ε

(|h|)
(|h|)1

2

ε
ε

0.01

0.1

1

1 10 100 1000 10000

FIG. 7. Crosses ��: Relative error �1 between the approxima-
tion of Eq. �13� and the result obtained from the annealed approxi-
mation, as a function of �h�. For �h��15, �1 vanishes ��h�−1; straight
line with slope −1 shown for comparison. Data points ���: Relative
error �2 between the approximation of Eq. �13� and the asymptotic
scaling of Eq. �20�; �2 goes to zero logarithmically �compare to
dashed curve�.
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FIG. 8. Optimal exponents � of power laws Kc�a�h�� that ap-
proximate the scaling function Kc��h��, as shown in Fig. 6, as a
function of �h�. The dashed curves are the corresponding asymptotic
estimates of Eqs. �22� and �23�.
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FIG. 9. Kc��h�� for homogeneous thresholds ��� and Poisson

distributed thresholds with the same average �h̄� ��, annealed ap-
proximation. The solid line is the asymptotic scaling obtained from
Eq. �14�. For inhomogeneous �h�, the critical line is systematically
below Kc of networks with homogeneous �h�. Inset: The difference
��Kc��h��� between both curves grows only linearly in �h�, confirm-
ing that the asymptotic scaling in the limit �h�→� is the same in
both cases.
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�Kc��h�� � 	h
2 = �h̄� . �24�

For arbitrary threshold distributions that are statistically in-
dependent from the networks’ degree distribution with vari-
ance 	k

2, we make the ansatz

	tot
2 = 	k

2 + 	h
2 �25�

for the total variance 	tot
2 . Using the same Gaussian approxi-

mation as above for the homogeneous case, one can show
that

Kc��h̄�� �
h̄2

2 ln�h̄�
− 	h

2 �26�

for networks with inhomogeneous thresholds distributed

around an average absolute threshold �h̄� �for details, cf. Ap-

pendix C�. This implies that, in the limit �h̄ � →�, all net-
works with Poissonian distributed connectivity and threshold
distributions with a variance which obeys the scaling relation

	h
2��h̄�� with 0���2 follow the universal asymptotic scal-

ing relation

Kc��h̄�� =
h̄2

2 ln�h̄�
, �27�

as it is shown in Appendix C. This means that in all these

cases, the asymptotic scaling for �h̄�→� is dominated by the
scaling behavior of the maximum of the damage propagation
function ps�k , �h��, with an exponent �=2.

Let us now confirm this finding for a different class of
threshold distributions. Since in a Poissonian the variance is
not a free parameter, we now instead choose a discretized
Gaussian distribution, i.e.,

P��h�� =
Z

	h
�2�

e−�1/2���h� − �h̄��2/	h
2

�28�

with

Z =� �
�h�=0

�h�m 1

	h
�2�

e−�1/2���h� − �h̄��2/	h
2�−1

�29�

and variance

	h
2 = �h̄��, � � �0,�� . �30�

The factor Z ensures that the probabilities are normalized in
the interval �0, �h�m�, where �h�m denotes the cutoff of the
threshold distribution. Figure 10 compares the scaling func-

tions Kc��h̄�� for different values of � to the asymptotic case

of homogeneous networks. Obviously, for finite �h̄�, in-
creased variance of the threshold distribution substantially
lowers the critical connectivity; in the limiting case ���, Kc

grows only linearly with �h̄�. For ���, we find that the
deviation from the scaling behavior of RTNs with homoge-
neous thresholds scales as

�Kc � �h̄��e. �31�

Table I compares � and �e �as obtained from fits of �Kc; in
all cases, we have �e��, which is a discretization effect, but
still �e��. Hence it follows that

lim
�h�→�

Kc��, �h̄� = �h��
Kc

h��h��
= lim

�h�→�

Kc
h��h�� − �Kc��, �h��

Kc
h��h��

= 1 − const. lim
�h�→�

�h��e−� = 1 �32�

for �e��, i.e., in this case all scaling functions Kc�� , �h̄�� for
�h�→� indeed asymptotically converge to the same universal
scaling function, as given by Eq. �27�.

Let us now have a closer look at the scaling behavior of
the intersection points Kd��h��, as introduced in the last para-

graph of Sec. III B. Let d̄h�K̄ , �h�� be the expected damage in

networks with homogeneous threshold, and d̄i�K̄ , �h̄�� the ex-

TABLE I. Scaling exponents �e, as obtained from fits of �Kc

��h̄��e, as a function of �.

� �e

0.5 0.533
0.009

1.0 1.099
0.004

1.2 1.327
0.004

1.5 1.732
0.004

1.8 1.942
0.003

1.95 1.975
0.004
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FIG. 10. �Color online� Kc�� , �h̄�� for networks with threshold
distributions following discretized Gaussian distributions with dif-

ferent variances Var��h��= �h̄�� �for details, see text�. One clearly
appreciates that the larger the variance of the threshold distribution,

the more the curves Kc�� , �h̄�� are below the critical line of networks
with homogeneous thresholds �blue solid line�; in the limiting case

�=1.95�� �yellow triangles�, Kc scales almost linearly with �h̄�.
Inset: differences ��Kc�� , �h̄��� to the critical line of RTNs with ho-

mogeneous thresholds scale ��h̄��e with ���e�� �power law fits
and dashed line with slope � shown for comparsion�; this implies
asymptotic convergence to the universal scaling function Eq. �27� in

the limit �h̄�→� for all cases shown here.
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pected damage in networks with inhomogeneous thresholds;
then

d̄h
„Kd��h��, �h�… − d̄i

„Kd��h��, �h̄�… = 0, �33�

�h̄� = �h� �34�

are the defining equations for Kd��h��. Notice that for K̄
�Kd, the randomness introduced by inhomogeneous thresh-
olds actually increases the probability for damage spreading,

whereas for K̄�Kd, it is decreased. Equation �33�, under
condition Eq. �34�, can be solved numerically for not to large
�h�. Further, one can derive the asymptotic scaling in the
thermodynamic limit by application of the Gaussian approxi-
mation for the damage propagation function �for details, cf.
Appendix D�, showing that

lim
�h�→�

Kd��h�� = h2 − �h� . �35�

Figure 11 demonstrates that Kd��h�� approaches this
asymptotic scaling already for considerably small �h�, indi-
cating that Kd��h�� is characterized by the same universal
scaling exponent �=2 as Kc��h��. Notice, however, that the
asymptotic scaling law for Kd obeys a purely algebraic rela-
tion, whereas Kc has a dependence �h2 / ln�h� �Eq. �20��.

Let us briefly compare the scaling behavior of RTNs with
nonzero thresholds, as discussed above, to random-Boolean
networks �RBNs� with arbitrary transition functions not re-
stricted to threshold-dependent switching. Obviously, in-
creasing �h� biases the output states of network nodes �for the
systems discussed in this paper, it increases the probability to
have an output state 	i=−1�. Biased RBNs obey the scaling
relationship �41�

Kc =
1

2p�1 − p�
. �36�

To compare this relationship to the asymptotic scaling for
RTNs in the limit of large �h�, we have to consider the limit
p→1. One can show that, in this limit, the scaling function
Eq. �36� logarithmically approaches the asymptotic scaling

Kc � −
p2

2 ln p
. �37�

This shows that �h� plays the same role as the bias parameter
p in RBNs, and that both classes obey the same scaling in the
limit p→1 and �h�→�, respectively. However, there are also
substantial differences between both classes of systems, that
come into play when �h� is small �when p is close to 1 /2�. In
particular, while RBNs in this limit still obey the simple
scaling relationship Eq. �36�, the critical connectivity Kc of
RTNs is derived from the complex dependence of Eq. �13�.
This difference is due to the fact that, in RTNs, local damage
propagation strongly depends on the in-degree of nodes �cf.
Eqs. �5� and �7��, while it is independent from the in-degree
in RBNs for k�0. In the limit of sparsely connected net-
works �i.e., small �h� and Kc�, this leads to much stronger
finite size effects in RTNs than in RBNs. Furthermore, in this
limit also the absolute values of Kc in RTNs are considerably
below those of RBNs �24,25�.

Finally, let us remark on the existence of the characteristic
connectivity Kd. As shown above, Kd is defined for RTNs
with arbitrary �h�, in particular, it exists in the limit �h�→�,
with a well-defined asymptotic scaling. For biased RBNs, the
corresponding limit is given by p→1 �or, equivalently, p
→0�. Obviously, we can in principle assign variable �inho-
mogeneous� biases pi to different RBN nodes such that the
average bias is equal to p. However, because p is a probabil-
ity and hence 0� p�1, the variance 	p

2 has to vanish in the
limit p→1 �p→0� to yield a proper average bias. Since Kd is
defined by comparing networks with diverging variance of
the order parameter �h� �or p, respectively� with the corre-
sponding networks with vanishing variance and the same
average �h� �or p, respectively�, this implies that Kd is not
defined for RBNs with arbitrary transition functions in the
limit of large bias p→1, which corresponds to �h � →� in
RTNs. Hence Kd constitutes an interesting concept, yielding
a different characteristic connectivity which is well-defined
only for RTNs.

It is interesting to notice that the dependence of Kc, as
well as of Kd on �h�, is clearly superlinear even for consider-
ably small �h�; this has profound consequences for algorithms
that evolve RTNs towards �self-organized� criticality by local
adaptations of both thresholds and the number of inputs a
node receives from other nodes �42�. In particular, it can be
shown that co-evolution of network dynamics and thresholds
or in-degrees leads to strong correlations between �h� and k.
To approach this type of problem analytically, we will now
extend our analysis in this direction. first, In the next section,
we will show that even weak correlations between k and �h�
can lead to a transition from subcritical to supercritical dy-
namics �and vice versa�, while keeping the average connec-

tivity K̄ and the average absolute threshold �h̄� constant.

D. Effect of correlations between k and h

So far, we assumed that node degree and node thresholds
are totally uncorrelated; while this matches well the “maxi-
mum disorder” assumption used in random ensemble based
approaches as, e.g., the annealed approximation, this might

|h|

K
d

h − |h|2
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1000
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FIG. 11. Scaling behavior of Kd��h�� as a function of �h�, double
logarithmic plot. The dashed line highlights the asymptotic scaling
�Eq. �35��.
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be a quite unrealistic constraint for many real world net-
works. Indeed, one can show that even in a simple evolution-
ary algorithm that couples both the adaptation of node
thresholds hi and in-degree ki to a local dynamical order
parameter, strong correlations between both quantities
emerge spontaneously �42�. Hence it is an interesting ques-
tion to ask whether correlations �or anticorrelations� between
h and k may induce a transition from subcritical to supercriti-

cal networks �or vice versa�, while we keep K̄ and �h̄� and
network topologies constant.

Let us first formulate an algorithm that generates correla-
tions �anticorrelations� between k and �h�. For this purpose, a
parameter c� �0,1� is introduced which parametrizes the
probability that k and �h� are locally correlated �anticorre-
lated�. The topology-generating algorithm then reads as fol-
lows �compare also Fig. 12�:

�i� Generate a random, directed network with Poisson dis-
tributed k and Poisson distributed �h� with average connec-

tivity K̄ and �h̄� for all sites.
�ii� Select a pair of sites i�N and j�N at random. c

�0: exchange the sites’ thresholds if for the in-degrees
k�i��k�j� holds, and for the thresholds �h��i�� �h��j�, or vice
versa. c�0: exchange the sites’ thresholds if k�i��k�j� and
�h��i�� �h��j�, or vice versa.

�iii� Go back to �ii� and repeat the algorithm for c
 Pmax steps, where Pmax is a predefined maximum number
of correlated pairs.

Obviously, increasing the parameter c� �0,1� increases
correlations �anticorrelations� between k and h. If we repeat
this algorithm Z times for fixed c, we can generate a random
ensemble of Z correlated or anticorrelated networks, and in-
vestigate damage spreading on these networks. The
ensemble-averaged probability �c�k , �h�� to have a site with k
inputs and threshold �hi�= �h� then is defined as

�c�k, �h�� =
� j=1

Z nj�k, �h��
ZN

, �38�

where nj�k , �h�� is the number of sites with k inputs and
threshold �hi�= �h� in the jth random network. Figure 13 dem-
onstrates the correlating effect of the algorithm on the aver-
age probabilities �c�k , �h�� for ensembles of 105 randomly
generated networks, for the case c�0, with Pmax=104. For
c=0, clearly no correlations are present, and the combined
density simply represents the independent superposition of
the two underlying Poisson distributions. With increasing c,
correlations gradually emerge, and for c=0.9 the resulting
distribution clearly exhibits a diagonal structure. Figure 14
demonstrates the corresponding effect for c�0, i.e., anticor-
related topologies.

Let us now investigate how these correlations affect dam-
age propagation. In a finite network of size N, the expected
damage at time step t=1, after a one-bit perturbation at t
=0, is given by

d̄�t + 1� = �
�h�=0

�h�m

�
k=�h�

N

k�c�k, �h��ps�k, �h�� , �39�

with the normalization conditions

i j i j

i j i j

before after

Generation of correlations:

Generation of anti−correlations:

FIG. 12. Schematic illustration of the algorithm applied to gen-
erate local �anti�correlations between in-degree kin and �absolute�
threshold �h�. Arrows symbolize inputs from other nodes, boxes
symbolize node thresholds �one box corresponds to �h�=1, two
boxes to �h�=2, and so on�. For details of the algorithm, please refer
to the text.
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FIG. 13. Combined density ��kin , �h � � for three different positive
values of the correlation parameter c, from top to bottom: c=0, c
=0.2, and c=0.9. Dark gray indicates a high probability density.
The diagonal structure of ��kin , �h � � for c=0.9 �lower panel� indi-
cates emergence of strong positive correlations between kin and �h�.

CRITICAL LINE IN RANDOM-THRESHOLD NETWORKS… PHYSICAL REVIEW E 78, 066118 �2008�

066118-9



�
�h�=0

�h�m

�
k=�h�

N

�c�k, �h�� = 1 �40�

and

�
�h�=0

�h�m

�
k=�h�

N

�h��c�k, �h�� = �h̄� , �41�

where �h�m is the maximal absolute threshold observed �cut-
off�; correlations enter via the probabilities �c�k , �h�� to ob-
serve a node with in-degree k and absolute threshold �h� for a
given value of c.

Figure 15 compares the numerically observed damage d̄
�for ensembles of randomly generated networks� one time
step after a one-bit perturbation to the expected damage, as
predicted by the annealed approximation according to Eq.
�39� �lined curves�. While all other parameters that charac-

terize network topology, namely K̄ and h̄, are held constant,
increasing the probability of positive correlations between
in-degree and thresholds �i.e., �hi��ki� leads to a transition

from supercritical �d̄�1� to subcritical �d̄�1� dynamics.

The opposite effect is observed when the probability for an-
ticorrelations �c�0� is increased. This observation consti-
tutes an interesting mechanism for a transition from ordered
to chaotic dynamics �and vice versa� in discrete dynamical
networks. When we consider larger initial perturbation sizes,
and plot the temporal evolution of the relative average dam-

age y�t�ª d̄�t� /N, the effect of correlations on damage su-
pression becomes even more evident �Fig. 16�; for networks

with K̄=6.15, h̄=−2.5, and N=1024, for example, increasing
c from zero to one has the same effect as lowering the aver-

age connectivity to K̄=5.85 �Fig. 16, inset�, i.e., removing
about 300 links from the network.

Last, let us investigate how �anti�correlations between in-
put number and thresholds change the variance 	d

2 of the
damage, which in the one-step approximation is given by
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FIG. 14. Combined density ��kin , �h � � for three different nega-
tive values of the correlation parameter c, from top to bottom: c
=0, c=−0.1, and c=−0.9. Dark gray indicates a high probability
density. The inverted diagonal structure of ��kin , �h � � for c=−0.9
�lower panel� indicates emergence of strong anticorrelations be-
tween kin and �h�.
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FIG. 15. Average damage d̄�c� as a function of �c�, for correlated

kin and �h� ��� and anticorrelated kin and �h� ��, with K̄=6.15 for

c�0 networks, K̄=5.8 for c�0 networks, and �h̄�=2.5 in both
cases. Numerical data were obtained from ensemble averages over
Z=5105 randomly generated RTNs with N=1024 nodes for each
data point. Solid curves are the corresponding results of the an-
nealed approximation.
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FIG. 16. �Color online� Relative damage y�t�= d̄�t� /N at time t
after an initial perturbation y�0�=0.3, for three different values of c
�from top to bottom: c=0, c=0.15, and c=1.0�. Data were averaged

over 104 network realizations with N=1024, K̄=6.15, and h̄=−2.5.

Inset: the same for constant c=0 and h̄=−2.5 and variable K̄, from

top to bottom: K̄=6.15, K̄=6.0, and K̄=5.85.
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	d
2 = �

�h�=0

�h�m

�
k=�h�

N

�kps�k, �h�� − d̄�t + 1��2�c�k, �h�� . �42�

The dependence of 	d
2 on �c� is shown for correlations �c

�0� and anticorrelations �c�0� in Fig. 17. Positive c values
lead to a significant reduction of the variance, while it is only
moderately increased by negative values of c. This suggests
that positive correlations between k and �h� not only lower
the average damage, but also lead to a quite strong suppres-
sion �and hence better control� of extreme damage events.
Possible relations of these observations to gene regulatory
networks will be discussed in the following section.

IV. DISCUSSION

An increasing number of studies is concerned with the
propagation dynamics of perturbations and/or information in
complex dynamical networks. Discrete dynamical networks,
in particular random-Boolean networks �RBNs� and random-
threshold networks �RTNs�, constitute an ideal testbed for
this type of question, since they are easily accessible for both
computational methods and the tool boxes of statistics and
combinatorics. Often, it is found that damage or information
propagation strongly depends on the type of inhomogeneities
present in network wiring. Several studies focus, for ex-
ample, on the effect of scale-free degree distributions
�25,26�. Typically, these studies employ mean-field methods
and hence represent, in a sense, strongly idealized models,
since they derive results that strictly hold in the thermody-
namic limit only.

Consequently, a second line of research concentrates on
modification of damage propagation due to finite-size effects,
which play a decisive role in many real-world networks. Re-
cently, it was shown that weakly perturbed, finite size RBNs
and RTNs show pronounced deviations from the annealed
approximation �11�. Fronczak and Fronczak showed that
these deviations can be explained by inhomogeneities and
emergent correlations found at the percolation transition
�43�, however, their study is currently limited to undirected
networks. In this context, the system discussed in our paper
constitutes a complementary approach: it allows us to intro-

duce dynamical inhomogeneity of network units, without
otherwise altering network topology. While this type of dy-
namical diversity certainly plays an important role in many
real-world networks, it is neglected by most researchers. Let
us now briefly summarize the main results of our study.

We studied damage propagation in random-threshold net-
works �RTNs� with homogeneous and inhomogeneous nega-
tive thresholds, both analytically �using an annealed approxi-
mation� and in numerical simulations. We derived the
probability ps�k , �h�� of damage propagation for arbitrary in-
degree k and �absolute� threshold �h� �Eqs. �4�–�7��, and,
from this, the corresponding annealed probabilities �ps�
�Eqs. �9� and �11�� and the expected damage d̄ �Eq. �12��, for
both the cases of homogeneous and inhomogeneously dis-
tributed thresholds. On these grounds, we investigated the
scaling behavior of the critical connectivity Kc as a function
of �h�. Using a mean field approximation, a simplified scaling
equation for the logarithm of the average damage was de-
rived �Eq. �13��, and applied to derive the critical line Kc��h��
�Fig. 6�. It was shown that this function exhibits a superlin-
ear increase with �h�, which asymptotically approaches a
unique scaling law Kc��h���h2 / �2 ln�h�� for large �h� �Eq.
�20� and Fig. 7�. However, convergence against this
asymptotic scaling is very slow �logarithmic in �h��, which
indicates that finite size effects are very dominant, and can-
not be neglected for realistically sized networks. We pre-
sented evidence that this asymptotic scaling is universal for
RTNs with Poissonian distributed connectivity and threshold
distributions with a variance that grows slower than h2, for
both the cases of Poisson distributed thresholds �Fig. 9� and
thresholds distributed according to a discretized Gaussian
�Fig. 10�. Interestingly, inhomogeneity in thresholds, mean-
ing that each site has an individual threshold �hi� drawn, e.g.,
from a Poisson distribution with mean �h̄�, increases damage
for small average connectivity K̄, when compared to homo-
geneous networks with the same average threshold �h�= h̄,
whereas for larger K̄ with K̄�Kd, damage is reduced. This
establishes a new characteristic connectivity Kd��h�� with
Kd�Kc, that describes the ambivalent effect of threshold in-
homogeneity on RTN dynamics. We showed that Kd��h�� as-
ymptotically converges against a unique scaling law Kd
�h2 in the limit �h�→�. The scaling of Kd was compared to
the corresponding case of random-Boolean networks �RBNs�
with arbitrary transition functions not restricted to threshold-
dependent switching and with inhomogeneously distributed
bias, parametrized in terms of a bias parameter 1 /2� p�1.
It was shown that Kd is not defined for RBNs in the limit p
→1, which corresponds to �h�→� in RTNs. Hence Kd yields
a different characteristic connectivity for RTNs. In light of
the fact that, in the past, similarities or correspondences be-
tween RBNs and RTNs were strongly emphasized �23�, and,
correspondingly, both types of dynamical networks were
used in many studies concerned with models of biological
networks in an almost interchangeable way, these observa-
tions might be of considerable interest for future studies.
They might also affect other generalizations of RTNs studied
in the statistical physics community, e.g., networks with
probabilistic update of units �25�.

Last, we introduced local correlations between in-degree
kin of network nodes and their �absolute� threshold �h�, while

|c|

correlations

anti−correlations
σ d2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.2 0.4 0.6 0.8 1

FIG. 17. Variance 	d
2 of the damage one time step after a one-bit

perturbation, for correlated k and h �i.e., c�0� and anticorrelated k

and h, as indicated. For c�0, K̄=6.15 was applied, for c�0, K̄ was

set to 5.8, with h̄=−2.5 in both cases.
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keeping all other network parameters constant. We found that
even small positive correlations can induce a transition from
supercritical �chaotic� to subcritical �ordered� dynamics,
while anticorrelations have the opposite effect. Further, posi-
tive correlations significantly reduce the variance of the dam-
age size distribution, which suggests that extreme damage
events are suppressed, and hence better controlled. A number
of interesting questions arise for future extensions of this
research, namely, the possibility that the introduced depen-
dencies between thresholds of neighboring nodes may lead
to interesting deviations from the annealed approximation in
the dynamics after multiple time steps. Similar deviations
have been discovered in other contexts in several recent stud-
ies �11,43,44�, demonstrating the need for an extended theory
that takes into account dynamical correlations as well as lo-
cal structure in network topology. Theoretical approaches to
these problems are faced with many new challenges, in par-
ticular, they will have to account for the complex �and far
from random� structure of state space after multiple dynami-
cal updates and modification of damage propagation by a
bias towards ON or OFF states �45�. Further, the proposed
threshold-swapping algorithm can be easily extended to in-
troduce local internode correlations that are not present in
ordinary random networks, and hence might reveal interest-
ing new insights that could be highly relevant to systems
theory in general.

To summarize, dynamics of damage �or information�
propagation in RTNs with inhomogeneous thresholds and
Poisson distributed connectivity shows both similarities and
differences, when compared to networks with homogeneous
thresholds: similarities manifest themselves in common uni-
versal scaling functions for both Kc and Kd, whereas differ-
ences show up in the opposite effects of threshold inhomo-

geneity for small and large K̄. Differences become even more
prominent in networks that are characterized by correlations
between in-degree and thresholds; here, the probability for
correlations defines a new control parameter for global net-
work dynamics. Let us now outline how the results achieved
in this study could be relevant for models of real world dy-
namical networks.

In recent years, for example, a number of studies have
been published that model the dynamics of gene regulatory
dynamics with RTNs �e.g., �34–36��. In most cases, the
switching behavior of regulatory units is assumed to depend
only on network wiring. Our results indicate that, while gen-
eral characteristics as, for example, the scaling behavior of
critical points may be conserved in approximations of this
type, inhomogeneous thresholds can strongly impact the de-
tails of network dynamics, and hence should be taken into
account in models that aim to give a realistic description of
the dynamics of regulatory networks. Furthermore, context-
dependent “reprogramming” of thresholds might serve as a
first approximation for the ubiquitous reprogramming of
gene regulatory networks in Eukaryotes by other �and more
flexible� mechanisms than rewiring of transcriptional regula-
tory interactions, for example through the effects of micro-
RNA �31–33� and gene silencing by DNA methylation �46�,
which contribute significantly to both robustness and flex-
ibility of these biological networks.
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APPENDIX A: DERIVATION OF ps(k , �h�)

In this section, we provide a derivation of the local dam-
age propagation probability ps�k , �h��.

Consider a network site i with k inputs; k+ of these have
positive sign, k− negative sign, hence k++k−=k. We now de-
rive the conditions under which a inversion of one input spin
at time t leads to a switch of the output of site i at time t
+1.

�i� k− �h� odd: From Eqs. �1� and �2� it is easy to see that
input-spin flips produce “damage” only if one of the follow-
ing conditions holds:

k+ − k− − �h� = 1 �A1�

or

k+ − k− − �h� = − 1. �A2�

In case �A1�, only the reversal of positive spins is effective,
whereas in case �A2�, only the reversal of negative spins has
an effect. We have

k+ =
k + �h� + 1

2
�A3�

in the first case and

k− =
k − �h� + 1

2
�A4�

in the second case. There is a total number of k2k possible
spin configurations, of which � k

�k+�h�+1�/2 � fulfill condition
�A3� and � k

�k−�h�+1�/2 � fulfill condition �A4�. Hence the damage
propagation probability follows as

ps�k, �h�� = k−12−�k+1�
�k + �h� + 1�� k

k + �h� + 1

2
�

+ �k − �h� + 1�� k

k − �h� + 1

2
� �A5�

=
2−�k−1��k − 1�!

��k + �h� − 1�/2�!��k − �h� − 1�/2�!
�A6�

=2−�k−1�� k − 1

k + �h� − 1

2
� . �A7�

�ii� k− �h� even: Here, we have as necessary conditions

k+ − k− − �h� = 0 �A8�

or
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k+ − k− − �h� = 2. �A9�

In the first case, only the reversal of negative spins is effec-
tive, whereas in the latter case the same holds for positive
spins. We have

k− =
k − �h�

2
�A10�

in the first case and

k+ =
k + �h� + 2

2
�A11�

in the second case. There is a total number of k2k possible
spin configurations, of which � k

�k−�h��/2 � fulfill condition �A10�
and � k

�k+�h�+2�/2 � fulfill condition �A11�. Hence the damage
propagation probability follows as

ps�k, �h�� = k−12−�k+1�
�k − �h��� k

k − �h�
2

�
+ �k + �h� + 2�� k

k + �h� + 2

2
� �A12�

=
2−�k−1��k − 1�!

��k − �h� − 2�/2�!��k + �h��/2�!
�A13�

=2−�k−1�� k − 1

k + �h�
2

� . �A14�

APPENDIX B: ANNEALED APPROXIMATION
FOR DAMAGE PROPAGATION

Assuming that input states are drawn uniformly at random
such that 	i= +1 and 	i=−1 with equal probability, the ex-
pected damage at a randomly picked node with k inputs one
time step after a one-bit spin flip at time t is given by

d̄�t + 1� = �
k=�h�

�

k�kps�k, �h�� , �B1�

taking into account that the probability of a node to become
damaged is proportional to its number of inputs k and its
damage propagation probability ps�k , �h��. Assuming uniform
link selection, the probability that a randomly chosen link
propagates damage follows as

�ps��K̄, �h�� =
d̄

K̄
=

1

K̄
�
k=�h�

�

k�kps�k, �h�� , �B2�

and hence

d̄�t + 1� = �ps��K̄, �h��K̄ . �B3�

Let us now apply Eq. �B2� to networks with Poisson distrib-

uted connectivity and constant �h�. With �k= �K̄k /k!�e−K̄, it
follows that

�ps��K̄, �h�� =
e−K̄

K̄
�

k

k
K̄k

k!
ps�k, �h�� = e−K̄�

k

K̄k−1

�k − 1�!
ps�k, �h��

= e−K̄�
k

K̄k

k!
ps�k + 1, �h�� , �B4�

which is identical with Eq. �15� in Ref. �24� for the case
�h�=0. In the last step, the summation index k was shifted by
1, which does not affect the results as ps�k , �h��=0 for all k
� �h�. We would like to mention that page 250 of Ref. �24�
provides a different and incorrect reasoning leading to Eq.
�B4�, not taking into account that the average in �ps� is de-
fined for uniform link selection rather than uniform node
selection, which may lead to wrong conclusions.

Let us briefly discuss the range of applicability of relation
�B4�. In a one-step annealed approximation as given by Eq.
�B3�, it provides a correct description of damage propaga-
tion. In a generalization to larger times, however, consider-
able care has to be taken. In particular, in Ref. �24� the fol-
lowing recursive map for the relative damage yt+1 at time t
+1 is provided:

yt+1 = �ps��K̄��
k

�k�1 − �1 − yt�k� �B5�

This map provides a good approximation for small K̄ and for
large N, and when a relatively homogeneous distribution of
connectivity is present �compare Fig. 3 in Ref. �24��. In par-
ticular, it provides a critical connectivity Kc consistent with
the results of the one-step annealed approximation for the
case �h�=0 in networks with Poissonian distributed �k �Fig. 4
in Ref. �24�, and discussion on page 253 in the same paper�.
However, in general Eq. �B5� cannot be applied for arbitrary
topologies and larger �h�; in this case, the dependence of the
probability of damage propagation on k and �h� requires a
more complicated mean field calculation of yt+1. This will be
discussed in more detail in a separate publication.

APPENDIX C: DERIVATION OF THE SCALING
EQUATION

For RTNs with Poisson distributed in- and out-degree, the
critical line is given by the condition

d̄�t + 1� = �ps��Kc��h��, �h��Kc��h�� = 1 �C1�

with

�ps��K̄, �h�� = e−K̄ �
k=�h�

N
K̄k

k!
ps�k + 1, �h�� . �C2�

Instead of averaging over the ensemble of all possible net-
work topologies as in Eq. �C2�, we now make an explicit
mean field approximation, and consider a “typical” network
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node with k� K̄ inputs. Consequently, we approximate

�ps��K̄, �h�� � ps��K̄�, �h�� , �C3�

where � . � denotes the floor function. In the limit of large K̄
and �h�, the difference between the damage propagation prob-
abilities for even and odd k vanishes, i.e., we can set

�ps��K̄, �h�� � 2−��K̄�−1����K̄� − 1�

�K̄� + �h�
2

� , �C4�

and hence, under the condition that K̄� �h�, we can approxi-
mate

d̄�K̄, �h�� � K̄2−�K̄�� �K̄�
�K̄� + �h�

2
� �C5�

without loss of generality.
Using the Stirling approximation n!�nne−n�2�n, drop-

ping the floor function �since we now consider a function of
real-valued variables only� and taking logarithms, we obtain

ln�d̄�K̄, �h��� � ln K̄ − ln 2K̄ + Z1 − Z2 − Z3 �C6�

with

Z1 = ln�K̄K̄e−K̄�2�K̄� ,

Z2 = ln�� K̄ − �h�
2

��K̄−�h��/2

e−�K̄−�h��/2���K̄ − �h���
and

Z3 = ln�� K̄ + �h�
2

��K̄+�h��/2

e−�K̄+�h��/2���K̄ + �h��� .

Summing out the logarithms in Z1, Z2, and Z3, one real-

izes that all terms linear in K̄ drop out, resulting in

ln�d̄�K̄, �h��� � ln K̄ + �K̄ −
1

2
�ln K̄ −

K̄ − �h� + 1

2
ln�K̄ − �h��

−
K̄ + �h� + 1

2
ln�K̄ + �h�� + C �C7�

with C=ln��2 /��. Using some simple algebra and approxi-
mating �h�+1��h�, this can be reformulated as

ln�d̄�K̄, �h��� � ln K̄ −
1

2�ln�K̄� − K̄ ln��K̄ + �h���K̄ − �h��

K̄2
�

+ �h�ln� K̄ + �h�

K̄ − �h�
�� + C . �C8�

This leads to the final result,

ln�d̄�K̄, �h��� �
1

2�ln K̄ − K̄ln�1 − � �h�

K̄
�2�

− �h�ln� K̄ + �h�

K̄ − �h�
�� + C . �C9�

APPENDIX D: ASYMPTOTIC SCALING OF Kc

Let us now derive the asymptotic scaling behavior of the
critical connectivity Kc��h��. We start with the case of homo-
geneous thresholds, and then generalize to inhomogeneous
thresholds.

First, we note that the right-hand side of Eq. �C5� has the
form of a binomial distribution,

P�n,k� = �n

k
�pnqn−k, �D1�

with p=q=1 /2, n= �K̄�, and k= ��K̄�+ �h�� /2, multiplied with a

prefactor K̄. In the limit K̄→� and �h�→�, we can replace
the binomial distribution with a Gaussian and drop the floor
function, i.e.,

d̄�K̄, �h�� = K̄Cn exp�−
��K̄ + �h��/2 − K̄/2�2

2K̄�1/2��1/2�
� . �D2�

This simplifies to

d̄�K̄, �h�� = K̄� 1

2�K̄
exp�−

h2

2K̄
� �D3�

with the normalization constant Cn=�1 / �2�K̄� and variance

	2= K̄.
In the case of inhomogeneous thresholds, we can still use

this approximation, however, the variance 	h
2 of the threshold

distribution adds to the variance of the damage propagation
function of the homogeneous case. This implies that we have

to replace K̄ with K̄+	h
2, and hence

d̄�K̄, �h̄�� =
K̄ + 	h

2

�2��K̄ + 	h
2�

exp�−
h̄2

2�K̄ + 	h
2�
� . �D4�

To obtain the criticality condition, we take logarithms and set
the result to zero, leading to

ln�Kc + 	h
2� −

1

2
ln�2��Kc + 	h

2�� −
h̄2

2�Kc + 	h
2�

= 0.

�D5�

This simplifies to

h̄2 = �Kc + 	h
2�ln�Kc + 	h

2

2�
� . �D6�

To solve this equation with respect to Kc, we make the ansatz

THIMO ROHLF PHYSICAL REVIEW E 78, 066118 �2008�

066118-14



Kc + 	h
2 �

h̄2

2 ln�h̄�
. �D7�

Inserting for Kc+	h
2 into Eq. �D6�, we obtain

h̄2 �
h̄2

2 ln�h̄�
ln� h̄2

4� ln�h̄�
� �D8�

= h̄2�1 −
ln�4� ln�h̄�

2 ln�h̄�
� . �D9�

Since the second term in the bracket vanishes logarithmically

for �h̄�→�, we have verified that Eq. �D7� yields the correct
asymptotic scaling. Consequently, the asymptotic scaling of

the critical line for large �h̄� is given by

Kc��h̄�� �
h̄2

2 ln�h̄�
� − 	h

2. �D10�

However, notice that the convergence is very slow, as can be
appreciated from the logarithmic finite-size term in Eq. �D9�.
In particular, we conclude that the asymptotic scaling for
networks with homogeneous thresholds, i.e., �h�=const and
	h=0 is given by

Kc
hom��h�� �

h2

2 ln�h�
. �D11�

Let us now prove that this scaling is universal for �h̄�→� for

all threshold distributions possessing a variance 	h
2��h̄��

with 0���2. In this case, we have

lim
�h�→�

Kc��h̄��
Kc

hom��h��
= lim

�h�→�

Kc
hom��h�� − 	h

2

Kc
hom��h��

�D12�

=1 − lim
�h�→�

	h
2

Kc
hom��h��

�D13�

=1 − lim
�h�→�

2 ln�h��h��

h2 �D14�

=1 − lim
�h�→�

2 ln�h�
�h�2−� . �D15�

Since we assumed 0���2, the limit in Eq. �D15� vanishes,
and hence the asymptotic scaling equation �D11� is indeed
universal for this class of threshold distributions.

APPENDIX E: ASYMPTOTIC SCALING OF Kd

The characteristic connectivity Kd is defined by the con-
ditions

�h� = �h̄� , �E1�

where �h� is the �constant� threshold of a homogeneous net-

work, and �h̄� is the average threshold of a corresponding

network with inhomogeneous thresholds, and

d̄h
„Kd��h��, �h�… − d̄i

„Kd��h��, �h�… = 0, �E2�

where d̄h is the expected damage for homogeneous networks,

and d̄i is the expected damage for inhomogeneous networks.
Let us further assume that thresholds are Poissonian distrib-
uted, i.e., 	h

2= �h�. If we apply the same Gaussian approxima-
tion as in Appendix D, these conditions lead to

e−h2/�2Kd�

�2�Kd

=
e−h2/�2�Kd+�h���

�2��Kd + �h��
. �E3�

Taking logarithms and reordering, this reduces to

ln�Kd + �h�
Kd

� −
h2

Kd
+

h2

Kd + �h�
= 0. �E4�

Linearization of the first term leads to the approximation

�h�
Kd

−
h2

Kd
+

h2

Kd + �h�
� 0. �E5�

Solving this equation for Kd finally yields the asymptotic
scaling

Kd��h�� � h2 − �h� , �E6�

i.e., Kd scales quadratically with �h�.

APPENDIX F: POWER-LAW APPROXIMATION
OF Kc(�h�) FOR FINITE �h�

In this section, we first describe how to identify numeri-
cally candidate solutions �power laws�

Kc��h�� � a��h���h����h�� �F1�

that optimally approximate Eq. �13� for finite �critical� �h�c.
We start with a fixed �� �1.6,2� and define

|h|

ln
[d

(|
h|

)]

−0.1

−0.08

−0.06

−0.04

−0.02

0

1 10 100 1000 10000 100000 1e+06

FIG. 18. �Color online� Solutions of Eq. �F3� for �from the left
to the right� �=1.6, �=1.7, �=1.8, and �=1.9. Projections of the
maximum on the �h� axis �as indicated by arrows� yield the corre-
sponding values of �h�c at which the approximations are optimal.
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F�y� ª
1

2
�ln y − yln�1 − � �h�

y
�2� − ��h� + 1�ln� y + �h�

y − �h���
+ C �F2�

with y=a�h��. One can show that, for any finite a and �, F�y�
has a maximum at a finite value �h�max. We know that Kc is a
monotonically increasing function of �h�, and intend to opti-
mize the power-law approximation exactly at Kc. Hence we
have to vary a such that

max
a

F��y��� = 0. �F3�

Projection of the maximum on the �h� axis then yields the
corresponding threshold values �h�c��� at which the approxi-
mation for the given � is optimal �Fig. 18�. Inversion of this
relation allows us to plot the corresponding values of the
function ���h�� �Fig. 8�.

Last, let us estimate the asymptotic scaling of ���h��. If we
apply the asymptotic scaling relation for Kc derived in Ap-
pendix D, we can approximate

h2

2 ln�h�
= a��h���h����h��. �F4�

Taking logarithms, this yields

2 ln�h� − ln 2 − ln ln�h� = ln a��h�� + ���h��ln�h� . �F5�

We now consider variations of � only, i.e., we fix a with
respect to �h�. Taking the derivative with respect to �h� on
both sides of the equation and solving for � then yields

���h�� � 2 −
1

ln�h�
. �F6�

Inserting this result into Eq. �F5�, we finally obtain the esti-
mate

a��h�� �
e

2 ln�h�
�F7�

for the proportionality constant a.
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