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Information entropy as a measure of nonexponentiality of waiting-time distributions
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It is shown that the information entropy based on waiting-time distributions (WTDs) offers a natural and
robust measure of nonexponentiality of the distributions in the form of the Schrodinger-Brillouin negentropy,
or equivalently the Kullback-Leibler divergence, and has a straightforward interpretation in terms of transition
state theory. Other measures of nonexponentiality of WTDs, based on comparison of the standard deviation and
the median with the mean waiting time, are also discussed. The theoretical analysis is illustrated with results

from protein folding studies.
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I. INTRODUCTION

The exponential decay distributions represent a specific
class of waiting-time distributions (WTDs) corresponding to
a Poisson process of transitions from one state of the system
to another, e.g., from a reactant to the product. They are
applicable to various phenomena of discrete nature, where
the events occur randomly with a given mean frequency. At
the same time, in many cases the WTDs reveal a nonexpo-
nential behavior. Some examples are given by dynamics of
recombination processes [ 1] and relaxation phenomena [2] in
crystals and glasses, single-molecule [3-5] and fluorescence
resonance energy transfer [6] experiments, motor protein dy-
namics [7], self-organized criticality dynamics inherent to
many natural phenomena [8-10], protein folding [11-17],
and isomerization processes [18—20] and diffusion in clusters
[21]. In such cases it may be useful to know how far the
process under consideration deviates from the Poisson pro-
cess, or which of the processes deviates more. For this, a
quantitative measure of nonexponentiality of the WTD is
needed.

Such a measure can be introduced in different ways. One
possibility is to utilize the fact that for the exponential WTD
both the median (divided by factor In 2) and the standard
deviation are equal to the mean waiting time [22] (see, e.g.,
Refs. [13,14], respectively). Another possibility is to use the
information entropy approach, which allows not only quan-
tification of the degree of deviation from the Poisson pro-
cess, but also some insight into the nature of deviation. Two
well-known examples of the ‘“entropic” measure are the
negative entropy (negentropy), due to Schrodinger [23] and
Brillouin [24], and its generalization to arbitrary distribu-
tions, the Kullback-Leibler divergence [25]. In application to
the WTD analysis, they are shown to be equivalent and thus
present the same measure. Meaning mostly physical aspects
of the problem, we will refer to this measure as “negative
entropy.” One essential feature of the negative entropy is that
the information entropy, on which it is based, presents a
functional that is maximized by the exponential distribution,
so that any deviation from the exponential distribution re-
sults in an increase of the negative entropy. This contrasts the
negative entropy with the above “nonentropic” measures,
which do not possess this property. Also, the negative en-
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tropy has a straightforward interpretation in terms of transi-
tion state theory, which may be useful in a broad range of
applications, to which the concepts of information entropy
and transition state theory are relevant (chemical reactions,
conformation transitions in polyatomic systems, etc.).

The paper is organized as follows. Section II describes
different measures of nonexponentiality of WTDs: In Sec.
IT A the negative entropy in the form of the Schrodinger-
Brillouin negentropy and its interpretation in terms of tran-
sition state theory are considered, in Sec. II B the equiva-
lence of the Kullback-Leibler divergence and the negative
entropy, and in Sec. I C the nonentropic measures. In Sec.
II D, it is analyzed how the shape of a WTD affects the
measures of its nonexponentiality. Section III illustrates the
application of the entropic and nonentropic measures to the
WTD analysis in the protein folding problem. Section IV
summarizes the results and presents some concluding re-
marks.

II. NEGATIVE ENTROPY AND OTHER MEASURES OF
NONEXPONENTIALITY OF WAITING-TIME
DISTRIBUTIONS

A. Negative entropy

In the differential form, the information (Shannon) en-
tropy is defined by the functional

S=- fxp(t)lnp(t)dt, (1)

0

where 7 is the time, and p(¢) is the WTD, i.e., the probability
density of waiting times. The WTD satisfies two constraints:
Jop(t)dt=1 and [(tp(t)dt=(r), where (7) is the mean waiting
time. Applying the method of Lagrange multipliers, one finds
that the functional is extremized by the exponential distribu-
tion (see, e.g., [26])

pelt) =k exp(= ki), 2)

which is the WTD for the Poisson process (k=1/(¢) is the
mean frequency of events). Correspondingly, the maximum
(Poisson) entropy is
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Sp=1-Ink=1+In(r). (3)

Since the probability density p(r) has the dimension of recip-
rocal time, the term In p(7) under the integral in Eq. (1) re-
quires the time ¢ to be dimensionless. Therefore both Egs. (1)
and (3) determine the value of the entropy up to a constant,
which depends on the time scale. More specifically, if the
time scale changes from 7 to 7, the entropy shifts from S to

S=S+1In(7/7. (4)

The same is valid for the maximum entropy Sp, Eq. (3).

It is instructive to compare Eq. (3) with the corresponding
expressions from the transition state theory for unimolecular
reactions. For this, we rewrite Eq. (3) as

(ny=exp(Sp—1). (5)

In a microcanonical ensemble, according to the Rice-
Ramsperger-Kassel-Marcus (RRKM) theory [27], the mean
waiting time is written as (t')=hp(E)/N*(E*), where h is the
Planck constant, E the energy, p(E) the density of states of
the reactant, E* the available energy at the transition state,
N*(E*) the number of possible states at the transition state,
and the prime at # denotes that the time is dimensional. We
introduce a time scale as 7=h/¢€, where € is a characteristic
energy, and define the entropies of the reactant and transition
states as S(E)=kg In p(E) and S*(E*)=kg In[N*(E*)/ €], re-
spectively (kg is the Boltzmann constant). Then the RRKM
equation rewrites as (r)=exp{[S(E)—S*(E*)]/kg}, where (z)
=(t")/ 7. Comparison of this equation with Eq. (5) yields

Sp=[S(E) - S*(E*)Vkg + 1, (6)

i.e., Sp is essentially a loss of physical entropy in the transi-
tion from the reactant to the transition state.

A similar result is obtained for a canonical ensemble, ex-
cept that the partition function plays a role of the density of
states and, correspondingly, the free energy appears instead
of the entropy. Specifically, in this case (t')
=(h/kgT)Z(T)/ Z(T)*, where T is the temperature, and Z(T)
and Z*(T) are the partition functions of the reactant and the
transition state, respectively [28]. Introducing the time scale
as 7=h/kgT, and the free energies of the reactant and the
transition state as F(T)=—kgTInZ(T) and F*(T)=
—kgT In Z*(T), respectively, one finds (1)
=exp{-[F(T)—F*(T)]/ kgT}. Correspondingly, comparison of
this equation with Eq. (5) gives

Sp=—=[F(T) = F*(D)V/kgT + 1. (7)

We define the measure of dissimilarity between a given
WTD and the Poisson distribution as

©

AS:SP—S=1+1n<t>+J p(H)n p(r)dt (8)
0

provided that both distributions have the same value of the
mean waiting time (7). By formal definition, this quantity is
essentially the Brillouin negentropy [24], generalizing the
Schrodinger negative entropy for living systems [23]. The
only difference is that in Eq. (8) the probability for the sys-
tem to escape from a certain state at a given time is consid-
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ered instead of the probability for the system to be found in
a certain state [24]. Although, by definition, AS [Eq. (8)] is
closer to Brillouin’s negentropy, we will use for it a more
general term, i.e., “negative entropy.” According to Eqgs.
(1)—(3), AS is always non-negative and vanishes as the WTD
approaches the Poisson distribution. It is essential that AS is
determined by the degree of deviation of the WTD from the
exponential distribution, i.e., by the shape of the WTD, and it
does not depend on the mean waiting time. This simply fol-
lows from the fact that both the entropies, Egs. (1) and (3),
depend on the time scale in the same way [Eq. (4)].

The utility of the negative entropy defined by Eq. (8) is
twofold. First, if AS>0, it follows that p(7) is less random
than the Poisson distribution, so that the process under con-
sideration should contain, by implication, some deterministic
elements, which break the Poisson process. Second, accord-
ing to Egs. (6) and (7), AS can be expressed in terms of
physical entropy and free energy, which offers a possibility
to estimate the contribution of these deterministic elements
in the kg and kg7 units, respectively. Potentially, the negative
entropy approach can be applied to any problem to which the
concepts of information entropy and transition state theory
are relevant.

B. Kullback-Leibler divergence

Since p(r) and pp() in Eq. (8) are assumed to have
the same value of the mean waiting time (), Sp
=—[opp(D)In pp(t)dt=—[p(t)In pp(r)dt. Then, the right-hand
side of Eq. (8) can be rewritten as [;p(1)In[p(z)/pp(7)]dt,
which presents a specific form of the Kullback-Leibler diver-
gence [25], i.e., the divergence of p(z) from pp(r) [Eq. (2)]
with the logarithm taken to the natural base. It follows that
the Kullback-Leibler divergence has all the properties of the
negative entropy AS, defined by Eq. (8), and, correspond-
ingly, AS could equivalently be referred to as the Kullback-
Leibler divergence.

C. “Nonentropic” measures

Another way to measure nonexponentiality of WTDs is to
compare the standard deviation of waiting times, o{p(z)], or
the median of waiting times, w,,,[p(¢)], with the mean wait-
ing time. The corresponding measures can be, respectively,
defined as

Dy =olp(®) /1) )

and

D pea = {12[p() J/In 2}/(1). (10)

For an exponential distribution both Dy and D,,.q should be
equal to unity [22]. A shortcoming of these measures is that
they do not present functionals that are extremized by the
exponential distribution (in contrast to the information en-
tropy). Therefore, although in certain cases Dy and D,,,.4 can
be used for the WTD analysis (see, e.g., Refs. [14,13], re-
spectively), the equality of these quantities to unity does not
generally guarantee that the WTD is exponential (see also
the discussion of this issue in Secs. II D and III).
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D. Model waiting-time distributions

To see how the shape of a WTD affects the measure of its
nonexponentiality, consider the WTDs of three characteristic
types, specifically, double-exponential, three-exponential,
and nonexponential distributions; the latter are taken in the
form of the function p(f) ~ exp[(t/ 7)#], where B varies from
B<1 (stretched-exponential distributions) to B>1
(squeezed-exponential). A double-exponential WTD gener-
ally represents the process of transitions from a reactant to
the product in the presence of an off-pathway intermediate,
which is separated from the reactant by a barrier not consid-
erably lower than the barrier between the reactant and the
product. Similarly, a three-exponential WTD represents the
process of transitions that is complicated by the presence of
two such intermediates (see, e.g., Refs. [15,16]). A stretched
(squeezed) exponential WTD can be considered as a limit
case of these processes when an array of intermediates,
which are separated from the reactant by relatively low bar-
riers, is involved (see, e.g., Refs. [29,30], respectively); cor-
respondingly, the WTD is characterized by a broad (quasi-)
continuous spectrum of decay times and associated with so-
called “strange kinetics” [31]. Figures 1(a)-1(c) present se-
ries of these distributions; in each case the WTD varies from
the exponential distribution to a distribution which consider-
ably deviates from it. The parameters of the WTDs are cho-
sen to be such that the series of the curves would be more or
less similar in shape. Figure 2 shows the values of the en-
tropy for the distributions of Fig. 1, which are calculated
according to Eq. (1), and compares these values with the
values of the maximum entropy, Eq. (3), corresponding to
the Poisson process [32].

Experimental and simulated WTDs are often noisy (see,
e.g., Fig. 6). To see how this circumstance may affect the
accuracy of calculation of the entropy, the WTDs of Fig. 1
were subjected to a statistic noise. For this, the probability
density p(¢) was shifted according to the Gaussian distribu-
tion with the root-mean-square deviation ~1/\p(/)N (N=5
X 103 is the number of trials), which mimics the inherent
statistic broadening of exponential-like distributions at small
p(t) [15]. As an example of the noisy WTDs, Fig. 3 presents
such distributions for the three-exponential WTDs shown in
Fig. 1(b). The values of the entropy for the noisy WTDs are
shown in Fig. 2 by open symbols. It is seen that the statistical
noise of a reasonable amplitude effects the value of the en-
tropy very slightly. It should be noted, however, that a poor
sampling may pose a problem for accurate estimation of en-
tropy (for a discussion of this problem, see, e.g., Ref. [33]
and the papers cited therein).

Comparison of Figs. 1 and 2 shows that AS [Eq. (8)]
increases as the WDT deviates from the exponential distri-
bution. Moreover, the less regular the behavior of the WTD,
the higher AS. This is illustrated by Fig. 4, which shows
two-exponential,  three-exponential, = and  stretched-
exponential distributions characterized by approximately the
same value of the mean waiting time. As one can see, com-
paring Figs. 4 and 2, AS drastically increases as the slope of
the curve changes less monotonically, specifically, from
~(0.08 for the stretched distribution to =0.25 for the three-
exponential distribution, and then to =~0.5 for the double-
exponential distribution.
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FIG. 1. Model waiting-time distributions: double-exponential
(a), three-exponential (b), and nonexponential (c). The double-
exponential distributions are determined as p(t)=c; exp(t/ )
+c,exp(t/ ), where c¢;:¢,=60:1 and 7=7,=12 in the lowest
curve, and 7, increases successively by a factor of 1.7 in each of the
higher curves; the three-exponential distributions are determined as
p(t)=cyexp(t/ 7)) +cyexp(t/ 7)) +cyexp(t/m3), where  c¢j:cyics
=67:6.7:1 and 71=12, 7»=4, and 73=11 in the lowest curve, and
the latter two increase successively by a factor of 1.7 in each of the
higher curves; and the nonexponential distributions are determined
as p(f)~exp[(t/ 7)f], where 7=13.5 and B=0.6, and B increases
successively by 0.125. The increase of the characteristic times in
the double- and three-exponential distributions [(a) and (b)], as well
as the decrease of B in the nonexponential distribution [(c)], is
accompanied by a monotonic decrease of the slope of the decay
curves at longer times.

Also, consider the WTDs which differ from the exponen-
tial distribution in that in the semilog representation one is
concave and the other is convex. In Fig. 5 the concave dis-
tribution is represented by the stretched-exponential function
(B=0.7, dashed curve), and the convex distribution by the
squeezed-exponential function (8=1.3, dotted curve). For
the exponential distribution (8=1, solid curve in Fig. 5) AS

066113-3



SERGEI F. CHEKMAREV

4.8
4.6
444
4.2

4.0

entropy

3.8+
3.6+

3.4

3.2

mean waiting time

FIG. 2. Information entropy vs mean waiting time for the model
distributions of Fig. 1. Solid up triangles, down triangles, and dia-
monds are for the double-exponential, three-exponential, and non-
exponential distributions, respectively. The corresponding empty
symbols, which are larger in size for illustrative purposes, are for
the corresponding noisy distributions, such as in Fig. 3. The thin
dashed curves depict the exponential fits to the data, and the thick
solid curve presents the maximum entropy, Eq. (3).

[Eq. (8)], log g Dyy [Eq. (9)] and log;o Dyyeq [Eq. (10)] are
essentially zero, whereas for the concave and convex distri-
butions they are, respectively, as follows: AS=2X 1072 and
9X 1072, logjg Dsg=9 X 1072 and -5 X 1072, and log;y Dypeq
=-7x% 1072 and 4 X 1072, Tt shows that if AS, as expected,
remains positive in both cases of deviation from the expo-
nential distribution, log;y Dy and log;y D.q change their
signs. The latter is a result of the above-mentioned property
of Dy and D,,4 (Sec. I C), i.e., that neither of them presents
a functional which is extremized by the exponential distribu-
tion. One possible consequence of this is that the opposite
deviations from the exponential distribution, if they exist,
can cancel each other, reducing log;q Dy and logjg Dyeq tO
zero. Such effect has been observed in Ref. [14], where (f)/ o
in Fig. 4(g) was found close to unity “even though the dis-
tribution of folding times is nonexponential.”

III. APPLICATION TO PROTEIN FOLDING

To illustrate one possible application of the negative en-
tropy approach, consider several examples from protein fold-
ing. In this case, the first-passage time from the denatured
state of a protein to its native state plays the role of the

10"
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10*
10°

10°

0 100 200 300 400 500
t

FIG. 3. Noisy three-exponential waiting-time distributions cor-
responding to (b) of Fig. 1.
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t

FIG. 4. Waiting-time distributions of Fig. 1, corresponding to
approximately the same value of the mean waiting time ((f) =~41):
double-exponential (dashed line), three-exponential (dotted), and
stretched-exponential (solid).

waiting time. Typically, the folding process consists of a fast
collapse of the protein into a semicompact (globular) state,
which is followed by a slow search for a pathway to the
native state. The deviation of the WTD from an exponential
distribution indicates that the folding kinetics are more com-
plex than the simple two-state kinetics, which are associated
with a Poisson process of transitions from the globule to the
native state. It can thus be expected that some on/off-
pathway intermediates are involved into the folding process
in this case. From the information entropy viewpoint, the
presence of intermediates can be considered as the appear-
ance of some deterministic elements in the folding process
due to the transitions between the globule and/or intermedi-
ates. These transitions break the Poisson process of the es-
cape from the free energy basin corresponding to the globule,
and should thus lead to an increase of the negative entropy
AS.

At low temperatures, the mean folding time decreases
with temperature because the system spends less time in lo-
cal minima on the energy surface, and at high temperatures it
increases with temperature because the system explores a
larger portion of semicompact states. Due to this, the mean
folding time exhibits a U-shaped behavior with the tempera-
ture [34,35], with the minimum achieved at some T=T;. Fig-
ure 6 shows the WTDs for a 27-residue lattice protein stud-
ied in Ref. [15], T;=1.9 (for simulation results, here and
below, the temperature is measured in units of the interaction

0 100 200 300
t

FIG. 5. The distributions p(f) ~exp[(¢t/ 7)#] with 7=13.5 and B
=0.7 (stretched-exponential, dashed line), 8=1.0 (exponential, solid
line), and B=1.3 (squeezed-exponential, dotted line).
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FIG. 6. Folding time distributions for a 27-residue lattice protein
[15]: T=1.5 (a), T=1.9 (b), and T=2.3 (c).

energy between the monomers, which represent residues in
the protein). Each of the distributions was obtained on the
basis of 5% 10* folding trajectories. Figure 6(a) presents a
characteristic WTD below Ty, Fig. 6(b) the WTD at T=T;,
and Fig. 6(c) a characteristic WTD above this temperature.
At and above T; the WTDs are close to exponential, and
below T; they are nonexponential. The reason behind this
difference is that along with the free energy minimum corre-
sponding to the globule the system has off-pathway minima
associated with kinetic intermediates. At 7= T; these inter-
mediates are in equilibrium with the globule, forming an
“extended globule,” and at T<T; they are not [15].

Figure 7 plots the negative entropy AS=Sp—S and two
nonentropic measures, log;q Dy and log;o Dy,.q, against the
temperature. They were calculated on the basis of Eqgs.
(8)—(10), respectively, using the WTDs obtained in the simu-
lations in Ref. [15]. It is seen that the behavior of the nega-
tive entropy and nonentropic measures is, in general, similar:
At low temperatures, where the WTDs are nonexponential
[as in Fig. 6(a)], all AS, log;o Dy, and logy Dpeq are of
considerable value. Then, as the temperature approaches T,
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FIG. 7. The temperature dependence of the negative entropy AS
[Eq. (8), cubes], and two “nonentropic” measures, log;y Dy [Eq.
(9), triangles] and —log ;o Dpeq [Eq. (10), diamonds], for folding of
a 27-residue lattice protein [15]. The solid lines are to guide the eye,
and the dotted line is to show the zero deviation from the exponen-
tial distribution.

where the WTD acquires an exponential form [Fig. 6(b)],
they become small. At the higher temperatures, where the
WTDs are exponential [Fig. 6(c)], these quantities change
slightly. Figure 7 clearly indicates that the deviation from
two-state kinetics can be expected below 7=1.9, which
agrees well with the results of a detailed study of the folding
kinetics of the given system in Ref. [15]. At the same time, it
is seen that none of AS, log;y Dy, and log;y D eq 1S essen-
tially close to zero at 7= T;. The reason is that the WTDs at
these temperatures [Figs. 6(b) and 6(c)] are not truly expo-
nential. When the protein folds from a fully extended state,
as it is often assumed in the simulations (including Ref.
[15]), some time is required for the protein to collapse into a
semicompact globule. This leads to a sharp increase of the
WTD at short times [15], which is particularly well seen in
Fig. 6(b). Due to this deviation from the exponential distri-
bution, AS retains a finite value at high temperatures. For D
and D .4 the consequence is more dramatic, i.e., because the
WTDs are convex at short times, log;q Dy and —log Dyyeq
become negative (see the discussion of Fig. 5 in Sec. II D).
Correspondingly, when T approaches 7} from the side of low
temperatures, log;, Dy and —log;, D .4 decrease excessively
fast. A similar irregular behavior of D, .4 and D is observed
for the model proteins studied in Refs. [13,14]; for the 27-
mer lattice protein [13] log;g Deq changes sign as the tran-
sition midpoint in the chevron plot is approached (Fig. 3 of
Ref. [13], folding, open, and closed squares), and for the
off-lattice SH3 domain [14] log;, Dq behaves similar to that
in Fig. 7 [Fig. 4(g) of Ref. [14]]. Thus although in principle
every above measure, i.e., AS, Dy, and D .4, can be used to
quantify nonexponentiality of a WTD, the negative entropy
has a more regular behavior.

Simulations for a lattice protein with an amyloidogenic
latent state [17] show the same character of variation of the
negative entropy with temperature as in Fig. 7. Here at T
=0.65, AS=0.2 (a double-exponential WTD, multistate ki-
netics), at T=T;=0.6725, AS~=0.03 (the WTD is close to an
exponential WTD, and the kinetics are close to two-state
kinetics), and at T=0.695, AS=0.01 (an exponential WTD,
two-state kinetics). Similar results are obtained for an off-
lattice ubiquitinlike protein [12], where AS=0.1 at T=0.44
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and AS~0.01 at T=0.48-0.57 [to calculate AS, Eq. (8), the
fitting functions for the WTDs, presented in Ref. [12], were
used].

The negative entropy can also increase with temperature,
as, e.g., in the case of “strange kinetics” observed by Sabelko
et al. [11] for a two-domain enzyme yeast phosphoglycerate
kinase (PGK) and double mutant (F45W, V26G) of human
ubiquitin (Ub*G), which unfold on cold denaturation. Pro-
vided that a nonspecific relaxation of the polypeptide chain
in the unfolded state that occurs at small times is excluded,
both the proteins have the exponential WTDs at lower tem-
peratures and the stretched-exponential WTDs at higher tem-
peratures [ 11]. What is of interest is that the values of AS are
found to be of the same order as in the previously discussed
simulations. Calculations for PGK give AS=0.04 at T=5C
and AS=0.16 at T=19C, and for Ub*G AS=0.016 at T
=2C and AS=0.5 at T=8C. It should be noted, however,
that taking into account the previously mentioned relaxation
results in more complex kinetics at low temperatures (see
also [16]). In particular, for Ub*G at T=2C the WTD trans-
forms into a double-exponential distribution with vastly dif-
ferent decay times (22 us and 5 ms) [11], which makes AS
as large as =2.3.

In the case of canonical ensemble, according to Egs. (7)
and (8), AS represents a change in the free energy. Therefore,
provided that both the folding time distribution and the free
energy barrier separating the unfolded and folded states
(AFygp) are known, AS can be compared with AFyg/kgT.
Such information is available for the 27-residue lattice pro-
tein of Ref. [15] at 7=1.5. Here AS=0.22 (Fig. 7), and
AFyp/kgT=InZ,/Z4,~5.9, where Z; and Z; , are the parti-
tion functions for the denatured state and the transition state
ensemble, respectively (they were estimated in Ref. [15]
with the use of the transition disconnectivity graph [36]). It
follows that although the folding time distribution apparently
deviates from the exponential distribution [Fig. 6(a)], the in-
crease in the free energy does not exceed =~4% of the free
energy barrier, i.e., folding kinetics can be considered as
two-state kinetics in the leading order.

IV. CONCLUSION

It has been shown that the information entropy based on
waiting-time distributions (WTDs) offers a natural and ro-
bust measure of nonexponentiality of the distributions. To
quantify the deviation of a WTD from the exponential distri-
bution, corresponding to a Poisson process, the difference
between the information entropies for the exponential distri-
bution and a given WTD has been employed. This difference
is essentially the Schrodinger-Brillouin [23,24] negative en-
tropy (negentropy), except that the probability for the system
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to escape from a certain state at a given time is considered
instead of the probability for the system to be found in a
certain state. The utility of the negative entropy in applica-
tion to the WTD analysis is twofold. First, a positive value of
the negative entropy indicates that the WTD is less random
than the Poisson distribution, so that the process under con-
sideration should involve some deterministic element(s),
which breaks the Poisson process. Second, the negative en-
tropy has a straightforward interpretation in terms of transi-
tion state theory, so that it can be expressed in terms of
physical entropy and free energy, and, correspondingly, be
measured in the kg and kg7 units, respectively. Potentially,
the negative entropy approach has a broad range of applica-
tion for the WTD analysis because it is applicable to any
problem to which the concepts of information entropy and
transition state theory are relevant.

The negative entropy thus introduced presents a specific
case of the well-known Kullback-Leibler divergence [25],
when the Poisson distribution is used as the reference distri-
bution and the logarithm is taken to the natural base. Corre-
spondingly, it can equivalently be referred to as the
Kullback-Leibler divergence.

Along with the entropic measures, the nonentropic mea-
sures Dy [Eq. (9)] and D,,.q [Eq. (10)], which are based on
the comparison of the standard deviation and median of wait-
ing times with the mean waiting time, can, in principle, be
used. However, since they do not present functionals that are
extremized by the exponential distribution (in contrast to the
information entropy), the equality of Dy and D,,.4 to unity
does not generally guarantee that the WTD is exponential.
Therefore care should be taken in the application of these
measures.

The theoretical analyses have been illustrated with simu-
lation and experimental results from protein folding. Consid-
ering a limited but not specific set of proteins, it has been
found that the negative entropy typically varies in the range
of several hundredths of kzT (two-state Kinetics) to several
tenths of kg7 (multistate kinetics). The knowledge of the
negative entropy and the free energy barrier between the un-
folded and folded states of the protein allows estimation of
the relative deviation of the folding process from two-state
kinetics.
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