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Biased random walks on a lattice: Exact numerical method to study the effect
of alternating fields in disordered and asymmetric systems of obstacles
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The migration of a particle in a system of obstacles under the action of an external field is often modeled
using lattice Monte Carlo algorithms. For example, such simulation methods have been used to study the
electrophoresis of charged molecules in sieving gels and the separation of particles using ratchet systems. In
the case of constant fields or low-frequency alternating fields, the Monte Carlo simulation method can be
mapped onto a numerical or algebraic matrix problem that can be solved exactly. In this Rapid Communica-
tion, we generalize this matrix approach to treat periodic time-dependent fields. The evolution of the spatial
distribution function during a period is computed using a sequence of transfer matrices, and a steady-state
closure relation allows us to calculate the exact mean velocity of the particle during a complete cycle. As an
example, we examine the properties of a simple spatially asymmetric ratchet system in the presence of periodic
alternating fields (symmetric and asymmetric) as well as random telegraph signals.
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Lattice Monte Carlo (LMC) simulation methods are very
efficient and can be used to study a wide variety of diffusion-
related problems [1-3]. Typically, a particle moves randomly
between lattice sites in the presence of constraints (e.g., ob-
stacles represented as forbidden lattice sites) and external
fields. The connection between the real problem (continuous
space, particle charge and friction coefficient, liquid viscos-
ity, medium properties, etc.) and the discretized LMC repre-
sentation is often subtle, and one must be careful in order to
obtain the proper dynamics, especially at high field intensity
[4].

Recently, we derived LMC algorithms that produce the
right velocity and diffusion coefficient for arbitrary field in-
tensities [4—7]. Some of these algorithms use a fixed time
step, even though the jumps along and perpendicular to the
field direction should in principle take different times if a
field is present. With a fixed time step, it is possible to trans-
form a stochastic LMC simulation into a matrix equation that
can be solved exactly to obtain the steady-state velocity in
the presence of obstacles. However, this numerical approach
is limited to constant field intensities; standard computer
simulations are required if the field intensities vary as a func-
tion of time.

Gel electrophoresis separations sometimes make use of
pulsed electric fields to free particles from dead ends [8].
Although this method has been studied experimentally, very
few theoretical or computational investigations have been
published. Asymmetric dead-end traps can be used to im-
prove separation using a mechanism called a ratchet [9-11].
Let us take, for example, the asymmetric system of obstacles
shown in Fig. 1(a). In the presence of a symmetric alternat-
ing field, a unit size particle (size a X a, as shown) will get
trapped when the field is pointing in the +x direction, but not
when it is reversed. Therefore, even if the external field has a
mean value of zero during a cycle, the particle will show a
net displacement in the negative direction. For this system,
the trapping process is reversed for a 2a X 2a particle. This is
also a process that can be studied using LMC simulations,
but exact solutions of the LMC algorithm can only be ob-
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tained in the limit where the pulse duration is infinite.
Clearly, finite frequencies are of great interest because of the
possibility of system optimization, current reversals (nega-
tive mobilities), and resonances [12].

In this Rapid Communication, we demonstrate that our
matrix method can be generalized to treat finite frequencies.
In brief, we use transfer matrices to transform the distribu-
tion function from one time step to the next, and we use the
fact that the field is periodic to obtain a closure relation that
applies to the steady state. Exact numerical results can thus
be obtained, and subtle effects, essentially impossible to
quantify using stochastic simulation methods, can be exam-
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FIG. 1. (a) A 2D lattice with obstacles (black) and periodic
boundary conditions. Particles of sizes aXa and 2a X2a (gray)
jump to neighboring sites (if they are not occupied by obstacles) at
every time step. Traps are asymmetric along the axis of the applied
force. (b) A simple square pulse sequence. The total period of the
sequence includes J Monte Carlo time steps. (¢) In a random tele-
graph signal, the magnitude of the force is constant but the direction
switches randomly.
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ined. As an example, we study the two-dimensional (2D)
ratchet system shown in Fig. 1(a).
A particle of radius R moves in a liquid of viscosity 7

under the action of an external force F=+ Fx. The particle’s
friction coefficient is then given by &(R)=6m7R, and its dif-
fusion coefficient is Dy(R)=kzT/&(R). Tts velocity is given
by the relation vy=F/§&. The corresponding LMC model uses
a lattice with a mesh size a [Fig. 1(a)] and periodic boundary
conditions. The particle then makes jumps of size a in one of
the four directions at each time step. In the absence of a
force, the basic time step is 73(R)=a?/2Dy(R). In terms of
the Brownian time 75(R) ~ R and the lattice mesh size a, we
can write

Vo= == —L =g, (1)

where e=Fa/2kgT is the dimensionless force [5].

We now consider the 2D system in Fig. 1(a). In the pres-
ence of a constant force of magnitude &, it is possible to use
the following time step for both x and y jumps:

__ ™
1 + & coth(e)’

&) = (2)

where 7(0)=175/2, as expected. The transition probabilities
are then given by

1

Pasle)= (1+e72)[1 + tanh(e)/e]’ o
_rte)

Piy(s) = 27 : @)

We note that P. =P, =1/4 when £=0, as expected for an
unbiased process. It is easy to show that these LMC param-
eters recover the free-solution velocity and diffusion coeffi-
cient (vy and D,) for arbitrary magnitudes of the force if
there is no obstacle in the system. As usual, Monte Carlo
steps that lead to the particle overlapping with an obstacle
are rejected. The particle properties can impact the results via
the scaled force ¢ (e.g., for a fixed external field, the result-
ing force may depend on the particle’s charge or mass), and
the size R (which affects both the number of collisions with
the obstacles and the Brownian time 7). The field lines are
considered straight and unaffected by the obstacles.
Although it is easy to use this LMC algorithm to simulate
systems with obstacles and constant external forces, one can
solve the algorithm exactly using the following method,
which we described in detail in previous publications [5,13].
Let |n(z)) be the state vector containing the particle’s prob-
abilities of presence n,(t) on each of the lattice sites i at time
step ¢ (we use the bra-ket Dirac notation to represent row and
column vectors). Given the probabilities P, and P., and
the location of the obstacles on the lattice, one can write a
transfer matrix A such that the distribution function after the
next Monte Carlo jump is given by the matrix operation

Il + (e)]) = Aln(7)). (5)

Of course, this can be done only if we have the same time
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FIG. 2. (Color online) (a) Net velocity vs the amplitude of the
external dc force (pointing in the +% direction) for the system
shown in Fig. 1(a). The maxima are located at £, ~1.02 and &,
~-0.38. (b) Net velocity vs the duration of the square-pulse ac
cycle (with e= +0.5) for the system shown in Fig. 1(a). The lines
cross at cycle durations of about 38 MC time steps (MCts). The
plateaus are at —0.0163 and 0.0439.

duration for all jumps. If the force € is constant, the matrix
A=A(e) is itself time independent. Equation (5) can then be
used iteratively to calculate all future distribution functions
|n(z)) given an initial distribution |n(0)). However, since we
are looking for the mean particle velocity for long times, one
can use the simple relation |n(z))=|n(t+(e)))=|n) to com-
pute the distribution function |n) in the steady state. This
matrix equation, together with the normalization condition
(1|n)=1, can be solved numerically with arbitrary precision,
or even algebraically in some cases. For a given obstacle
configuration, the mean velocity of the particle when it is
located on lattice site i is given by

a(P+xL+i - P—XL—i)
(&) ’

(6)

v; =

where L. ;=0 if the target site is occupied by an obstacle and
L.;=1if it is free. With the row vector (v| containing the
local mean velocities thus calculated, the mean global veloc-
ity in the steady state is simply given by the weighted aver-
age V,=(v|n). Figure 2(a) shows the result of this calcula-
tion for the system shown in Fig. 1(a) for constant forces
—1<g<4 and two particles with different sizes (the force
applied to the two particles is the same). In both cases, the
particle eventually has a negligible velocity because it gets
trapped inside the dead ends. The maxima are found at &,
~1.02 and &,=-0.38 for the small and large particle, re-
spectively (note the different signs).

Our goal here is to extend the usefulness of our exact
numerical method to time-varying but periodic external
forces. Figure 1(b) gives an example where only two scaled
forces are used, €, and e_. A general force cycle is a se-
quence of J potentially different LMC conditions where the
force is g; at time L with j=1,...,J. Note that the duration
of the LMC steps changes for each instantaneous value of g;
so that #;,;—t;=(e;). Because time is discretized, a LMC
method is not expected to be reliable at very high frequency
(ie., if J=1).
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The evolution of the distribution function can now be cal-
culated iteratively using matrix relations such as

Ayln(t))) = [n(1y)), (7)
Asln(1y)) = [n(t3)), (8)
Ay q|n(t;_y)) = |n(2)). )

We use this numerical method only for systems that do
not have separate unconnected zones. In such cases, the tran-
sition matrices A; are not block diagonal, and multiplying
them to generate the future states of the system eventually
yields regular stochastic matrices, i.e., transition matrices
where all entries are greater than 0 [ 14]; the latter are known
to produce Markov chains that possess a steady state [14].
Therefore, we can close the sequence of operations described
by Egs. (7)—(9) using the relation

J
(H (AJ—_/'+1)> [n(1,)) = n(1,)). (10)
j=1

This essentially defines a transfer matrix A;=A;XA;_;
X -+ XA, which allows us to compute the steady-state
beginning-of-the-cycle distribution function |n(¢;)). Once
this is computed, the A; matrices can be used to iteratively
compute the steady-state distribution functions [n(z;)) for the
rest of the cycle (i.e., for j=2,...,J). We note, however, that
the time duration of the various LMC steps j may differ from
each other. The total period of the cycle is thus given by
> 7(g;). For each LMC jump j, one can also write a row
vector (v(tj)| containing the instantaneous mean velocities
v;(t;) on each site i. The mean distance migrated during a
given LMC time step is thus given by Ax(z)
=1(g;){v(t)) |n(tj)>. Finally, the mean velocity during a com-
plete steady-state cycle is

J J
Ax(t) 2 ((R)ln(r)) X le))
- j=1 _ Jj=1
Vx_ J - J ' (11)
> we)) 2 ()
j=1 J=1

This completes the procedure to follow to obtain exact nu-
merical results for LMC problems that include periodic time-
varying forces.

In order to demonstrate the usefulness of our numerical
method, we examine the behavior of the two particles mi-
grating in the system shown in Fig. 1(a) when we apply
symmetric and asymmetric pulsed fields. We also investigate
the response of this system to random telegraph signals. The
dc data were shown in Fig. 2(a).

First, we apply a symmetric ac force [Fig. 1(b), with J
=2n and e,=—¢_]. We are computing the net velocity as a
function of the number of Monte Carlo time steps (MCts) per
cycle; the results are shown in Fig. 2(b). The geometric
asymmetry of the system of obstacles leads to nonzero net
velocities in spite of the fact that the mean force (over a
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FIG. 3. (Color online) (a) Net velocity vs the amplitude of the
external ac force for the small particle in the system shown in Fig.
1(a). The square-pulse asymmetric ac force is +& for a duration T,
and —¢ for a duration 7_. The ratio T, /T_ is kept fixed at 3. The
long-dashed curve shows the velocity in the presence of a dc force
[see Fig. 2(a)]. (b) Here, the ac force is a random telegraph signal
which alternates randomly between *e& [the mean force is thus
zero; see Fig. 1(c)]. We varied the number M of consecutive MC
steps with the same force value.

complete ac cycle) is zero. We note that the particles almost
always move in opposite directions, and that their net veloci-
ties are equal when the cycle duration is about 38 MCts [see
Fig. 2(b)]. These velocities then increase with increasing
cycle duration up to a plateau limit starting at about 2000
MCts. For very long cycle durations, the plateau result is
simply the average of the two dc velocities; the latter can be
obtained from Fig. 2(a) (they are marked by the two arrows).
It is clear from Fig. 2(b) that application of an unbiased ac
force could be a useful way to exploit the geometric asym-
metry to build a powerful sieving system where particles of
different sizes move in opposite directions [11,12].

Field inversion gel electrophoresis (FIGE) [15] generally
uses biased pulsed electric fields where the field direction is
reversed periodically (the amplitude is kept constant) and the
forward pulse duration T, is longer than the reverse pulse
duration T_ (a ratio T,/T_=3 is typical). We now examine
the effect of such FIGE conditions for the small particle in
the system shown in Fig. 1(a). Of course, reversing the field
direction periodically will help the particle move out of the
steric traps (in dc fields, only thermally activated escapes are
allowed) [8]. The results are shown in Fig. 3(a); note that the
long-dashed curve shows the data for a dc field [these are the
data found in Fig. 1(a)]. As expected, the average of three
positive dc fields with one negative dc field (bottom curve,
marked 7_— ) is recovered for very long pulses. At high
frequency, the net velocity increases with field intensity as if
we had a dc force of amplitude [(T+—T_)/(T++T_)]8=%8
and no trapping (compare the dc line and the 7_=4, 10, or 40
line). The high-frequency and dc curves cross at e= 1.36;
beyond this point, the velocity is higher with the high-
frequency ac force (because of the detrapping effects) even
though the particle moves backward 25% of the time. At
T_=40, the net ac velocity plateaus between €=1 and ¢
=2, but keeps increasing afterward. For longer pulses, the
velocity reaches a maximum at =1 and decreases for
higher fields before it increases again. As the 7_=100 case
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shows, one can even see two velocity reversals as the force is
increased (this small double reversal would be almost impos-
sible to observe using LMC simulations). For very long
pulses, we observe only one velocity reversal and the net
mobility is negative for all forces beyond about £ =1.64. We
note that, for a fixed value of &, a reversal of the net velocity
is also observed when changing the pulse duration if the
force is large enough.

Finally, we apply a random telegraph signal to the same
system. The signal is made of pulses of duration M7(g) and
random intensities =& [see Fig. 1(c)]. For our algorithm to
work, we must have the same number of positive and nega-
tive pulses (i.e., an unbiased random force), and the sequence
must be periodic. We thus use very long cycles [typically of
duration 10°7(g)] that mimic nonperiodic conditions (the
round-up error introduced by the large number of matrix
multiplications was less than 107 in all cases), and we av-
erage over a large number of random permutations of the *
pulses. Here, M acts like a correlation time for the random
telegraph signal. As M gets very long, we recover the dc
limit of two dc forces averaged together. Again, we observe
nonzero velocities in the presence of an ac force with a zero
mean value. However, the velocities are always negative
here [unlike the case of Fig. 2(b)], showing that random tele-
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graph signals are fundamentally different from strictly peri-
odic ac signals. At high frequency, the velocity is essentially
zero, while it was slightly positive in Fig. 2(b). Moreover, we
note a rapid change as the correlation time increases from
M =2 to 5. This is due to the fact that, at high force strength,
it takes about five jumps to move from one row of obstacles
to the next in Fig. 1(a).

In conclusion, we presented a generalized matrix method
that can be used to compute the exact numerical solution for
lattice Monte Carlo simulations in the presence of time-
varying but periodic forces. The method is simple to use but
it requires important memory resources if the lattice is large.
We showed the power of this method by investigating a
simple toy model with asymmetric obstacles that lead to
ratchet effects and current reversals. Some of the effects
found here would be essentially impossible to observe using
stochastic methods. Our method can easily treat a wide va-
riety of periodic signals such as sinusoidal functions (made
of histograms), pseudorandom pulses, or even fields that
switch between the x and y directions.
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