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A Monte Carlo study on ultrasound backscattering by red blood cells (RBCs) is presented for three-
dimensional (3D) distributions of particles. The cells were treated as classical spherical particles and accord-
ingly, the Boltzmann distribution was considered to describe probability distribution of energy states of a
system composed of such particles. The well-known Metropolis algorithm can generate configurations accord-
ing to that probability distribution and therefore, was employed in this study to simulate some realizations of
both nonaggregating and aggregating RBCs. The study of nonaggregating particles was motivated to compare
simulations with existing experimental results and consequently, to validate the model. In the case of aggre-
gating RBCs, the interaction potential between cells was modeled with the Morse potential and the frequency-
dependent backscattering coefficient (BSC) was investigated at different hematocrits (H, particle volume frac-
tions). The impact of aggregation potential on the spectral slope (SS) was also evaluated. It is shown that BSC
increased as the magnitude of aggregating potential was raised and the effect was more pronounced at higher
hematocrits. Moreover, spectral slopes at nonaggregating and low aggregating conditions were found to be
around 4, which is consistent with the Rayleigh scattering theory. However, it had diminished significantly,
particularly at higher hematocrits as the magnitude of the attractive potential energy was raised. For instance,
at H=40% SS dropped from 4.04 for nonaggregating particles to 3.62 at the highest aggregating potential
considered in this study. Our results suggest that this 3D model is capable of reflecting the effects of RBC

aggregation on BSC and SS.
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I. INTRODUCTION

Red blood cells in normal blood flowing through human
vessels constitute reversible aggregates. Aggregates usually
form rouleaux or complex three-dimensional structures [1].
The size distribution and spatial abundance of those aggre-
gates depend upon the flow condition and concentration as
well as molecular mass of large plasma proteins (macromol-
ecules) in blood, such as fibrinogen [2,3]. The aggregation
phenomenon in human blood is normal, however, hyperag-
gregation is a pathological state. An enhanced level of red
blood cell (RBC) aggregation changes rheological properties
of blood and may hamper normal circulatory functions, i.e.,
transportation of oxygen, nutrients, and metabolic wastes.
Any deviation from normal condition can contribute to vari-
ous diseases, namely, deep venous thrombosis, atherosclero-
sis, microcirculatory flow disorders in pathologies such as
diabetes mellitus, etc. [4—6].

It is believed that the ultrasound blood characterization
(UBC) technique has the potential to provide a method for in
vivo and in situ evaluation of RBC aggregation and may
become a diagnostic tool because the level of aggregation is
directly related to the echogenicity of blood. It may be men-
tioned here that ultrasound waves propagating through blood
are scattered as they encounter inhomogeneities in acoustic
impedance. RBCs are the main scatterers of blood because
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their acoustic properties are different with respect to the sur-
rounding plasma and also because they are much more nu-
merous than any other blood cells (approximately 98% of
blood particles are erythrocytes). For such systems, it is not
straightforward to develop a theoretical model depicting their
ultrasound scattering behaviors. This is because the scattered
field is governed by complex interactions of the incident
wave with a collection of suspended particles in plasma at a
volume fraction (hematocrit) that may typically vary be-
tween 20 and 60% (the normal hematocrit is close to 40%).
However, as RBCs are acoustically considered as weak scat-
terers (impedance mismatch with respect to plasma =13%),
then multiple scattering can be neglected and accordingly,
the expression of the scattered intensity can easily be cast in
terms of the single-particle scattering cross section, number
density of particles, and structure factor of the medium [7].

Recently, Yu and Cloutier [8] developed a modified ver-
sion of this model by approximating the structure factor and
used that to analyze in vitro experimental data to determine
two physically relevant parameters of RBC clustering, the
packing factor, and mean fractal diameter of aggregates. It is
expected that by properly compensating biological tissue at-
tenuation [9], this approach may allow quantitative and re-
producible in vivo characterization of RBC aggregation.
Apart from these, a large number of in vitro investigating
protocols were also designed to observe ultrasound back-
scattering from blood as well as to study how it varies with
shear rate, flow turbulence, hematocrit, stroke rate of pulsa-
tile flow, and concentration of aggregating macromolecules
[10-15].
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Besides in vitro and a few qualitative in vivo investiga-
tions on RBC aggregation, simulation studies have recently
been proposed to better understand mechanisms of ultra-
sound backscattering by various distributions of red blood
cells. Simulations enable one to vary different physical pa-
rameters in a controlled way and consequently, to examine
their influence on variations of observables. Fontaine et al.
[16] investigated backscattering by three-dimensional distri-
butions of noninteracting cells and obtained convincing re-
sults. However, they did not consider aggregating RBCs as
well as the fact that particles could not overlap due to their
impenetrability. Other earlier studies based on particle dy-
namics or statistical mechanics examining nonaggregating or
aggregating cells were mostly restricted to one or two dimen-
sions [17-20]. Therefore, to provide a framework to interpret
experimental observations, it is relevant to simulate three-
dimensional distributions of nonoverlapping particles and
study corresponding frequency-dependent backscattering for
both nonaggregating and aggregating RBCs.

The purpose of this paper is to describe a model imple-
menting statistical mechanics that is capable of generating
three-dimensional configurations for both nonaggregating
and aggregating blood samples. The nonaggregating distribu-
tions were generated by throwing particles randomly in
space with the restriction that they could not overlap. For
aggregating particles, configurations were produced by al-
lowing impenetrable particles to interact attractively with
neighbors. The Morse potential was used for this case to
mimic the interaction pair potential. For both simulation con-
ditions, frequency-dependent backscattering coefficients
(BSCs) were computed for a wide range (7.5-200 MHz) of
frequencies and associated spectral slopes were determined
within a particular frequency range (up to 40 MHz) at differ-
ent hematocrits. The spectral slope (SS) is an often used
index in ultrasound tissue characterization that describes
BSC as a function of frequency on a log-log scale. For non-
aggregating RBCs, the SS is generally found to be around 4
confirming particles behave as Rayleigh-type scatterers; that
is, scattered intensity depends on the fourth power of fre-
quency. It was observed [7,12,13] that the SS remained close
to that value for blood medium containing aggregates with a
size smaller than N/10. Here, N is the wavelength of the
incident wave. Essentially the numerical value of the SS di-
minishes as the frequency of incident wave or the size of
RBC clusters increases.

The organization of the paper is as follows: We present
the theoretical background in Sec. II. Simulation methods
and results are elaborated on in Secs. III and IV, respectively.
Section V is for discussions of our results. Here we compare
our findings with earlier observations in brief as well as
highlight the computational intensiveness of this work. Fi-
nally, we summarize our conclusions and the scope of future
works in Sec. VI.

II. THEORETICAL BACKGROUND
A. Ultrasonic scattering by blood

1. Single-particle scattering

The angle-dependent scattering cross section can be ob-
tained in various ways for an isolated homogeneous scatterer.
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FIG. 1. Top view of the scattering diagram. Here, 0=, gives
backscattering.

For example, exact analytical expressions of scattering cross
sections exist for regular (sphere, cylinder) homogeneous
scatterers [21]. On the other hand, one can also rely on ap-
proximate results of scattering cross sections because they
are, in general, simple and valid even for irregular scattering
objects [22]. Approximate expressions of scattering cross
sections are generally obtained by solving the integral equa-
tion for pressure wave by using the Green’s function method
and also by approximating the acoustic field inside the scat-
terer in various ways [23]. In the case of the most popular
Born approximation, the unknown internal field within the
scatterer is assumed to be given by the incident field and
accordingly, the expression for scattering amplitude can be
derived. This approximation works well when the size of the
scatterer is small (kR<<1) and contrasts in acoustic proper-
ties are also small (<= 15%), with respect to the suspend-
ing medium. Here, k is the magnitude of the incident wave
vector k and R represents the radius of an equivalent sphere
having the volume of a RBC. The backscattering cross sec-
tion, which is of particular interest in many situations since
measurements are generally carried out in the backward di-
rection, in the Born approximation for a homogeneous
spherical scatterer is given by [21,22]

Y 214 (Ke_K)_(pe_p)>2
oy(—2k) = 16712vsk ( p o
( sin 2kR — 2kR cos(2kR) )2 N
(2kR)? ’ (

where k and p indicate the adiabatic compressibility and
density of the surrounding medium, respectively. The same
quantities for the scatterer are given by «, and p,. The sub-
script b is used to denote backscattering. Here, V| represents
the volume of the spherical scatterer prototype. The scatter-
ing diagram corresponding to Eq. (1) is shown in Fig. 1.

2. Many-particle scattering

For a monodisperse medium such as blood (a dispersion
of single-type scatterers), the differential backscattering
cross section per unit volume (also known as the backscatter-
ing coefficient), which is defined as the scattered power per
unit solid angle in the backscattering direction far away from
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the scatterers divided by the intensity of the incident wave,
can be cast as [24]

2
(Tb(— 2]2)

N
> o2k Ty

n=1

=mS(-2k)o(- 2K), ()

. 1
Xp(—2k) =m ]T,

where m is the number density of scatterers that is related
with the hematocrit (H) as, m=H/V,. Here, S(-2k) is the
structure factor of the insonified medium. Its ensemble aver-
age is here denoted by the symbol { ). The position vector 7,
defines the center of the nth spherical scatterer in space, as
shown in Fig. 1, where N is the number of scatterers in the
region of interest. In this study, Eq. (2) was evaluated for
various distributions of RBCs corresponding to nonaggregat-
ing as well as aggregating conditions. This equation thus
constitutes the framework of our simulations.

The structure factor in Eq. (2) represents the spatial orga-
nization of particles and for a collection of cells distributed
in space, we showed earlier in the context of ultrasonic scat-
tering by red blood cells that it can also be described by

2
. (3)

Here, N(7) is the microscopic density function and for dis-
crete scatterers, it is given by

S(-2k) = <N f N(Pexp(i2k - Pdr

<
N(r) = ]T/E or—r,), (4)
n=1

where § is the Dirac delta function. Hence, from Eq. (3) it is
clear that the structure factor can be computed by taking the
Fourier transform of the microscopic density function.
Therefore, by using Eq. (4) for a particular number density
(m), the frequency-dependent backscattering coefficient [Eq.
(2)] can be computed in the Born approximation.

Another simple variant of BSC, which is given by [25,26]

Xp(= 2k) = mWa (- 2k), (5)

can also be widely found in the literature. This particular
form of the BSC can be derived by approximating the struc-
ture factor in the low frequency limit. For hard spherical
particles, the packing factor (W), known as the Percus-
Yevick packing factor, is related with the hematocrit as [25]

_(a-m*

T (1+2H)* (6)

The BSC as expressed by Eq. (5) can be used at low frequen-
cies (Rayleigh scattering conditions). In this paper, we use
the Percus-Yevick packing theory (later abbreviated as
PYPT) to refer to BSC computed with Eq. (5).

B. Interparticle interaction

One of the important determining factors of the BSC for a
collection of particles is the spatial organization of cor-
puscles, as defined by S(—2k). For human blood, which is a
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fluid densely packed by RBCs (=5 million RBCs per mm?),
organization of cells is governed by the resultant interparticle
interaction potential originating from various force fields.
For example, steric potential does not allow RBCs to overlap
because although deformable, they are impenetrable in na-
ture. Negatively charged thin layers (glycocalyx) attached
with surfaces of RBCs create a screened electrostatic repul-
sive potential between them since they are immersed in an
ionic solution. In the case of blood in motion, shear forces
also have an impact on RBC interactions. Low shear condi-
tions favor RBC collisions and aggregation, whereas RBC
aggregates are disrupted at high shears. The shear depen-
dence of RBC aggregation is reversible as shear forces are
modified.

There are two mutually contradictory models to explain
attractive potential between RBCs, which leads to aggrega-
tion of cells. In one model, RBC adhesion is due to the
adsorption of macromolecules at the cell surface, which
bridges RBCs to form stacklike structures. According to the
other model, a depletion mechanism is responsible for RBC
adhesion. In this case, macromolecules are rejected from the
interspace between two RBCs and therefore a concentration
gradient of macromolecules binds RBCs by producing an
osmotic pressure near their surfaces to from rouleaux. The
resultant of these potentials (steric, electrostatic, shear, ad-
sorption or depletion) determines the magnitude and spatial
extent of the RBC-RBC pair potential [1-3].

1. Pair potential for nonaggregating particles

For nonaggregating cells, the attractive potential is no
longer active. The electrostatic potential can also be ignored
in this case because it remains nonzero only when the
surface-to-surface distance between two cells lies within few
nanometers. The effect of steric potential can be written as

nonag __
U =,

if | < 2R
=0, if|h|=2R, (7)

where h represents center-to-center separation distance be-
tween two RBCs. The pair potential was modeled as very
high when the cells overlapped, otherwise it was set to zero.
The superscript nonag denotes the nonaggregating case and
the subscript ij stands for ith and jth particles.

2. Pair potential for aggregating particles

Neu and Meiselman [27] obtained an analytical form for
pair potential of aggregating blood particles by considering
electrostatic and depletion interactions. The validity of the
model was also established by showing good matching be-
tween theoretical predictions and experimental results. How-
ever, the derivation as well as interpretation of such math-
ematical expressions is nontrivial. Alternatively, the Morse
potential was used to represent RBC-RBC interaction energy
per unit area profile [28,29], as given by

@"(ry;) = D{exp[2B(ro— ry)] =2 exp[Blro—r) ]} (8)

In the above equation, the superscript m refers to the Morse
potential. Here, r, is the surface-to-surface distance between
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FIG. 2. (a) Typical variation of the Morse
potential with surface to surface distance. The
potential reaches its minimum value D at a sepa-
ration distance r. It becomes 60% of D at a dis-
tance 8~! from r. (b) Top view of two interacting

~

BET |

L/

RBCs. The interaction potential acts over the sur-
faces exposed to each other. The dashed arrows
represent the attraction between particles.

two interacting objects and r( is the distance where the po-
tential reaches to its minimum value D, as shown in Fig.
2(a). Physically D can be related with the concentration of
macromolecules in plasma and hence its increase results in
higher RBC-RBC bond strength. The parameter 8 controls
the width of the potential. It has a direct correspondence with
the molecular size of macromolecules in practice [27-29]
and determines the RBC-RBC bond length. The potential
behaves as a repulsive one up to certain distances, otherwise
it is attractive in nature. Further, it vanishes when separation
between particles becomes much larger than the width of the
potential. It was used in this study to model aggregation.

For two spherical objects as approximated for neighbor-
ing RBCs in this study, the total potential energy can be
obtained by integrating the Morse potential over the interact-
ing surface area such as

/2
Uit = f 27R? sin(&) D{exp[28(r — r;;)]
0

—2 exp[ Blro - rij)]}df, )

where r;;=h—2R cos § is the surface-to-surface distance be-
tween the points P; and P;, as shown in Fig. 2(b). The su-
perscript agg represents the aggregating case. The above in-
tegration can be worked out analytically to yield

Uiss = 77-};D{exp[2,6'(R +ro— h)]sinh(28R)
—4 exp[ B(R + ry— h)]sinh(BR)}. (10)

The interaction potential between the ith and jth RBCs was
therefore obtained by evaluating the right-hand side of the
above expression.

3. Distribution of energy states

The total energy of the system in terms of pair potentials
can be cast as

g, U™ (for nonaggregating cells)
i<

E (11)

g, Ui (for aggregating cells).
i<j

Each pair was considered once in order to calculate the total
energy. Since in this paper RBCs are treated as identical,
distinguishable, and classical particles (i.e., that they follow
classical mechanics and not quantum mechanics), the prob-
ability distribution of energy states (each energy state corre-

sponds to one or more than one configuration) is given by the
Boltzmann distribution [30]

p(E) = % exp(— ElkgT). (12)

Here, kg, T, and Z are the Boltzmann constant, absolute tem-
perature, and the partition function of the system, respec-
tively. It is evident from Eq. (12) that lower energy states are
more probable than those belonging to higher energies.

Therefore, some realizations of the system were generated
according to their Boltzmann probability by employing the
Metropolis algorithm [31]. The ensemble average of the
structure factor was determined from its values at those
states as

S(-2k) = 2 S(- 2k, E)p(E), (13)
1

where the subscript / denotes a state having an energy E,.
The mean structure factor was computed, in this simulation
study, to obtain frequency-dependent backscattering coeffi-
cients and associated spectral slopes for three-dimensional
distributions of nonaggregating as well as aggregating par-
ticles.

III. METHODS

The simulation study begins with the specification of the
size of the volume to be investigated that was fixed to
70° um?3. The lengths of the edges were selected as a
tradeoff between the size of the computational domain and
time. The computational time almost exponentially varies
with the number of particles, which is determined by the size
of the region of interest and by the hematocrit [19]. We shall
show that even for this size we could reproduce consistent
results that could be compared with those available in the
literature.

The entire volume was divided into 64° voxels to define
exactly the positions of RBCs. Therefore, particles could
have only integer coordinates and structure factor could eas-
ily be determined using those coordinates. These also al-
lowed us to generate a 3D matrix, which essentially con-
tained pair interaction energies of a particle located at the
center of the matrix with other particles that would be situ-
ated at different grid points. We computed it at the beginning
of the code and stored it to use as a lookup table for future
assessments. The size of the 3D matrix was 133, which was
fixed on the basis of the spatial extent of potentials and res-
olution of grids. By using the lookup table during random
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shuffling of the system, interaction energies of a particle
could easily be determined just by knowing the coordinates
of neighbors with respect to those of the particle at two con-
figurations (initial and proposed). Interaction energies at
those realizations are needed to obtain the total energy
change of the system due to the trial move. Clearly, the ad-
vantage of this method was that after the generation of the
lookup table, we did not require one to compute potential
energy for any neighbor and also for any move during the
whole process. One also should not worry that the spatial
discretization scheme would introduce regularity on particle
positioning. The entire volume was divided with a suffi-
ciently large number of grids and after that, positions (grid
points) were generated in random fashion such that each
point was equally probable. Hence it did not introduce any
regularity.

Erythrocytes were considered as identical rigid spheres
with a volume V, of 87 um® and accordingly, the radius
of each corpuscle was fixed to 2.75 um [12]. The initial
distribution of cells was generated by throwing them ran-
domly in voxels and consequently, the total energy of that
configuration, given by Eq. (11), was computed by summing
pair potentials for periodic boundary conditions. Then, one
particle was picked randomly and thrown into a new posi-
tion, which was also randomly chosen. After that, the
Metropolis algorithm was employed to decide whether
the move had to be accepted or rejected [31]. This algo-
rithm compared total energies [computed with Eq. (11)]
between two configurations. If the energy difference (AE
= total energy of finalconfiguration — total energy of initial
configuration) was negative, a corresponding move was
accepted. Otherwise it generated a random number between
0 and 1 and compared that number with the Metropolis ratio
(e~2F/ksT) for those states. The move was accepted only if the
number was less than or equal to that ratio. For an accepted
move, we renewed the position of the particle, otherwise it
was left to reside in the same position. This corresponded to
one Metropolis step. In this way the system was allowed to
evolve and, in general, a significant number of Metropolis
steps were required to reach equilibrium that was obtained
when the energy of the system became zero or less than zero.

Once the equilibrium state was reached then the system
was ready for structure factor measurements. Evaluation of
Eq. (3) provided a 3D matrix containing values of structure
factor at grid points corresponding to impinging waves with
different magnitudes and directions of incidence. For ex-
ample, each central orthogonal axis of the computed 3D
matrix represented spectrum for the investigating waves
propagating along that axis with spatial frequency range
~—1.44 to 1.39 um™!, where 0.045 um™! is the separation
between two consecutive frequencies. A sufficiently large
number of Metropolis iterations, which allowed expectation
value not to vary significantly with iterations, were consid-
ered to obtain the ensemble average of the structure factor, as
given in Eq. (13).

Besides the structure factor, the particle density (m) and
frequency-dependent backscattering cross section (o7,) had to
be known to evaluate the BSC with Eq. (2). The particle
density was computed by using the relation m=H/V, where
in this study H was varied from O to 40%. The hematocrit is
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normally measured in practice by microcentrifugation, so it
is a variable that can be easily obtained experimentally. The
single-particle backscattering cross section, as given by Eq.
(1), was determined by considering p,=1.092 g/cm’, «,
=34.1 X 107'2 cm?/dyne, whereas the same quantities for the
ambient medium (blood plasma) were chosen as p
=1.005 g/cm® and «=44.3X107'2 cm?/dyne, respectively
[11].

IV. RESULTS
A. Nonaggregating case

Nonaggregating RBCs can physiologically occur at high
flow shear rates. It can also be produced by replacing plasma
by isotonic saline, as done in many experimental studies
[10,11,26]. To mimic nonaggregating cells, we considered
the nature of the potential as given in Eq. (7) and therefore a
large repulsive potential of 10°,zT was assigned to each
overlapping pair of RBCs.

A typical plot of the frequency-dependent simulated BSC
(Xp0) is shown in Fig. 3(a) for nonaggregating RBCs at fre-
quencies between 10 and 200 MHz (k=0.042-0.838 um™)
and 40% hematocrit. The variation of the theoretical estima-
tion (PYPT) that is only valid for nonaggregating cells is
also shown for comparison. The two other plots (x;;, x52) are
for aggregating RBCs and they are discussed later. Note that
Xpo has slightly higher values than the Percus-Yevick theory
at each frequency and differences become more distinguish-
able at the highest frequencies where PYPT is no longer
valid (non-Rayleigh scattering).

Note that the variation of BSC with frequency is linear on
this log-log scale up to approximately 40 MHz. Therefore,
the magnitude of BSC (x,) at a particular frequency (k)
within that range can be extracted by performing the follow-
ing power-law fitting [18]:

Xb = Xo(klko)*, (14)

where the exponent s gives the slope of In x; when plotted
against In(k/k). As discussed earlier, that slope is termed the
spectral slope (SS) in the acoustic literature. The purpose of
the data fitting was to obtain BSCs at 7.5 MHz for different
hematocrits in the case of nonaggregating RBCs. This was
done to compare simulation results with experimental data of
the literature that were obtained at that frequency. In Fig.
3(b), the solid line shows the prediction by the hard sphere
Percus-Yevick packing theory. The triangles indicate experi-
mental results for stationary saline suspensions of human
RBCs reproduced from [11]. Simulated BSCs at 7.5 MHz
are shown by circles (mean = one standard deviation for 100
simulations).

This figure clearly shows that both PYPT and simulation
results are in good agreement with experimental observa-
tions. However, the slight shift at a higher hematocrit of the
measured scattering peak was attributed to random motion of
cells due to flow disturbance originated from the experimen-
tal setup [11]. This explanation was later confirmed experi-
mentally with pig RBCs suspended in saline [13] and the
validity of the theory was thus confirmed, as the scattering
peak was no longer at 18—20% hematocrit but at 13% hema-
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FIG. 3. (a) Frequency-dependent backscattering coefficient at a hematocrit H=40%. The solid line gives the variation according to the
Percus-Yevick packing theory (PYPT). Another solid line y, represents simulation results for nonaggregating RBCs. The other two dashed
lines (x,1.Xp2) are for aggregating bloods with D=3.30 uJ/m?, 8=160.5 um™' and D=4.10 uJ/m?, B=163.5 um™', respectively. RBC
aggregation increases from subscripts 50 to 52. (b) Hematocrit dependence of the backscattering coefficient at 7.5 MHz for nonaggregating
RBCs. The solid line (—) represents the curve for PYPT. Simulation results (x,) are shown by the symbol O (mean= one standard
deviation for 100 simulations), whereas the marker A expresses experimental results reproduced from [11].

tocrit as expected. It may also be mentioned here that the
spectral slope (computed by using the first four points of the
frequency-dependent BSC data [see Fig. 3(a)]) remained
around 4 in the entire hematocrit range, which is consistent
with the Rayleigh scattering theory (fourth-power frequency
dependence).

B. Aggregating case

The Morse potential with D=4.10 uJ/m?, ry=13.0 nm,
and =390 um™' could give a real RBC-RBC interaction
energy profile in the presence of 70 kDa dextran (dextran is
a neutral polymer that can reproduce the binding effect of
plasma proteins) [27]. Hence, according to this study, the
interaction energy per unit area remains nonzero only when
two surfaces lie within a few nanometers. This suggests that
the computational domain has to be discretized in nanomet-
ric scale to simulate systems close to real blood. However,
spatial discretization at this level is not possible because
computational time would then become highly intensive. In
the current study, ry was fixed to 50 nm and 8 was varied
from 160.5 to 170.5 ,um‘l. Moreover, the amplitude of the
Morse potential D was taken in the range from
0.50 to 4.10 uJ/m? because for 70 kDa dextran it varied in
this range at different concentrations [27]. These choices of
parameters not only provided some interactions between
neighboring voxels considered here but also kept computa-
tional time within practical limit. Pair potential energy was
computed by using Eq. (11). Furthermore, 37 °C was chosen
as the temperature of the system when evaluating the Boltz-
mann probability of various states.

The frequency-dependent backscattering is shown in Fig.
3(a) for aggregating blood at H=40%. Two dashed lines
(Xp1-Xp2) are for aggregating cells with D=3.30 uJ/m?, B
=160.5 um™" and D=4.10 uJ/m?, B=163.5 um™', respec-
tively. It is distinctively clear from the figure that enhanced
levels of backscattering can be achieved by increasing the
magnitude of the aggregating potential. As that magnitude

was increased, spatial distribution of particles became more
organized. That in turn reduced destructive interferences of
scattered waves compared to nonaggregating conditions
(random orientations), which resulted in higher levels of
BSCs. This effect was more important at the highest aggre-
gation potential, which is also clear from this figure. Further,
higher values of BSCs also led to diminution of the spectral
slopes [see the trends in Fig. 3(a) and Fig. 5].

The effect of attractive potentials on the BSC at 7.5 MHz
is captured in Fig. 4(a) for fixed 8=160.5 wm™' and different
values of D. The BSC at 7.5 MHz was determined as before,
i.e., by following the same linear fitting technique as we did
for nonaggregating RBCs. In Fig. 4(a), the variation of the
mean BSC [normalized by the corresponding mean BSC for
nonaggregating blood ()] for 100 simulations is presented
as a function of potential depth. It reveals that the BSC in-
creases with D and at each potential its relative increment
becomes larger for higher hematocrits. For instance, at D
=3.65 uJ/m?, BSC was about 5.0 dB higher than y,, at H
=40%, whereas it was close to 1.0 dB at H=20%. BSCs at
30 MHz are also shown in panel (b) of this figure to illustrate
frequency-dependent behavior. It is evident that the nature of
variations is similar to that at 7.5 MHz for different hemat-
ocrits. Nevertheless, at a specific potential and constant he-
matocrit, the rate of change of the BSC decreased as the
frequency of the incident wave was increased. The reason
behind this is that the spectral slopes are different in nonag-
gregating and aggregating bloods [see Fig. 3(a)]. The varia-
tion of the SS with aggregation potential is given in Fig. 5(a)
for three different hematocrits. Note that the SS decreases at
H=40% with the increase of depth D of the interaction po-
tential. However, no clear variations of the SS are observed
at H=20% and 30%, probably because of the low levels of
aggregation for these cases.

The aggregation potential can also be varied by control-
ling the molecular weight of macromolecules, which in turn
changes the depletion layer thickness in the blood suspen-
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FIG. 4. (a) The effect of D on the mean backscattering coefficients at three hematocrits are shown in dB with respect to their nonag-
gregating cases at 7.5 MHz at fixed 8=160.5 um™'. (b) Same as (a) but for 30 MHz. (c) The effect of 8 on the mean backscattering
coefficients at three hematocrits are shown when D=4.1 uJ/m?. (d) Same as (c) but for 30 MHz.

sion. The width of the depletion region is inversely propor-
tional to S, therefore the magnitude of the aggregation po-
tential decreases as 3 increases and vice versa. A look at Fig.
4(c) gives a flavor of the influence of B on the BSC and
shows that it decreases as B increases at any given hemat-
ocrit (for 100 simulations). The variation was more promi-
nent for denser suspension. BSCs at 30 MHz also followed
similar trends as at 7.5 MHz, as shown in panel (d). Figure
5(b) demonstrates how B affects the spectral slopes at differ-
ent hematocrits. Here again, the impact of 8 on the reduction
of the SS is only observed at a hematocrit of 40%.
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V. DISCUSSIONS
A. Nonaggregating case

The results obtained by this simulation study revealed that
they were in good agreement with those of experiments [11].
This matching also validated the numerical code developed
for this purpose. It was observed that the number of itera-
tions required to determine converging results exponentially
increased with the number of particles and thus at higher
hematocrits computations became more intensive. For ex-
ample, at H=0.5% it was found that 20 Metropolis steps

(b)

42

@ 400 oo TEReEEEES

Qo

o

2]

©

S

5 3.8

(0]

Q

()
- ©-H=20%

3.6y “=m- H=30%| |
—— H=40%
162 164 166 168 170 172

FIG. 5. (a) Variations of the spectral slope at different hematocrits with D but at a constant 8=160.5 um~'. (b) Same as (a) but here D

remains constant at 4.10 uJ/m? and B varies.
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were sufficient to reach equilibrium and 6000 steps were
good enough to obtain the ensemble average of the structure
factor. It took approximately 6 min for each simulation in a
node part of a computer cluster (specifications—Pentium 4:
3.2 GHz; RAM: 2 GB; operating system: RedHat Enterprise
Linux 4). In contrast, those numbers were 15 and 30 million,
respectively, for H=40% even for the relatively small vol-
ume of interest considered in these simulations. Correspond-
ing execution time was around 1 h and 7 min on the same
computer platform.

B. Aggregating case

In this study, we found that the BSC increased with ag-
gregating potential and that it also caused the SS to reduce
when aggregation was sufficient. Further, we observed that
enhancement of the BSC at lower frequency was more than
that at higher frequency for aggregating corpuscles. These
findings are consistent with some earlier studies [18,32,33].
However, our numerical values, in general, are on the lower
side compared to them [18,32,33]. For example, Foster
et al. [32] measured that the BSC dropped by =14.3 dB
at 35 MHz when the shear rate was raised from
357! to 100 s7!, and also the SS decreased from 3.5 to 0.4
due to the diminution of shear rate from 32 s™! to 0.16 s
Whereas, we found at 40% hematocrit that the BSC in-
creased by 5.5 dB at 7.5 MHz for the highest aggregation
potential considered here, and the corresponding SS de-
creased from 4.04 to 3.62. It is expected that further en-
hancement of the BSC and the reduction of SS would have
been possible by increasing the magnitude of the aggregation
potential. However, as the interaction pair potential in-
creased, the number of energy states of the system also in-
creased, and therefore more iterations were required to ob-
tain converging results at each hematocrit. For example, at
H=40%, for each simulation a total of 65 million iterations
(execution time ~4 h and 30 min) were employed when D
=1.10 uJ/m? but for D=3.65 uJ/m? the number was 515
million and hence it required a long time (about 35 h and
46 min) to execute. In both cases 8 was 160.5 um™'. That is
why in this paper we preferred to examine the model under
low aggregation domains to obtain results within practical
computational time.

It is interesting to note that the relative increase of the
BSC (with respect to nonaggregating blood at the same he-
matocrit) is more for higher hematocrit at a constant aggre-
gating potential (see Fig. 4). Shung et al. [14] also made a
similar observation. They measured that the relative increase
of the BSC at H=40% or H=30% was more than that of
H=20%. The reason behind this might be that the possibility
of interactions between particles increases at higher hemat-
ocrit and also they can easily interact with each other even
for low aggregating potentials. The interaction potential in
turn brings more particles close to each other at higher he-
matocrits due to the dense network of cells and favors to
form aggregates. As a result of that, destructive interferences
of scattered waves are reduced more at higher hematocrits
than those at lower hematocrits and thus backscattering in-
creases more at these cases.
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VI. CONCLUSIONS

A Monte Carlo study on ultrasound backscattering by red
blood cells was discussed in this paper. The particles were
distributed in three-dimensional space and considered as
weak scatterers. Some realizations of such a system were
generated by employing the Metropolis algorithm. The
frequency-dependent backscattering coefficients and associ-
ated spectral slopes were determined for those configura-
tions. The simulation results were also compared with ex-
perimental observations. For nonaggregating particles, the
pair potential was defined in such a way that it would not
allow particles to overlap. However, for aggregating cases,
the Morse potential was used to model the interaction pair
potential profile. This study enabled us to assess the influ-
ence of aggregation potential on the frequency-dependent
backscattering coefficient and the spectral slope at different
particle concentrations.

The main findings are that simulation results and theoret-
ical predictions were in good agreement with experiments
for nonaggregating particles. On the other hand, for aggre-
gating cells it was demonstrated that the BSC increased as
the magnitude of the attractive potential energy was raised.
This effect became more prominent at higher hematocrits,
i.e., at H=40% or H=30% in comparison to H=20%. Fur-
thermore, the spectral slope also decreased as the magnitude
of the attractive potential attended higher values, but this was
only confirmed at H=40%. It would be relevant in future
studies to consider bigger regions of interest to investigate
larger clustering of RBCs and impacts on backscattering.
This may provide a better framework to match experimental
findings but at the detriment of computational load. Some
studies can be carried out in the future to employ the struc-
ture factor model to analyze backscattering data from simu-
lated three-dimensional volumes containing RBC clusters to
extract information related to the packing factor and mean
size of RBC aggregates [8,9]. That study may be useful to
investigate how the packing factor and mean aggregate size
are correlated with hematocrit. These are not clear so far.
This study may put some light on the possibility of in vivo
determination of hematocrit by the ultrasound backscattering
technique. The accuracy of the model in determining the size
of aggregates also needs to be validated at different physi-
ological hematocrits. This may be another important project
for future work.
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