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of hydrogen-bonded peptide units
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A time-convolutionless master equation is established for describing the amide-I vibrational energy flow in
a lattice of H-bonded peptide units. The dynamics is addressed within the small polaron formalism to account
for the strong coupling between the amide-I vibron and the phonons describing the H-bond vibrations. There-
fore, special attention is paid to characterize the influence of the amide-I relaxation on the polaron transport
properties. This relaxation is modeled by assuming that each amide-I mode interacts with a bath of intramo-
lecular normal modes whose displacements are strongly localized on the C=0 groups. It has been shown that
the energy relaxation occurs over a very short time scale which prevents any significant delocalization of the
polaron. At biological temperature, the polaron explores a finite region around the excited site whose size is
about one or two lattice parameters. However, two regimes occur depending on whether the vibron-phonon
coupling is weak or strong. For a weak coupling, the energy propagates coherently along the lattice until the
polaron disappears. By contrast, for a strong coupling, a diffusive regime occurs so that the polaron explores
a finite size region incoherently. In both cases, the finite polaron lifetime favors the localization of the vibron

density whose amplitude decreases exponentially.
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I. INTRODUCTION

Since the seminal work of Davydov and co-workers [1]
on bioenergy transport in proteins, both theoretical and ex-
perimental evidences suggest that vibrational energy flow in
«a helices may result from a polaron mechanism [2-14]. The
energy is transferred by amide-I vibrations (C=0 stretching
modes) which delocalize due to dipole-dipole couplings be-
tween peptide units leading to the formation of an exciton
called vibron. Since each C=0 group is engaged in a H
bond, the vibron strongly interacts with the phonons describ-
ing the collective dynamics of the H-bond network. There-
fore, its creation induces a lattice distortion, i.e., a virtual
cloud of phonons, that corresponds to a contraction of the H
bonds surrounding the excited site. The vibron dressed by
this distortion forms the so-called small polaron.

From a theoretical point of view, the dressing mechanism
is accounted by performing a Lang-Firsov transformation
[15] which is exact when the dipole-dipole coupling is ne-
glected. However, when the delocalized nature of the vibron
is considered, a weak coupling remains between the polaron
and the phonons. It is responsible for dissipation and it leads
to the incoherent diffusive motion of the polaron. The trans-
port properties of a small polaron coupled with a phonon
bath have been extensively studied during the last three de-
cades to characterize exciton-phonon systems [16-24] and
polaron and bipolaron in « helices [25,26]. By using a stan-
dard projector method [27-29], a generalized master equa-
tion (GME) for the polaron reduced density matrix (RDM)
was obtained and special attention has been paid to charac-
terize the transition from coherent to incoherent motion and
to determine the diffusion coefficient.

Nevertheless, most of these works were applied to Hamil-
tonians that conserve the polaron population. However, in
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proteins, the amide-I energy relaxation is very fast and recent
experiments have clearly shown that the polaron lifetime is
typically of about 7;=1.5 ps [30-37]. The relaxation origi-
nates from intramolecular energy redistribution due to the
anharmonic coupling between each amide-I mode and a set
of intramolecular normal modes whose displacements are
strongly localized on the C=0 groups [38,39].

In that context, the aim of the present paper is to describe
how the amide-I relaxation modifies the polaron transport
properties in « helices. To proceed, the original Davydov
model is first modified to account for the additional interac-
tions between the amide-I modes and a bath of intramolecu-
lar normal modes. Then, because the observed lifetime is
very short, non-Markovian effects are expected to affect the
polaron dynamics in the short time limit. The GME is thus
established by using the so-called time-convolutionless
(TCL) approach which is local in time and allows a system-
atic analysis of the non-Markovian dynamics of open sys-
tems. Moreover, to second order in the coupling strength, it
gives a better approximation to the exact solution than the
standard GME [40-47].

The present work is motivated by recent studies in which
it has been pointed out that the amide-I relaxation may play
a key role in various biological processes. Indeed, as sug-
gested by Cruzeiro and co-workers [48,49], the energy re-
leased by the decay of the amide-I mode can be used by the
helix to change its conformation. Similarly, within a one-site
Davydov model, it has been shown that this relaxation is
responsible for a softening of the H bond and it may be a
precursor to the H bond breaking [50]. Finally, it has been
suggested that amide-I relaxation may appear as an interme-
diate agent in electron capture dissociation (ECD) allowing
H hopping between two peptide units and giving rise to the
cleavage of the nearby N-C, bond [51]. Nevertheless, in all
these previous works, the dipole-dipole coupling has been
disregarded so that the fundamental question arises whether
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the polaron mobility modifies these processes.

The paper is organized as follows. In Sec. II, the modified
Davydov model is first presented and the key observables
required to study the transport properties are introduced.
Then, the small polaron point of view is summarized. In Sec.
III, the GME for the polaron RDM is established and the
vibron mean square displacement is evaluated in Sec. IV. The
GME is solved numerically in Sec. V where a detailed analy-
sis of the energy transfer is performed. Finally, these results
are discussed and interpreted in Sec. VI.

II. DESCRIPTION OF THE SYSTEM
A. Hamiltonians and transport properties

As detailed in numerous papers [7-10], the vibron-
phonon dynamics in a helices reduces to that of a single
spine of H-bonded peptide units regularly distributed along a
1D lattice. Each site, whose position is labeled by the index
x=1,...,N, contains an amide-I mode which behaves as a
harmonic oscillator with frequency w,. Restricting our atten-
tion to the one-vibron dynamics, the xth amide-I mode is
equivalent to a two-level system whose first excited state is
denoted |x). The zero vibron state, defined as the vacuum
state |®), describes all the amide-I modes in their ground
state. The vibron Hamiltonian is thus written as (with the
convention fi=1)

H,= > o) (x| + D[ |x + 1){x| + [x)x + 1]], (1)

where @ is the vibron hopping constant.

The vibron interacts with the peptide unit motions that
define the phonons. They describe N acoustic modes with
frequency Qq=QC.|sin(q/2)| and with wave vector g, where

QO.=V4W/M, M and W being the peptide unit mass and the
H bond force constant, respectively. The phonon Hamil-
tonian is expressed in terms of the boson operators aj; and a,
as H,,:Equa;aq. The vibron-phonon coupling results from
the modulation of each amide-I frequency by the peptide unit
motions as

AH=Y,|> (Aqxa:; + Azxaq)] ) (x
q

X

, (2)

where A, =—iA sin(g)/ \|sin(g/2)|e~*/ VN involves the pa-
rameter y introduced in the original Davydov model as A
=x(A*MW)~"* (% has been reintroduced to avoid confusion).
Following recent works detailed in Refs. [50,51], the en-
ergy relaxation is assumed to result from Fermi resonances
involving the xth amide-I mode and either overtones or com-
bination bands of a set of intramolecular normal modes.
These normal modes, whose displacements are strongly lo-
calized on the xth C=0O group, belong typically to the
500—1000 cm™' region (see, for instance, Ref. [30]). Note
that other relaxation pathways may be involved in the relax-
ation, such as the direct resonance with a high-frequency
mode, but they will be disregarded in the present study.
The intramolecular normal modes are described by har-
monic oscillators with frequency w, and boson operators b,
and b . They define a thermal bath attached to the xth pep-
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tide unit so that the vibron interacts with a set of independent
baths whose Hamiltonian is H B:Emwablxbax. This thermal
bath allows for energy exchanges mediated by Fermi reso-
nances involving one vibron and two bath excitations as

V=2 Aggx)bl bl |o)x| + AY sbabg Xl (3)
afx

where A,4(x) is the coupling strength between the xth
amide-I mode and the modes a and B of the xth bath. Note
that since the density of normal modes in the
500—1000 cm™! region is rather large [39,52-54], the rel-
evant modes of the bath cannot be significantly thermally
excited. The bath is unable to supply energy to the amide-I
modes and it is just responsible for vibron annihilation.

The spine dynamics is thus governed by the full Hamil-
tonian H=H,+H,+Hg+AH+V which does not conserve the
vibron number. Without any perturbation, the spine is in ther-
mal equilibrium at temperature 7. Since wy=~1660 cm™,
each amide-I mode lies in its ground state whereas both the
phonons and the thermal bath are described by standard Bolt-
zmann distributions p, and pg, respectively. Therefore, to
study the vibrational energy flow we assume that the spine
reaches a configuration out of equilibrium in which one vi-
bron is created on the site x,=0. The initial density matrix is
thus p=p, ® pp® p,, where p,=|xo){xo| denotes the vibron
density matrix. Note that such an excitation may result from
the energy released by the hydrolysis of ATP [1] or from
charge neutralization upon electron capture by a protonated
a helix [51].

To characterize the vibrational energy flow, let the vibron
density P(x,f) define the average vibron number on the xth
site at time ¢ as

P(x,1) = Tr[ pe™|x){x|e~ "], (4)

It is the central object of the present study whose knowledge
allows one to compute, in principle, all the required observ-
ables to describe the energy redistribution. Among the differ-
ent observables, we shall focus our attention on the vibron
mean square displacement (VMSD) (x?(¢)) whose time evo-
lution gives fundamental information. Indeed, according to
standard transport theories, (x*(f)) scales as 7> in the short
time limit indicating a coherent energy transfer. By contrast,
both dephasing-limited coherent motion and phonon-induced
incoherent hops lead to diffusion so that (x*())~2Dt in the
long time limit, D being the diffusion coefficient. Finally,
due to vibron lifetime, we expect a singular behavior of
(x*(1)) indicating that energy relaxation-induced localization.

B. Small polaron and reduced density matrix

In « helices at biological temperature, the vibron-phonon
coupling predominates over the dipole-dipole interaction and
the strong-coupling nonadiabatic limit is reached. The dy-
namics is dominated by the so-called dressing mechanism
and it is more efficient to work with a dressed vibron basis
rather than with a delocalized bare vibron basis [5-10]. Note
that although such an approach is clearly justified at biologi-
cal temperature, it becomes questionable at very low tem-
perature, i.e., typically in the range 13—53 K, where a tran-

061909-2



AMIDE-I LIFETIME-LIMITED VIBRATIONAL ENERGY....

sition takes place between the strong- and weak-coupling
limit (see, for instance, Refs. [2-6,19,55]).

To reach the dressed point of view, a two-step procedure
is used. First, to partially remove AH, a Lang-Firsov trans-
formation is applied [15]. Then, a mean-field procedure is
used so that the transformed Hamiltonian is expressed as the

sum of five separated contributions as H =H,,+H,+Hp
+AH+V. The polaron Hamiltonian is written as

Hyo= X (g~ Eg)lx)a] + O [x + 1)(x| + [x)x+ 1], (5)

where EB=2A%/QL. is the small polaron binding energy and

qA):(bTrp(pp@i@xt,) is the effective hopping constant de-
fined in terms of the dressing operator

A*
®x=exp[—2 (%a},—%al,ﬂ. (6)

q q q

In this new point of view, |x) defines a small polaron on the
xth site that corresponds to a vibron dressed by a lattice
distortion specified by the state ©,]x) in the original point of
view. The dressing prevents the delocalization of the polaron

whose effective hopping constant @ is smaller than the bare
constant @ and it yields a redshift of the vibrational fre-
quency of each amide-I mode.

In that context, the remaining polaron-phonon coupling
originates from the modulation of the hopping terms by the
dressing operator fluctuations as

AH= Ad,, Jx+1)x| +He., (7)

where H.c. stands for Hermitian conjugate and where
A(Dx,xrz(CI)I@xr—(D) Ojx—x'|,1- Similarly, the polaron-thermal
bath interaction results from Fermi resonances which are
now accompanied by phonon exchanges as

V=2 Ap(0)bl, b5 0 |oXx| + Hec. (8)
afx

In the polaron point of view, the invariance of |x)(x| under
the Lang-Firsov transformation makes the study of the trans-
port properties easier. Indeed, the vibron density is equiva-
lent to the polaron density so that Eq. (4) is simply rewritten
as

P(x,1) = Tr[ pe™x)(x]e"]. 9)

The time evolution is now governed by H and the initial
statistical average is performed with respect to the trans-
formed density matrix p=pp,.. Since the vibron creation
yields a polaron accompanied by a lattice distortion, p. mea-
sures the initial correlations between the polaron and the
phonons. Nevertheless, it is straightforward to show that p,. is
proportional to exp(—E/kT) at biological temperature (k be-
ing the Boltzmann constant). Since Ej typically extends from
4 to 16 cm™! [7], the initial correlations can be neglected and
the approximation p.=~1 will be used.
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Finally, a complete characterization of the vibron density
required to introduce a more general object, namely, the so-
called polaron RDM o(¢) defined as

o(xy,x,1) = Tr[Peiﬁt|x2><X1|€_”}l]~ (10)

The RDM describes the polaron state at time ¢ after perform-
ing an average over both the phonons and the thermal bath.
Diagonal elements yield the vibron density, i.e., P(x,?)
=0o(x,x,t), whereas nondiagonal elements measure the co-

herence between dressed states. Under the influence of I:I,
diagonal and nondiagonal elements interact so that the time
evolution of the full RDM must be studied to extract the
information that is desired. The following section is thus
devoted to the derivation of a GME to characterize the RDM
evolution.

III. TIME-CONVOLUTIONLESS GME

A. General expression of the GME

To determine the GME for the polaron RDM, the standard
projector method of the TCL approach is used [40-47]. To
proceed, let B define the superbath that includes both the
phonons and the bath of intramolecular normal modes. It is
described by the density matrix pg=pz® p, so that we can
split the trace in Eq. (10) into partial traces to rewrite the
RDM as

o(x1,%.1) = Tryo[ p, Pe™™ Plx;)(x|]. (11)

The projector P---=Trg[pp- -] realizes an average over the

superbath simply noted (:+*) and £=[H,...] is the system
Liouvillian. In that context, by performing a second order

expansion with respect to both AH and V, the GME for the
polaron RDM is expressed as

id—(xl’XZ,t) = (f) E [U(-xl +S,.X2,t) - U(xl,.X2+S,t)]

s=*1

—i D T, 20,5, 5,007, 500). (12)
X1,

The first term on the right-hand side of Eq. (12) describes
the coherent dynamics under the influence of the polaron
Liouvillian £,,=[Hy. ...]. By contrast, the influence of the
coupling with the superbath is characterized by the time-
dependent relaxation operator J(f) whose matrix elements
are defined as

j(xl’x%fl’fbt) = [Fxl,)?l(t) + 7xl,fl(t)]5x2,)?2
+[I 0+, (016,
272 272
%
Wy 50,50 + LA 0] (13)

The different contributions of J(f) involve correlation func-
tions of the polaron-superbath interactions. They correspond
to an average over the superbath of operators whose time
dependence refers to a Heisenberg representation with re-
spect to the unperturbed Hamiltonian Hy=H,+H,+Hp.

In that context, the coupling between the polaron and the
bath of intramolecular normal modes gives rise to the con-
tribution y(r) expressed as
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%cl,fl(f):J deB(xl’T)Cxl(T)G:’;I(T)’ (14)
0

where G(t) exp(—=H,,,t) is the polaron free propagator
C.(n= <® (1)0,(0)) is the dressing operator correlation func-
tion and f(x,1) is the thermal bath correlation function writ-
ten as

falx.t) = EA P OICIMGLINOLIN RS (15)

In Eq. (13), both F(t) and W(r) refer to the polaron-phonon
interaction as

Is0=22

x s==*1

+ C(x, 1) Gy, A(T)G

dT[C“ “(x, DGo(7G, NG

(0],

0,x1 =X +x+s

Xl Xl X2X2(t) 2 E 5X2X2+S"I1 dT

x s=*1

X [sz S(x T)GOxz—x1+x(T)G (T)

0,3%)=%+x

+sz ()C T)GOxz—,\l+x—s(T)G0J\ X, +x+Y(T)]’

(16)
where the correlation functions C%*(x,?) are defined as
Cr ) =(AD  (DAD, .. .(0)),
C{’S(x’t) = <A(Dy,y+s(t)A(I)y+x,y+s+x(0)>- (17)

According to Eq. (12), the polaron-superbath interaction
leads to a coupling between two coherences o(x;,x,,7) and
o(X,X,,1). Although this coupling is local in time, it results
from the history of the interaction. Basically, a coupling oc-
curs if an interaction involving the states |x;) or |x,) at time
t is induced by the superbath which keeps the memory of a
past interaction involving states at time r— 7 whose free evo-
lution yields |x,) or |X,) at time .

The GME is isomorphic to the Schrodinger equation for a
single particle moving on a two-dimensional (2D) lattice.
This lattice is a graphical representation of the Liouville
space in which the site position is defined by the two indexes
(xy,x,). The RDM plays the role of a wave function whose
dynamics is governed by the time dependent effective Liou-
villian £,,—iJ(¢). Within this equivalence, L, gives rise to
an anisotropic dynamics which is translationally invariant
along the directions x; and x,. However, a symmetry break-
ing is induced by J(¢) which prevents this 2D translational
invariance. Nevertheless, as illustrated in the Appendix, the
parameters that define J(r) exhibit specific properties. In-
deed, both the thermal bath and the dressing operator corre-
lation functions do not depend on the site position. They will
be denoted fp(#) and C(), respectively. Similarly, C%*(x,?)
=C.(x,t) only depend on the distance |x|. Therefore
j(xl,XZ,fl,fz,[) is a function of X1—Xp, fl —.fz, )?2—)&'2, and
X;—Xx;, only, so that the 2D Liouville space remains transla-
tionally invariant along the direction x;=x,.
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Consequently, the RDM o(x;,x,,t) only depends on x,
and m=x,—x;, and it can be expanded as a Bloch wave as
[56]

1 .
O-(XI’xl + m,t) = WE \I}k(m’t)e—zk(x1+m/2). (18)
Pk

The momentum k, which takes N values belonging to the
first Brillouin zone of the spine, describes the RDM delocal-
ization along the direction x;=x,. Since k is a good quantum
number, the effective Liouvillian is block diagonal and the
GME can be solved for each k value as

iV, (m,)) = D[V, (m+1,0) + ¥, (m—1,1)]
- 12 Jk(m,rﬁ,t)‘l’k(lﬁ,t), (19)

where q3k=2q3 sin(k/2) and where the matrix elements of
J(t) are defined as

t

Tilm, i, 1) = 20" Re f e

0

~ik(m=)/2 .

(7

0,m—m

[fg( AC(DG

+ 2 C(x, DG (DG, (7)

X8

+2 C_(x, NGy, (DG

X,§

- 2 C+()C 7-)GO m+x(T)G

X,§

— S C (DG DG, ()k]

X,§

0,m—m+x

()

0,m—m+x+s

iks
0, m+x( 7')6

(20)

The resulting master equation (19) is isomorphic to the
Schrodinger equation for a single particle moving on a 1D
lattice whose site position is specified by the index m. Nev-
ertheless, Eq. (20) shows that the relaxation operator still
exhibits a very complex nature due to its dependence on the
various correlation functions. Therefore, to make to reso-
lution of the GME easier, relevant approximations must be
invoked as shown in the next section.

B. Approximated expression of the GME

To simplify the GME, let first consider the first term in the
right-hand side of Eq. (20). This term, which describes po-
laron energy relaxation, measures the system memory at time
t of a transition induced by the polaron-thermal bath cou-
pling at r=0. It involves three contributions. First, the vibron
creation modifies the phonon state and it yields a lattice dis-
tortion in the vicinity of the excited site. This distortion
propagates along the lattice with sound velocity and its
memory is accounted by C(z). Then, due to Fermi resonances
the thermal bath reaches a coherent superimposition of num-
ber states. As time evolves, each contribution of that super-
imposition varies according to its own frequency so that the
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coherence tends to disappear. The memory of this initial ex-
citation is thus described by f5(¢). Finally, the polaron propa-
gates along the lattice and the memory of its initial position
is given by the free propagator G: m_’ﬁ(t). As shown in Ref.
[51], f5(r)C(z) decays in split picoéeconds at biological tem-
perature. This time scale is very short when compared with

the time @~ required to a polaron to cover a lattice site.
Consequently, the polaron does not have enough time to
move and the Markov limit is rapidly reached. Only diagonal
terms m=m contribute significantly to energy relaxation
which is characterized by the time-dependent decay rate

t

Y() =2 Re f drf(DC(DG, (7). (21)
0

Similarly, the terms involving C.(x,7) in Eq. (20) mea-
sure the system memory at time ¢ of a polaron-phonon inter-
action occurring at t=0. As detailed in Ref. [47], an initial
interaction favors a polaron hop between two neighboring
sites. This hop is responsible for a contraction of the H bond
that links the two sites. The memory of this process is char-
acterized by two contributions. First, the free propagation of
the polaron from the two sites involved in the interaction is
characterized by the product between an advanced and a re-
tarded polaron free propagator. Then, the time evolution of
the lattice contraction which propagates along the spine is
described by C.(x,t) which measures the lattice memory at
time ¢ and on site x of a deformation produced at t=0 and on
the site x=0. From the Appendix, we have verified that
C.(x,t) describes the propagation of an acoustic wave
packet. For a fixed x value, it behaves as a bell-shaped peak
centered on the propagating time Tp~2|x|/ Q. and whose
width is about the phonon correlation time 7,=2/(},.. Since

in « helices QC><f>, the phonons propagate faster than the
polaron and the phonon correlations occur over a time scale
which is very short when compared with the time required
for a polaron to move. Consequently, the main contributions
of the relaxation operator involve terms in which an ad-
vanced polaron propagator exactly compensates the associ-
ated retarded propagator. The polaron-phonon interaction is
thus characterized by the two relaxation rates

I()=2Re >, f drC.(x,7|Go (D> (22)
x 0

By using the previously discussed approximations, the
time-dependent relaxation operator is finally rewritten as

Tilm,in,t) = 85 [ yo(t) + 2T5(1) = 2 cos(k)T,(1)]

+ O ol L1 (1) = cos()7 (1) ]
+ G ol Iy (£) = cos(K)1 (1) ]. (23)

Each term in Eq. (23) describes a well-defined relaxation
pathway in the 2D Liouville space. Indeed, the energy relax-
ation characterized by vy, () yields a decay of each polaron
RDM matrix element. By contrast, I'} (z) leads to oblique
transitions (x;,x;) — (x; = 1,x,=1). For x,=x; (m=0), it
couples two populations and it defines the time-dependent
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transition rate for incoherent polaron hops mediated by lat-
tice phonons. This term also contributes to dephasing and it
gives rise to a decay of the nondiagonal RDM elements.
Similarly, I, (#) refers to phonon-induced coherence trans-
fers between nondiagonal RDM elements. It first accounts
for both horizontal (x;,x;)—(x; =2,x,) and vertical
(xy,x,) — (x;,x, = 2) transitions and it also contributes to an-
tioblique transitions (x;,x,) — (x; = 1,x, ¥ 1).

Finally, by inserting Eq. (23) into Eq. (19) we obtain a
simplified version of the GME which is isomorphic to a 1D
Schrodinger equation for Wy (m,r) with nearest- and next-
nearest-neighbor time-dependent couplings. This equation
can be solved numerically for each k value to determine the
time evolution of the vibron density as illustrated in Sec. V.
Nevertheless, before presenting these results, an approximate
expression of the VMSD is established in the next section
which allows us to introduce key parameters to characterize
the energy transport.

IV. MEAN SQUARE DISPLACEMENT
From Eq. (18), the VMSD is defined as

FW,(0,1) )
k=0 .

k> @4

(1) =- (
Its time evolution is governed by the long-wavelength be-
havior of the restriction W(0,1) to the site m=0. This behav-
ior can be extracted from the GME by applying a standard
perturbation theory in which & is assumed to be a small pa-
rameter. To proceed, we define W, (m,r) as the component of
the vector |W(¢)) in the site representation {|m)}. At time ¢
=0, the polaron creation on the site x,=0 gives rise to the
initial condition |¥(0))=|0). By expanding Eq. (19) to sec-
ond order with respect to k, the time evolution of |W (7)) is
governed by the Schrodinger-like equation

i[W () = [Ho()) + Vi + Vo(0k* + - ][ W (1), (25)
where Ho(t)=—i Jp—o(f) and where

Vi(m,m,t) = CIA)[(SWL,m+1 + Oz -1

I'; (1)
2

VZ(m»n_/lvt) == lr:—n(t) 5ﬁ1,m —i [5ni,m+2 + 5ﬁ,m—2] .

(26)

The general solution of Eq. (25) is given by the so-called
evolution operator U(¢) satisfying |W(z))=U(z)|¥(0)) and
which is expanded as

U =U90) + U0k + UY0)k> + -+ (27)

In that context, the VMSD is proportional to the restric-
tion U'Z(r) to the subspace generated by |0) and it depends
on the evolution operator U®)(r) connected to Ho(r). From
Eq. (23), H, (1) exhibits two contributions. First, its diagonal
part Hy(m,m,t)=—i\,,(t) provides to each site m a damping
constant \,,(r)=y,(2) +2[T';() =T} (r)]. Then, its nondiagonal
part gives rise to couplings between next-nearest-neighbor
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sites as Ho(m,m*2,0)=—i[[", ., (1)=I'7(r)]. Consequently,
Ho(7) is block diagonal, the site m=0 being independent
from the other sites, and UE)%)([) is written as

U(()%)(l‘) = CXP{— f dtl?’o(ﬁ)] . (28)

0

Since v, (r) rapidly converges, it can be approximated by a
constant value y,= y,(f— ). After simple algebraic manipu-
lations, the VMSD is thus expressed as

1

() =2e70" f dnI'g(1)

0
A ! g
+2e_70'q)2f dtlf dte"2G(1,,1,), (29)
o Jo

where G(t,,1,) is defined as

Gt.)= 2 2 (mlUO)U) m').  (30)

m=*1,/_+q

As will be shown in the next section, the time evolution of
Fj(t) reveals two main features. First, for small m values,
F;(r) rapidly converges to a constant value F,Jj:l"ni;(t—wO).
Then, the sites m= * 1 are preferentially coupled one to each
other under the influence of H,(f) because I', —T'|" takes
significant value for m=0, only. Consequently, in the sub-
space m=*1, Hy(r) is well described by a (2 X2) matrix
whose diagonal and nondiagonal elements reduce to —i\,
and —i(I'y—17), respectively. This representation makes the
evaluation of G(#;,1,) easier so that the VMSD is finally

expressed as
42 T _q
<x2(t)>=e_70’(2rgt+ o |f+ T:|), (31)

where I'*=2['j-T"1]+[T;-T7]

As shown in Eq. (31), the VMSD slightly differs form the
usual expression which arises from the standard transport
theory. It exhibits two contributions. The first contribution
corresponds to the exponential decay exp[—1y,f] which de-
scribes the irreversible polaron relaxation over the bath of
intramolecular normal modes. This decay occurs over a time
scale given by the polaron lifetime defined as 7,=1/7,. The
second contribution, defined by the term in brackets in the
right-hand side of Eq. (31), is the standard VMSD which
arises when the vibron number is conserved. It describes the
motion of the polaron due to both its ability to delocalize
along the lattice and its coupling with the lattice phonons.

The influence of the polaron-phonon interaction is two-
fold. First, it is responsible for random fluctuations of the
polaron hopping constants which give rise to incoherent tran-
sitions between nearest-neighbor sites. The corresponding
rate defines the so-called incoherent diffusion coefficient D;
=I";. Then, the phonons yield dephasing characterized by the
rate I'*. Formally, if a polaron moves in a coherent manner,
its eigenstate is a superimposition of localized states whose
phases are related to each other when the evolution is gov-
erned by H,, only. However, the coupling with the bath
induces fluctuations of each phase which destroy the coher-
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FIG. 1. (Color online) T, vs T for x=30 pN (full line), x
=36 pN (long dashed line), y=42 pN (medium dashed line), x
=48 pN (short dashed line), y=54 pN (dotted line), and =60 pN
(dashed dotted line). Open circles represent experimental data ex-
tracted from Ref. [30].

ence. The nature of the motion evolves from a coherent to an
incoherent one over a time scale given by the dephasing time
T,=1/I"*. The incoherent regime is characterized by the co-

herent diffusion coefficient DL.=2<132/F*.

V. NUMERICAL RESULTS

In this section, the previous formalism is applied to study
the polaron motion in a 1D lattice of H-bonded peptide units.
To proceed, typical values for the parameters are used: wy
=1660 cm™', ®=78cm™', W=11Nm~!, and M=2.0
%X 1073 kg. The typical range x=30-60 pN is considered
for the vibron-phonon coupling strength.

To describe the interaction with the bath, the coupling
distribution in the frequency domain is modeled by a Gauss-
ian law centered around w.=wy/2 [50,51]. In the time do-
main, the thermal bath correlation function is thus written as

¢ exp[— a** = 2iw.1], (32)

fa(t) =

™

where @=50 cm™' is the Fermi resonance bandwidth. In

practice, G(T) is a function of the temperature through its
dependence on the populations of the intramolecular normal
modes. To mimic this feature, we use the following phenom-
enological law: G(T)=G[1+(T/Ty)*], where G,=265 cm™>
and Ty,=310 K.

The temperature dependence of the polaron lifetime is
displayed in Fig. 1. Open circles refer to experimental data
describing the amide-I lifetime in myoglobin [30]. At high
temperature, 7'} decreases almost linearly with 7" whatever
the strength y of the vibron-phonon coupling. However, at
low temperature, 7, slightly decreases with 7 for small y
values, only. Indeed, for strong couplings, 7T first increases
to reach a maximum value around 7=50 K and then devel-
ops a linear decay. Nevertheless, in the range y=30-60 pN,
our numerical results are in a relatively good agreement with
the experimental data. They reveal that T typically ranges
between 1.5 and 2 ps. The polaron lifetime weakly depends
on the temperature and it slightly increases with y.

The polaron-phonon interaction is accounted by the rates
[ (#) [Eq. (22)] whose time evolution has been studied nu-
merically for 7=310 K and y=45 pN. Two situations occur
depending on whether m=0 or not. Indeed, after a time scale
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of about the phonon correlation time 7,=0.14 ps, I'j(¢) rap-
idly converges to a constant value ['j=2.1 cm™'. By contrast,
for m#0, I'}(¢) turns on after a time scale of about the
phonon propagation time 7,~m7.. Then, it converges to a
constant value almost m independent and typically about
1.0 cm™!. Similarly, T'5(¢) rapidly reaches its Markov limit
I;=-0.23 cm™! but by exhibiting small oscillations in the
very short time limit. For m # 0, the signature of the phonon
propagation still occurs so that I", (¢) turns on after a time
T,~mt,. Its Markov limit, about I', =~-0.34 cm™, is still
almost m independent. Note that such a behavior legitimizes
the approximations used in Sec. IV to evaluate the VMSD.

To characterize the vibrational energy redistribution, the
time evolution of the vibron density P(x,f) is shown in Fig.
2 for x=0,...,5 and for T=310 K. For small y values (y
=30 pN), Fig. 2(a) reveals that the population of the excited
site P(0,7) exhibits different regimes (see the inset). Over
one ps, it first rapidly decreases according to a Gaussian law
modulated by an exponential decay. Then, it evolves rather
slowly around P(0,7)=0.025 until time reaches 2 ps. Fi-
nally, for 1>2 ps, P(0,t) shows an exponential decay ac-
cording to the damping time 7=1.02 ps. As displayed in
Figs. 2(b)-2(f) (full line), this energy decay gives rise to the
propagation of the polaron along the lattice. Therefore,
P(x,t) evolves in time according to a bell-shaped peak
whose width slightly increases with the position x. However,
the figures reveal that P(x,f) experiences a strong damping
as the energy propagates along the lattice. For instance, the
maximum of the density is equal to 0.13 for x=1 whereas it
reduces to 4 X 1073 for x=>5, indicating that the polaron tends
to localize around the excited site.

For larger x values (y=45 and 60 pN), Fig. 2(a) shows
that P(0,7) decreases in the short time limit. However, it
does not reach an intermediate slowly varying regime but it
rapidly develops an exponential decay. The corresponding
damping time increases with the coupling from 7=1.18 ps
for x=45 pN to 7=1.40 ps for y=60 pN. In other words, the
stronger is the vibron-phonon coupling, the longer is the time
required for the energy to leave the excited site. As illus-
trated in Figs. 2(b)-2(f), a slower energy delocalization oc-
curs. The density evolves in time according to a rather asym-
metric peak whose maximum value decreases with y.
However, the asymmetry is enhanced by the coupling so that
the stronger is the coupling, the longer is the time spent by
the energy on a given site. Finally, a localization enhance-
ment takes place and, for instance, the maximum of the den-
sity for =60 pN varies from 0.09 for x=1 to 3 X 107* for
x=5.

To characterize the localization, let Py(x) denote the
maximum value of P(x,f) occurring at time f,(x). Its x de-
pendence is illustrated in Fig. 3 for 7=310 K (full lines).
Because the vibron is created on the site x=0, Py(0) is al-
ways equal to unity. However, when x>0, Py(x) exhibits an
exponential decay. This behavior is rapidly reached for large
x values, i.e., once x=1 or 2 [Figs. 3(b) and 3(c)]. By con-
trast, for y=30 pN [Fig. 3(a)], the exponential decay occurs
for larger x values typically of about x=5. The corresponding
localization length ¢ [i.e., Py(x) cexp(—x/€&)] decreases with
x and it extends from 0.77 for x=60 pN to 1.44 for y
=30 pN.
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FIG. 2. (Color online) Time evolution of P(x,t) for T=310 K
for x=30 pN (full line), xy=45 pN (long dashed line), and x
=60 pN (short dashed line).

Although the localization yields a damping of the density
amplitude, Fig. 4 reveals that the energy spreads out with a
well-defined velocity. Indeed, 7,(x) increases almost linearly
with x which allows us to define the vibrational energy flow
velocity as v,=[dto(x)/dx]™". This velocity clearly decreases
with x and it ranges between 6.27 cm™' (i.e., 1.18 lattice
parameter per ps) for y=60 pN and 9.7 cm™! (i.e., 1.83 lat-
tice parameter per ps) for y=30 pN. When compared with

the polaron group velocity vg:2<I3, it is interesting to note
that v,~1.10v, for y=30 pN whereas v, is about 1.26v, and
4.01v, for y=45 and 60 pN, respectively.

The VMSD time evolution is illustrated in Fig. 5 for T
=310 K. Full lines refer to numerical calculations obtained
from the GME whereas dashed lines correspond to Eq. (31).
In the short time limit, the VMSD scales as 7> which indi-
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FIG. 3. (Color online) (full lines) In[Py(x)] vs x for (a) x
=30 pN, (b) x=45 pN, and (c) =60 pN and for T=310 K. Dotted
and dashed lines represent results given by the coherent model and
the diffusive model, respectively (see Sec. VI).

cates that the polaron moves coherently along the lattice, as
expected from the standard transport theory. Note that a
small discrepancy occurs with Eq. (31) which has been ob-
tained by invoking the Markov limit. Then, as time evolves,
the VMSD increases to reach a maximum whose value in-
creases when y decreases. This feature is the signature of the
localized behavior of the energy flow which indicates that
the polaron explores a finite region of the lattice before its
annihilation. Note that at biological temperature, the size of

16

12 4

t () (PS)

FIG. 4. (Color online) #,(x) vs x for T=310 K and for y
=30 pN (open circles), y=45 pN (open triangles), and y=60 pN
(open squares).
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FIG. 5. (Color online) VMSD vs time for 7=310 K and for
different y values (full lines). Dashed lines are the VMSD given by
Eq. (31).

that region is typically about one or two lattice parameters.
Finally, the VMSD decreases and converges to zero.

Let the propagation length L,=12 ln(2)<x%>, where (xé) is
the maximum value of the VMSD, define the size of the
region explored by the polaron. Its temperature dependence
is illustrated in Fig. 6 for different y values. The propagation
length decreases with both y and 7. Nevertheless, at low
temperature, L, is almost y independent since it varies from
3.14 for x=30 pN to 3.06 for y=60 pN at 7=10 K. The
deposited energy thus covers about three sites on each side of
the excited site before being absorbed by the thermal bath. At
biological temperature, the propagation length is strongly re-
duced and it is more sensitive to the coupling strength. It
ranges between 1.17 for =30 pN and 0.75 for y=60 pN.

The temperature dependence of both the dephasing con-
stant I'* and the incoherent diffusion coefficient D;=T"f is
shown in Figs. 7(a) and 7(b), respectively. Both parameters
strongly depend on the temperature and they tend to zero as
the temperature vanishes. At low temperature, the y depen-
dence of the parameters is rather small. The dephasing con-
stant scales as 72, whereas D, increases linearly with 7. By
contrast, at high temperature, the y dependence is more pro-
nounced and two regimes occur. For small y values, both I'*
and D; still increase with 7. However, for large x values, D;
reaches a maximum value at a critical temperature to finally

Leeel, \\\\
—
TGS

T T T T T T

0 50 100 150 200 250 300

FIG. 6. (Color online) L, vs T for x=30pN (full line), x
=36 pN (long dashed line), y=42 pN (medium dashed line), x
=48 pN (short dashed line), y=54 pN (dotted line), and y=60 pN
(dashed dotted line).
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FIG. 7. (Color online) (a) Dephasing constant and (b) incoherent
diffusion coefficient vs T for y=30 pN (full line), y=36 pN (long
dashed line), y=42 pN (medium dashed line), x=48 pN (short
dashed line), y=54 pN (dotted line), and y=60 pN (dashed dotted
line).

decrease with 7. The critical temperature decreases when y
increases. Similarly, although I'* does not reach a maximum
on the range displayed in Fig. 7, a slowdown in its increase
takes place. Note that the T dependence of I'* governs the

behavior of the coherent diffusion coefficient DC=2(132/ r=
(not drawn in Fig. 7). We have verified that D, decreases
with both 7" and y by exhibiting a divergence when T tends
to zero.

Finally the x dependence of the relevant parameters that
control the transport properties is displayed in Fig. 8 for T
=310 K. As shown in Fig. 8(a), the ratio between the lifetime
and the dephasing time increases almost linearly with x. It
extends from 0.19 for =30 pN to 0.76 for y=60 pN mainly
due to the strong y dependence of the dephasing constant
[Fig. 7(a)]. Similarly, Fig. 8(b) displays the ratio L,/L,
where the coherent length L= \V2d/T* defines the length
covered coherently by the polaron. A critical value x*
~52 pN discriminates between two situations since L, is
shorter than L, when y <x*, whereas the opposite situation
occurs when x> y*. Note that the y dependence of both the
incoherent and the coherent diffusion coefficients has been
studied numerically (not drawn in Fig. 8). The behavior of D,
results from the competition between the dressing mecha-
nism, which prevents the polaron delocalization, and the ef-
fective hopping constant fluctuations. Therefore, it increases
for small y values to reach a maximum whose value is about
D;=2.19 cm™! for y=41 pN. By contrast, since I'* increases
with x, the coherent diffusion coefficient rapidly decreases
with the coupling strength. It varies from 40 cm™' for y
=30 pN to 0.45 cm™' for y=60 pN. Consequently, in the
strong-coupling limit, both D; and D,. contribute significantly
to the full diffusion coefficient. For instance, D;=~D.,
~2.0 cm™! for y=50 pN.
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VI. DISCUSSION

The numerical results clearly show that the vibron decay
over the bath of intramolecular normal modes strongly modi-
fies the transport properties. To discuss and interpret these
features, let first focus our attention on the physics involved
in the vibron annihilation. Indeed, the complexity of the vi-
bron relaxation mainly results from the strong vibron-phonon
coupling which discriminates between two kinds of eigen-
states. When amide-I modes occupy their ground state, the
phonons are described by standard number states. By con-
trast, when a vibron is created, each phonon mode experi-
ences a linear perturbation so that its eigenstate becomes a
superimposition of number states. Such superimpositions
have a local meaning and they induce a lattice distortion
responsible for the dressing of the vibron. Consequently, due
to Fermi resonances, the bath absorbs the energy released by
the vibron annihilation. During this annihilation, each pho-
non mode realizes a transition between a superimposition of
number states and well-defined number states. These transi-
tions give rise to fluctuations in the phonon number which
accompanies the energy exchange between the amide-I
modes and the thermal bath.

According to the standard time-dependent perturbation
theory, the decay rate vy,(f) measures the system memory at
time ¢ of an initial vibron annihilation. As discussed in Sec.
III, this memory is characterized by the full correlation func-
tion f5(¢)C(7). For a sufficiently wide Fermi resonance, f5(z)
decays over a time scale shorter than the phonon correlation
time 7. so that the dressing operator correlation function
scales as C(t) =~ exp(—EgkTt*—iEgt). Therefore, f5(¢)C(t) de-
creases according to a Gaussian law whose correlation time
7 =(a?+EgkT)™ is very short when compared with the

time ! required for the polaron to leave the excited site.

For instance, for y=45pN, 7%=0.08 ps, whereas &1
=2.5 ps. As a result, the relaxation occurs as if the polaron
was immobile and the corresponding decay rate 7,(¢) rapidly
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increases to reach a constant value defined as [51]

G(T)
R —— (33)
Var(a” + EgkT)

As observed in Fig. 1, the corresponding lifetime increases
with x (Eze x?) and it decreases with the temperature. This
equation gives a lifetime value in a rather good agreement
with our numerical calculations provided that the tempera-
ture is sufficiently high. In particular, for 7=310 K, the the-
oretical lifetime 77=1.23 ps is very close to the numerical
value equal to 1.24 ps for y=45 pN.

In that context, energy relaxation occurring over a very
short time scale, it prevents any significant delocalization of
the polaron along the lattice. At biological temperature, our
numerical results have clearly shown that the polaron ex-
plores a finite region around the excited site whose size is
typically about one or two lattice parameters. Nevertheless,
although the vibron density localizes, the way the energy
spreads out before the polaron relaxes strongly depends on
the strength of the vibron-phonon interaction. Indeed, a tran-
sition between coherent and incoherent energy transfer takes
place for a coupling strength typically about y=50 pN.

For a weak vibron-phonon coupling, the dephasing time is
larger than the polaron lifetime so that the only source of
dissipation involves the polaron relaxation over the bath of
intramolecular normal modes. Consequently, the energy de-
localizes coherently along the lattice until the polaron disap-
pears which results in a propagation length shorter than the
coherent length. The polaron eigenstates are thus Bloch wave
with a well-defined wave vector K and with a complex en-
ergy wyg=wy—Ez+2® cos(K)—iyy/2. The polaron propaga-
tor corresponds to the free propagator (A1) times a damping
term which arises from the finite lifetime. The resulting vi-
bron density is thus written as

P(x,1) = 1,21 Pe . (34)

When %,=0, Eq. (34) describes a purely coherent regime.
For a given x value, P(x,7) shows a main peak followed by
small amplitude oscillations. The main peak occurs at time

to(x)=|x|/2® and its amplitude exhibits an algebraic decay
as Py(x) = |x|~%%, This slowly varying decay results from the
lattice dispersion which is responsible for the spread out of
the initial polaron wave packet which delocalizes with the
standard group velocity.

When the polaron has a finite lifetime, Eq. (34) reveals a
fully different behavior. Indeed, the damping term prevents
the occurrence of the small amplitude oscillations so that the
time evolution of P(x,) reduces to a bell-shaped peak very
similar to the peak represented in Fig. 2 for y=30 pN. The
peak amplitude does not decay algebraically any more but it
decreases with site position according to an exponential law
Po(x) =exp(—x/ &) once x=4-5. Note that as illustrated by
the dotted line in Fig. 3(a), the curve Py(x) vs x provided by
Eq. (34) clearly reproduces the behavior of the peak ampli-
tude obtained from the numerical simulation of the GME
(full line). In addition, fy(x) still increases almost linearly
with x but the corresponding energy flow velocity is clearly
enhanced by 7.
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An analytical expression of both the localization length &
and the energy flow velocity v, can be extracted from the
knowledge of the polaron Green function G(w) =(w—Hp0)‘1
According to standard calculations [57], the Green function
matrix elements are defined as

o~iKlx=]

Glw) =~ ——, (35)
2i® sin(k)
where the wave vector K= K(w) is the solution of the equa-
tion w=wg. Since wg is complex, G, +(w) exhibits a localized
nature characterized by the imaginary part of K. In addition,
it is well known that the density of states given by the imagi-
nary part of G, (w) is inversely proportional to the group
velocity. Considering an excitation whose frequency is lo-
cated at the center of the band, these features allow to define
the localization length as

£~ _— e
2 In[(y,/4D) + Vi+ (70/4D)?]

Similarly, the energy flow velocity is written as

v, = 2BV + (y/4P)>. (37)

These last two expressions give results in a rather good
agreement with the numerical observations. For instance, for
Xx=30pN and 7=310 K, they yield {=1.80 and v,=1.04v,
whereas the corresponding numerical values were &é=1.44
and vp=1.10vg. Therefore, the finite lifetime is responsible
for the localization of the vibron density according to a lo-
calization length which shows a logarithmic divergence with
vo- In addition, it leads to an increase of the energy flow
velocity which becomes slightly greater than the polaron

group velocity. Note that for y=30 pN, y0<4Cf> so that &

~ 2<13T1. The localization length is thus equal to the distance
covered coherently by the polaron during its lifetime.
In that context, the VMSD reduces to

(1)) = 222 (38)

It scales as ¢? in the short time limit, as expected from stan-
dard transport theories. Nevertheless, it increases until it
reaches a maximum at time 7=27),. The value of this maxi-
mum yields the analytical expression of the propagation

length as L,~ 1.22613T1. The propagation length is thus about
half the localization length (L,~0.6¢). As illustrated in Fig.
9 (dotted line), this expression of L, is in a close agreement
with the corresponding numerical value (full line) provided
that y is sufficiently small. Note that Ly/L,~T,/T,>1 in
the weak-coupling limit.

For a strong vibron-phonon coupling, the dephasing time
is shorter than or about to the polaron lifetime. Consequently,
the diffusive regime is rapidly reached so that the energy
delocalizes incoherently along the lattice until the polaron
disappears. The propagation length is larger than the coher-
ent length and the energy flow velocity is larger than the
polaron group velocity. According to the standard diffusion
theory, the long wavelength disturbance of the vibron density
is governed by the Fick’s law and it reduces to
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FIG. 9. (Color online) L, vs x (full line) for 7=310 K. The
dotted line and the dashed line represent L, for the coherent regime
and for the diffusive regime, respectively (see the text).

() =~ ( © ) (39)
P(x,t) = ——cexp| - — |, 39
V4Dt P 4Dt

where D=D;+D,.. From Eq. (39), P(x,t) describes the propa-
gation of a rather asymmetric peak very similar to the peak
represented in Fig. 2 for =60 pN. This peak is maximum
for 15(x)=|x|/\4D7, resulting in an energy flow velocity
controlled by the diffusion coefficient as v,=2\D/T,. How-
ever, as in the coherent regime, the finite lifetime is respon-
sible for a strong decrease of the peak amplitude with the site
position. This amplitude exhibits an exponential decay
Po(x)zexp(—J_Lx/ &/\2méx| according to the localization
length £=+\DT,. Note that for y=60 pN and 7=310 K, Eq.
(39) gives rise to v,=3.65v, and £=0.79 which are very
close to the numerical values equal to v,=4.0lv, and &
=0.77, respectively. In addition, as shown in Fig. 3(c)
(dashed line), the curve Py(x) vs x provided by Eq. (39)
clearly reproduces the behavior of the peak amplitude ob-
tained form the numerical calculations (full line).

In that context, the energy transport is clearly dominated
by the incoherent propagation of the polaron. Although both
the coherent and the incoherent diffusion coefficients con-
tribute to the full diffusion coefficient, it is interesting to note
that D; predominates over D, in the very strong-coupling
limit (for y=60 pN, D,~4D,). Nevertheless, as in the coher-
ent regime, the finite lifetime favors the energy localization
around the excited site. Consequently, the VMSD is ex-
pressed as

(1)) = 2Dte™ ™. (40)

It increases to reach a maximum value at time t=T,. The
propagation length, defined as L,~1.01 VDT, represents the
size of the region covered incoherently by the polaron before
its disappearance in the bath of intramolecular normal
modes. In the diffusive regime, L,~ & and, as illustrated in
Fig. 9 (dashed line), it is in a rather good agreement with the
corresponding numerical value (full line) provided that y is
sufficiently large.

The transition between the coherent and the incoherent
regime is intimately connected to the value of the dephasing
constant I'*=2[T'§—-T'7]+[I'j—I']]. Through the expression
of the polaron-phonon correlation function [Egs. (17) and
(A4)], T'* generalizes the so-called vy, contribution of the
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Grover-Silbey approach [17] and it strongly depends on
whether the phonon bath exhibits spatial correlations or not.
Indeed, when the spatial correlations are disregarded, only
C+(0,7) contributes significantly to the decay rates I, so
that I’ predominates over I'; which almost vanishes. As a
result, I'* is about 3.5+ 0.5 cm™! at biological temperature
whatever the y values. When the acoustic nature of the
phonons is taken into account, Ff turns on which reduces the
dephasing constant. This effect is fundamental when the
vibron-phonon coupling is sufficiently weak since I'* ex-
tends from 0.96 cm™! with spatial correlations to 3.02 cm™!
without spatial correlations, for y=30 pN and 7=310 K. The
corresponding dephasing time thus reduces from T,
=5.52 ps to T,=1.75 ps. In other words, spatial correlations
in the phonon bath prevent the decoherence of the polaron
and they allow the observation of the coherent regime during
the polaron lifetime. Nevertheless, in the strong vibron-
phonon coupling limit, the influence of the spatial correla-
tions is less important resulting in a shorter dephasing time
giving rise to the diffusive regime.

Finally, let us mention that the previous discussion shows
the occurrence of two distinct regimes depending on whether
the vibron-phonon interaction is weak or strong. However,
the transition between these two regimes is not well-defined
and the numerical results reveal that an intermediate regime
takes place for intermediate values of the coupling. This fea-
ture is illustrated in Figs. 3(b) and 9 where neither the co-
herent regime nor the diffusive regime clearly reproduce the
real behavior when y=45 pN.

VII. CONCLUSION

In the present paper, a modified Davydov model has been
used to describe the vibrational energy flow mediated by an
amide-I vibron in a 1D lattice of H-bonded peptide units.
Special attention has been paid to characterize the influence
of the vibron energy relaxation on the transport properties.
To proceed, the energy relaxation has been modeled by as-
suming that each amide-I mode interacts with a bath of in-
tramolecular normal modes whose displacements are
strongly localized on the C=0O groups. Moreover, the dy-
namics has been addressed within the small polaron point of
view to account on the strong coupling between the vibron
and the phonons associated to the external motions of the
peptide units.

Within the standard projector technique of the TCL ap-
proach, the GME for the polaron RDM has been simplified
by using relevant approximations. It has been shown that the
evolution of the RDM is governed by an effective Liouvil-
lian with specific translational invariances. A Bloch transfor-
mation has been performed to finally obtain a GME isomor-
phic to the Schrédinger equation of a 1D lattice.

In that context, it has been shown that the energy relax-
ation occurs over a very short time scale resulting in a po-
laron lifetime of about 1.5 ps in a rather good agreement
with experimental data. This finite lifetime prevents any sig-
nificant delocalization of the polaron along the lattice. At
biological temperature, the polaron explores a finite region
around the excited site whose size is typically about one or
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two lattice parameters. Nevertheless, the way the energy
spreads out before the polaron relaxes strongly depends on
the strength of the vibron-phonon coupling. For weak cou-
pling, the dephasing time is larger than the polaron lifetime
so that the only source of dissipation involves the polaron
relaxation over the bath of intramolecular normal modes.
The energy propagates coherently along the lattice until the
polaron disappears. The finite lifetime favors the localization
of the energy density whose amplitude decreases exponen-
tially. In a marked contrast, for a strong coupling, the
dephasing time is shorter than or about to the polaron life-
time. A diffusive regime takes place and the polaron explores
a finite size region incoherently before its disappearance in
the bath. As in the coherent regime, such a behavior gives
rise to an exponential decay of the vibron density.

To conclude, let us mention that these results suggest that
the dipole-dipole coupling does not play a fundamental role
to understand the vibron dynamics at biological temperature.
More precisely, considering the lateral coupling between a
few amide-I modes surrounding the excited side appears suf-
ficient to accurately describe the vibrational energy redistri-
bution. Such an approach legitimizes previous works in
which the dipole-dipole couplings have been neglected
[50,51]. In addition, it provides a simplified way to investi-
gate the multiquanta dynamics whose main difficulty origi-
nates from the size of the Hilbert space which drastically
increases with both the site number and the vibron number
[7,8,10,25,26]. On the other hand, much attention must be
paid to improve the model describing the amide-I decay to
clearly identify the nature of the bath of intramolecular nor-
mal modes and to define the relevant relaxation pathways in
a real «a helix.

APPENDIX: PARAMETERS DEFINING
THE RELAXATION OPERATOR

In this appendix, the expression of the different terms oc-
curring in the definition of the time-dependent relaxation op-
erators [Eq. (13)] are given for a lattice with translational
invariance. Therefore, let first define the polaron propagator
G(#)=exp(=iHyt). Its matrix element G, , (#) only depends
on |x,—x,| and it is expressed in terms of the Bessel function
of the first kind J,(z) as

Go (1) = (= D)Me @0 Erry  (2Dr), (A1)

where x=x,—x;. The polaron propagation is governed by the

effective hopping constant ®=® exp[-3(T)], where 3(T) is
defined in terms of the temperature-dependent factor N,
=coth(BQ,/2) as
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sin(g) cosz(g>Nq.
2 2

Similarly, the correlation function of the dressing operator is
site independent. It is written as

C(t) — e—k(t)—is(r) ,

S(T) = ﬁ

A2
o2 (A2)

(A3)

where k(z) and s(r) are expressed as

The polaron-phonon coupling correlation functions C%*(x, 1)
do not depend on both y and s. They are simply denoted

C-(x,1) and they are defined as
Co(ix,1) = D (e KEN=StN] _ 1), (A4)

where K(x,?) and S(x,7) are given by

ol
ol

At biological temperature these last two equations reduce to

8E
K(x,)=—"> N,

NQ S 2

cosz< g)cos(th - gx),

cosz( Q) sin(€2,t - gx).

8E;
See)=—L
1) NQLZ;' 2

16EkT q
K(x,t) = N—szq: cos2(§>cos(9qt - gx),
SCr) = - —— 2 Kx.)
Y P

Note that within the Debye model, i.e., quﬂcq/ 2, it is
straightforward to show that K(0,7) is a peaked function cen-
tered at the origin #=0. Its amplitude is equal to 8EgkT/ Qg
and its width is about the phonon correlation time 7.=2/(),.
By contrast, K(x,7) defines a peak centered on the propaga-
tion time 7,=2[x|/€), over a time scale of about 27, and
whose amplitude is equal to 4EzkT/ Qf
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