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Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact
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A connection is established between discrete stochastic model describing microscopic motion of fluctuating
cells, and macroscopic equations describing dynamics of cellular density. Cells move towards chemical gra-
dient (process called chemotaxis) with their shapes randomly fluctuating. Nonlinear diffusion equation is
derived from microscopic dynamics in dimensions one and two using excluded volume approach. Nonlinear
diffusion coefficient depends on cellular volume fraction and it is demonstrated to prevent collapse of cellular
density. A very good agreement is shown between Monte Carlo simulations of the microscopic cellular Potts
model and numerical solutions of the macroscopic equations for relatively large cellular volume fractions.
Combination of microscopic and macroscopic models were used to simulate growth of structures similar to

early vascular networks.
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I. INTRODUCTION

So far most models used in biology have been developed
at specific scales. Establishing a connection between discrete
stochastic microscopic description and continuous determin-
istic macroscopic description of the same biological phenom-
enon would allow one to switch when needed from one scale
to another, considering events at individual (microscopic)
cell level such as cell-cell interaction or cell division to
events involving thousands of cells such as organ formation
and development. Due to the fast calculation speed possible
with the continuous model, one can quickly test wide param-
eter ranges and determine satiability conditions and then use
this information for running Monte Carlo simulations of the
stochastic discrete dynamical systems. Also, continuous
models provide very good approximation for systems con-
taining a biologically realistic (i.e., large) number of cells,
for which numerical simulations of stochastic trajectories can
be prohibitive.

Most continuous biological models have been postulated
either by requiring certain biologically relevant features from
the solutions or making it easier to analyze behavior of so-
lutions using certain mathematical techniques. In particular, a
system of nonlinear partial differential equations (PDE)
model with chemotactic term was used in [1,2] to simulate
the de novo blood vessel formation from the mesoderm. The
rational for the model was provided by the experimental ob-
servations [3] demonstrating that chemotaxis played an im-
portant role in guiding cells during early vascular network
formation. Discrete models have been also applied to simu-
lating vasculogenesis and angeogenesis [4—6].

In this paper we derive continuous macroscopic limits of
the one-dimensional (1D) and two-dimensional (2D) micro-
scopic cell-based models with extended cell representations,
in the form of nonlinear diffusion equations coupled with
chemotaxis equation. We demonstrate that combination of

PACS number(s): 87.18.Ed, 05.40.—a, 05.65.+b, 87.18.Hf

the discrete model and derived continuous model can be used
for simulating biological phenomena in which a nonconflu-
ent population of cells interact directly and via diffusible
factors, forming an open network structure in a way similar
to formation of networks during vasculogenesis [1,2] and
pattern formation in limb cell cultures [7].

Continuous limits of microscopic models of biological
systems based on pointwise cell representation were exten-
sively studied over the last 30 years. The classical Keller-
Segel PDE model has been derived in [8] from a discrete
model with pointwise cells undergoing random walk in
chemotactic field and then studied in [9-12]. Cells in this
model secrete a diffusing chemical at a constant rate and
detect local concentration ¢ of this chemical due to a process
called chemotaxis. The chemical is called an attractant or
repellent depending on whether the cell moves towards
chemical gradient or in the opposite direction. Aggregation
occurs if attraction exceeds diffusion of cells. For pointwise
cells aggregation results in infinite cellular density corre-
sponding to the solution of the macroscopic Keller-Segel
equation becoming infinite in finite time (also called blow up
in finite time or collapse of the solution) [13,14].

There have been few attempts to derive macroscopic lim-
its of microscopic models which treat cells as extended ob-
jects consisting of several points. In [15] the diffusion coef-
ficient for a collection of noninteracting randomly moving
cells was derived from a one-dimensional cellular Potts
model (CPM). A microscopic limit of subcellular elements
model [16] was derived in the form of an advection-diffusion
PDE for cellular density. In our previous papers [17-19] we
studied the continuous limit of the CPM describing indi-
vidual cell motion in a medium and in the presence of an
external field with contact cell-cell interactions in mean-field
approximation. However, mean-field approximation does not
allow one to consider high density of cells when cellular
volume fraction (fraction of volume occupied by cells) ¢ is
of the order of 1.

In this paper we go beyond mean-field approximation.
Namely, we take into account the finite size of cells in the
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FIG. 1. Representation of cells in the 2D CPM in the form of
fluctuating rectangles. 539 cells (15% volume fraction) with L)(CO)
=L{"'=1.666 667 are shown.

ing macroscopic nonlinear diffusion equation for evolution
of cellular density p(r,?) in one dimension (1D),

1+¢?
dp=D,V, - zvrp - XoVr- [erC(I‘,l)], (1)
(1-9)
and two dimensions (2D),

_ 1te
1-¢+¢ln(p) Vrp) ~XoVe-[pVeern)l.
(2)

which do not have blow up in finite time. These nonlinear
diffusion equations are coupled with the equation for evolu-
tion of chemical field c¢(r,?),

ap =D2Vr : <

g,c(r,t) =DV +ap — ye. (3)

Here ¢ is a volume fraction (fraction of volume occupied by
cells). In the 1D case cells have a form of fluctuating rods
and @:Lfro)p(r,t), where Lfco) is an average length of cells. In
the 2D case we assume that cells are fluctuating rectangles
and go:LiO)LE,O)p(r,t), where (Lio),L;O)) are average length
and width of a cell. Here p(r,?) is the density of cells nor-
malized by the total number of cells N: [p(r,f)dr=N and r is
a vector of spatial coordinates in 1D or 2D. D, is the diffu-
sion coefficient for a motion of an isolated cell, y, defines
strength of chemotactic interactions, D,. is the diffusion co-
efficient of a chemical, a is the production rate of a chemical,
and v is the decay rate of a chemical. A typical microscopic
picture of distribution of individual cells is shown in Fig. 1
for the 2D case. Solutions of Egs. (1)—(3) describe coarse-
grained macroscopic cellular dynamics. Below we show very
good agreement even for relatively large densities ¢=0.3,
between solutions of Egs. (1)—(3) and ensemble average of
stochastic trajectories of the microscopic CPM.

In Sec. IT we introduce general microscopic equations de-
scribing motion of cells based on random fluctuations of
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FIG. 2. 2D CPM cell representation. Grey and white colors are
used to indicate cell body and surrounding extracellular matrix,
respectively. The cell can grow or shrink in x and y directions by
adding or removing one row (or column) of pixels.

their shapes and their interactions. We assume that each cell
has a rectangular shape and consider stochastic differential
equations for motion of cells as well as the Smoluchowski
equation (see, e.g., [20]) for multicellular probability density
function. In Sec. III we consider a particular case of micro-
scopic cellular dynamics represented by the CPM without
excluded volume interactions. Coefficients of the Smolu-
chowski equation are derived from the CPM and stochastic
dynamics of shapes and finding positions of cells is reduced
to solving the closed equations describing positions of cells.
In Sec. IV we consider cell motion and cell-cell interactions
with collisions resolved through the jump processes resulting
in Egs. (1)—(3). In Sec. V numerics for the continuous mac-
roscopic equation is compared with Monte Carlo simulations
of the microscopic CPM. In Sec. VI we summarize the main
results and discuss future directions.

II. MICROSCOPIC MOTION OF CELLS

Motion of many eukaryotic cells and bacteria is accom-
panied by the random fluctuations of their shapes [21-23]
resulting in a random diffusion of center of mass of an iso-
lated cell. Coefficient of such diffusion can be measured ex-
perimentally (see, e.g., [24]). Fluctuations of cellular mem-
brane in the presence of a chemical field are more likely in
the direction of chemical gradient (for chemoattractant) or in
the opposite direction (for chemorepellent). Cells can also
interact through direct contact which includes cell-cell adhe-
sion and can be modeled using excluded volume principle.
Cellular environment is highly viscous and inertia of a cell
can be ignored.

In this paper we assume that each cell has a fluctuating
rectangular shape and allow random fluctuation of the di-
mensions of each rectangular cell (see Figs. 1 and 2). Posi-
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tions and shapes of cells are completely characterized by a
finite set of dynamical variables in the configuration space:
X=(R,L;,R;,L,,...,Ry,Ly), where N is the total number
of cells, Rj is a position of center of mass of the jth cell, L ¥
is the size of the jth cell in D spatial dimensions. We con-
sider D=1 and D=2 in which case cells are moving over
substrate but results can be extended to the D=3 case. Mi-
croscopic description is provided by the multicellular prob-
ability density function (PDF) P(X,r) defined as ensemble
average (---) over stochastic trajectories [R;(t),L;(t)], J
=1,...,N; in the configuration space X: P(X,f):(ijzlé[R,»
—R]f (t)]é[Lj—L_;(t)]) determined by a solution of the
coupled stochastic equation

ax A

E=A(X,c,t) +B(X,c,0) (1), (4)
and chemotaxis equation for the chemical field c(r, 7). Here r
is the spatial coordinate, A(X,?) is 2DN-component vector,
B(X,t) is 2DNX2DN matrix, and &) is the
2DN-component stationary Gaussian stochastic process with
zero correlation time and zero mean

<§j> = 0’ <§z(t)§](tl)> = (si,‘jﬁ(t_ t,)’ l’.] = 1’ ) ,2DN,

(5)

where &;; is a Kronecker’s symbol.
Application of the Stratonovich stochastic calculus to Eq.
(4) results in a “multicellular” Fokker-Planck equation [20]

in configuration space X,

aP(X,H)=-V -[vP]+V-[D-VP],
v=A-1B-V-B,

D=1 5" (6)

where D(X,f) is a 2DNX2DN diffusion matrix,
V=(dg,, oL, ..., IR - dn,) is the gradient operator in 2DN

dimensions, and BT represents transposed matrix f)’, and
in components second equations reads as v;=A;
1
- Ezk,nBjn&kBkn‘
Dynamics of the chemical field c(r,7) is described by a
diffusion equation

d,c(r,t)=V,.D,-V.c+ f AX,r,n)P(X,0)dX — yc, (7)

where V. is the gradient operator for the spatial coordinate
and diffusion coefficient for the chemical field D, in the gen-
eral case can depend on r and t. Term [A(X,r,t)P(X,t)dX
describes production of a chemical by cells at the rate of
A(X,r,t) and vy is a decay rate of the chemical. Cells produce
chemical into intercellular space through their membranes.
Therefore, in the three-dimensional (3D) case A(X,r,?) is
nonzero only at the cellular membrane. However, in 1D and
2D cases cells are moving on a substrate, while a chemical
diffuses over the entire three-dimensional space. Therefore,
in 1D and 2D cases A(X,r,t) is nonzero inside cells.
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We assume that v has a form of a potential

v=—BD-V®(X,1), where B=1/T is the inverse effective
temperature 7 of the cellular shape fluctuations. Multicellular
Fokker-Planck equation (6) is then reduced to the multicel-
lular Smoluchowski equation,

aP(X,)=V-D-[VP + B(VD)P]. (8)

(General case of v, in the form of a function can be studied
using a similar approach.) If we neglect fluctuations of the
cellular size L; and chemotaxis, c=0, then Eq. (8) is similar
to the Smoluchowski equation for the Brownian dynamics of
colloidal particles (see, e.g., [25] for a review) and Eq. (4)
has a form of the Langevin equation for interacting Brown-

ian particles with term ég representing thermal forces from
solution in colloids. However, in the general case considered
here, both chemotaxis and fluctuations of cellular shape are
taken into account. Mechanisms of random fluctuation of
cellular shape and cellular motion are still not completely
clear and subject of active research [21-23].

We impose the excluded volume constraint by choosing
O(X,c)= if any two cells overlap. We assume in what fol-
lows that all direct interactions between cells are of this type.
We also allow indirect interactions between cells mediated
by chemotaxis for which we choose

N
d(X.c)=— 2 x(L)c(r.n)
J=1 r:Xj

+ ®(X,c)|.—o if cells do not overlap,

®d(X,c) =c0 if any pair of cells overlaps,

where x(L;) represents strength of chemotactic interaction as
a function of cellular sizes L; and ®(X ,C)|.—o represents
chemotaxis-independent terms of the potential. We assume
for simplicity that chemotactic interaction depends only on
gradient of c(r,r) at the center of mass of each cell.
®(X,c)|, is also responsible for preserving cellular shape
close to some equilibrium shape. Without this term, shape
(size) of each cell would experience unbounded random fluc-
tuation which is nonbiological. We consider the specific form
of ®(X,c) in Sec. III C.
Our main goal is to derive a macroscopic equation de-
scribing dynamics of (total) cell probability density function

N
p(rst) = Epj(r’t)’ (9)
Jj=1

coupled with ¢(r,7), from microscopic equations (7) and (8).
Here p;(r,0)=[P(X,0IL, ;. dR]IL)_, dL,|g - is a single-
cell probability density function of the position of center of
mass. After approximating A(X ,I‘,t)=a2jy=15(l‘—Rj), a
=const and assuming that D =const, Eq. (7) 1s reduced with
the help of Eq. (9) to Eq. (3). This approximation is justified
because typical diffusion of a chemical is much faster than
cell diffusion D,/D.<1. For example, D,/D.~1/40
—1/400 for the cellular slime mold Dictyostelium [26],
D,/D.~1/30 for microglia cells and neutrophils [27,28].
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III. MICROSCOPIC CELLULAR DYNAMICS
IN CELLULAR POTTS MODEL

Stochastic discrete models are used in a variety of prob-
lems dealing with biological complexity. One motivation for
this approach is the enormous range of length scales of typi-
cal biological phenomena. Treating cells as simplified inter-
acting agents, one can simulate the interactions of tens of
thousands to millions of cells and still have within reach the
smaller-scale structures of tissues and organs that would be
ignored in continuum (e.g., partial differential equation) ap-
proaches. At the same time, discrete stochastic models in-
cluding the cellular Potts model (CPM) can be made sophis-
ticated enough to reproduce almost all commonly observed
types of cell behavior [29-34]. Reference [35] reviews many
cell-based models.

The cell-based stochastic discrete CPM, which is an ex-
tension of the Potts model from statistical physics, has be-
come a common technique for simulating complex biological
problems including embryonic vertebrate limb development
[29,36], tumor growth [37], and vasculogenesis [4]. The
CPM can be made sophisticated enough to reproduce almost
all commonly observed types of cell behavior. It consists of a
list of biological cells with each cell represented by several
pixels, a list of generalized cells, a set of chemical diffusants,
a description of their biological and physical behaviors, and
interactions embodied in the effective energy E, with addi-
tional terms to describe absorption and secretion of diffu-
sants and extracellular materials. Distribution of multidimen-
sional indices associated with lattice cites determines the
current cell system configuration. The effective energy of the
system, E, mixes true energies, like cell-cell adhesion, and
terms that mimic energies, e.g., volume constraint and the
response of a cell to a gradient of an external field (including
chemotactic field) and cell’s area constraint.

A. Cellular Potts model for cells of rectangular shape

For simplicity, we use in this paper CPM with rectangular
cellular shapes. We also assume that all cells are of the same
type. The results can be extended to the general case of the
CPM with arbitrary cellular shapes. Also, the approach is not
limited to using CPM. For example, one could use micro-
scopic off-lattice models [16,38], where each cell is repre-
sented by a collection of subcellular elements with postu-
lated interactions between them.

Notice that reduced representation of cells as fluctuating
rectangles corresponds to intermediate level of description
where fluctuations of cellular shapes are replaced by fluctua-
tions of cellular sizes. Stochastic equation (4) or Smolu-
chowski equation (8) coupled with (3) can be used for mod-
eling cell aggregation.

In the CPM, change of a cell shape evolves according to
the classical Metropolis algorithm based on Boltzmann sta-
tistics and the following effective energy:

E = Egcm + Eadnesion + Eperimeter + EFicld- (10)

If an attempt to change index of a pixel in a cell leads to
energy change AFE, it is accepted with the probability
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B(A 1, AE<QO,

(AE) = e PAE AE>0, (1
where 1/B=T represents an effective boundary fluctuation
amplitude of model cells in units of energy. Since the cells’
environment is highly viscous, cells move to minimize their
total energy consistent with imposed constraints and bound-
ary conditions. If a change of a randomly chosen pixels’
index causes cell-cell overlap it is abandoned. Otherwise, the
acceptance probability is calculated using the corresponding
energy change. The accepted pixel change attempt results in
changing location of the center of mass and dimensions of
the cell.

We consider the 2D case with rectangular shape of each
cell with sizes L; =(L, jr Ly ]) and position of center of cellu-
lar mass at R;= (x],y ). Cell motion and changing shape are
implemented by adding or removing a row or column of
pixels (see Fig. 2). We assume that cells can come into direct
contact and that they interact over long distances through
chemotaxis. Term Egcy; in the Hamiltonian (10) phenomeno-
logically describes net adhesion or repulsion between the cell
surface and surrounding extracellular matrix: Egcy
=E§V=]2JECM(LL ;+L, ), where Jgcy is the binding energy per
unit length of an interface. Term Eagpesion=JLcontact 11 the
Hamiltonian (10) corresponds to the cell-cell adhesion,
where J, is the binding energy per unit length of an interface
and L., 1S the total contact area between cells. Term
Eperimeter defines an energy penalty function for dimensions
of a cell dev1at1ng from the target values LT() Eperimeter
—EN MLy = ) +N,(Ly; LT) , where A, and X\, are
Lagrange mult1pl1ers Cells can move up or down gradients
of both diffusible chemical signals (chemotaxis) and in-
soluble ECM molecules (haptotaxis) described by FEgieq
=3V i=1 ,uc(Rj,t) Ly js where w is an effective chemical po-
tential.

In this paper we neglect cell-cell adhesion J,=0 and the
Hamiltonian (10) is reduced in 2D to the following expres-
sion:

N
EX.)= X E(r,L,) :
J=1 r=R,L=L,

E(r,L,1) =2/ (e + L) + (L= L7 )?
+\,(L, - LTV)Z + pe(r)L,L,. (12)

B. Master equation for discrete cellular dynamics

We now represent CPM dynamics by using P(r,L,1),
probability density for any cell with its center of mass at r to
have dimensions L at time 7. Which means that we consider
one-cell PDF P(r,L,?) rather than N-cell PDF P(X,). Let
eArX eAr be the size of a lattice site with e<<1 and let
vectors €, indicate changes in x and y dimensions, €;
=Ar(1,0),e,=Ar(0,1). We normalize the total probability to
the number of cells, [P(r,L,t)drdL=N. Excluded volume
constraint implies that position r’ and size L." of any neigh-
boring cell should satisfy 2|x—x'|=L+L;, 2|y-y'|=L,
+L].
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Discrete stochastic cellular dynamics under these conditions is described by the following master equation [19]:

2
1 € € €
P(r,L,t+ At) = 2 {{E - Qj,,<r— Eej’L + eej;r,L,t> - Qj,,<r+ Ee_,-,L + eej;r,L,t> - Q_,-,,(r + Eej7L - éej;l',L,t)

j=1

j,r

€ € €
-, <r - Eej’L - eq;r,L,t)]P(r,L,t) + Qj,,<r,L;r + Eej’L - eej,t)P(r + Eej,L - eej,t)

€ € € €
+Qj7,<r,L;r— Eej’L - eej,t>P<r— Eej’L_ eej,t> +Qj’,<r,L;r— Eej,L+ eej,t)P(r— Eej’L + eej,t)

+ Q_,«,(r,L;r + gej,L + ee_,-,t)P(r + gej,L + eej,t> } (13)

We incorporate dynamics into MC algorithm by defining the
time step Ar. Individual biological cells experience diffusion
through random fluctuations of their shapes. Diffusive coef-
ficient can be measured experimentally (see, e.g., [24]). We
choose Ar to match experimental diffusion coefficient. Equa-
tion (13) would determine a version of kinetic-dynamic MC
algorithm (see, e.g., [39]) if At were to be allowed to fluctu-
ate. For simplicity we assume that Ar=const. Also
Q;,(r,L:r' ,L",1) and Q; (r,L;r’',L’,7) denote probabili-
ties of transitions from a cell of length L’ and center of mass
at r’ to a cell of dimensions L and center of mass at r.
Subscripts [ and r correspond to transitions by addition
and/or removal of a row and/or colomn of pixels from the
rear and/or lower and front and/or upper ends of a cell, re-
spectively.

We define Q; (v, L’ L) =Ty (r, L;x" L[ 1
+¢;»(r,L,n)] where T)(r)(r,L:r’,L’,) denote probabili-
ties of transitions from a cell of length L.” and center of mass
at v’ to a cell of dimensions L and center of mass at r
without taking into account excluded volume principle and
cell-cell adhesion. According to the CPM we have that
Tl(r,L;r’,L’):T,(r,L;r’,L’):éCI)[E(r,L)—E(r’,L’)]
where the factor of 1/8 is due to the fact that there are
potentially eight possibilities for increasing or decreasing of
L, and L, (it means that we can add or remove pixels from
any four sides of a rectangular cell). The second term
cpj,l(,)(r,L,t) takes into account contact interactions between
cells. It includes contributions from three possible types of
stochastic jump processes due to contact interactions be-
tween cells: (a) a cell adheres to another one, (b) two adhered
cells dissociate from each other due to membrane fluctua-
tions, (c) membranes of two adhered cells are prevented from
moving inside each other (due to excluded volume con-
straint) resulting in a negative sign of a contribution to a
jump probability. If neither of these three processes happens
at a given time step then ¢; ;,(r,L,#)=0.

C. Macroscopic limit of master equation
and mean-field approximation

Equation (13) is not closed because one must know mul-
ticellular probability density to determine ¢; ,(r,L,?). One

could use BBGKY-type hierarchy [40] similar to the one
used in kinetic theory of gases, which expresses iteratively
n-cell PDF through n+ 1-cell PDF with truncation at some
order. This is however extremely difficult and ineffective for
large n. Instead, we develop in Sec. IV a nonperturbative
approach to derivation of Egs. (1) and (2).

In previous work [17-19] we studied a macroscopic limit
€<<1 of the master equation (13) by both neglecting contact
interactions between cells [17,18] and including contact in-
teractions in mean-field approximation [19], which repre-
sents simplest closure for BBGKY-type hierarchy. If contact
interactions are neglected, then ¢;;(r,L,1)=0 and (13)
yields in macroscopic limit e<1 [17,18],

,P(r,L,1) = Dy(V; + 4V} )P + 8D, 8N 3, (LP)

+8D28Ndy, (LyP) + DoBLL 3 (PVyc),

1 1
x = )\_x<‘]cm + )\x(Lx - LTX) + EL),,(LC(I')) s

~ 1 1

L,= )\—(Jcm +N\(L, - LTy) + ELX/J,c(r)) ,
y

B (eAr)?

D - 9
27 16At

VeR+d Vi@ +d. (4)

Similar equation in the 1D case (with only coordinate x and
length L, present) was obtained in Ref. [17].
Mean-field approximation assumes the following decou-
pling of multicellular PDF:
N
P(x,n= NMIPrL,)
j=1

, (15)
r=R;

where factor NV is due to an assumed normalization
JP(r,L,1)drdL=N. Mean-field approximation is exact if
contact interactions are neglected. This holds since we as-
sume above that chemotaxis depends only on average den-
sity (9). Equation (15) results in decoupling of Eq. (8) into
independent equations for P(R;,L;,) for all j. This allows
direct comparison of Eq. (14) with Eq. (8) and yields that
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diffusion matrix has a diagonal form with main diagonal
D,(1,1,4,4,1,1,4,4,...) in 2D. In 1D and 3D cases num-
bers 1 and 4 repeat themselves with period 1 and 3, respec-
tively.

Further comparison of (8), (9), and (14) leads to expres-
sion x(L;)=L, L, ;s and

O(X,1)=EX,1), (16)

where E(X,1) is given by (12).

Taking into account contact cell-cell interaction (excluded
volume) yields that Eq. (15) is not exact any more. Also,
potential ®(X,7) is given by (16) only if cells do not overlap.
Otherwise ®(X, )= according to (9).

D. Boltzmann-like distribution and macroscopic
equation for cellular density

From Egs. (12), (11), and (14) it follows that typical fluc-

tuations of cell sizes Zx are determined by B)\x(y o~ 1
Suppose x, and y, are typlcal scales of P(r,L t) with respect
to x and y. We assume that ,8x0)\ >1 and ,Byo)\ > 1, mean-

ing that x0>l~,x, y0>fy. We also assume that chemical field
c(r,1) is a slowly varying function of r on the scale of typi-
cal cell length meaning that x./L,>1,y./L,>1, where x,
and y, are typical scales for variation of ¢(r,7) in x and y. We
also make an additional biologically relevant assumption that
ANN > 2¢(r,#)?> meaning that change of typical cell size
due to chemotaxis 5L<Chem°) is small |5L(°h§’m°)| <L} m‘“)

If all these condmons are satisfied then we found by using
both solutions of Eq. (14) and MC simulations of CPM with
general initial conditions, that PDF P(r,L,t) quickly con-
verges in ¢ at each spatial point r to the following
Boltzmann-type form:

P(r,L,1) = Py, (r,L)p(r,1), (17)

where

PBo]tz(r’L) - eXp( BAElength) (18)

()

is a Boltzmann-type distribution depending on r and ¢ only
through ¢(r,?), and

AEjpgn = E(r,L) = Epin = NL> + N\ L)> + LL} pe(r),

L' =L - LM, (19)

Here E,;,=E(r,L™") is the minimal value of (12) achieved
at L=Lm"),

Epyin = E(r, L"),

(min) - 4)\y(‘]cm - )\XLT ) + 2(Jcm - )\\‘LT))MC(r)
7, (min) _ X Y1 ’
* AN, — pie(r)?
. - 4)\x(‘]cm - )\VLT,) + 2(Jcm - )\xLT,)IU/C(r)
L(,mm) = - . 2 2 * 5 (20)
J 4NN, = pe(r)
and Z(r,7)=(2€Ar)*Zy, exp(—BAE engn) = ﬁ is

an asymptotic formula for a partition function as €e— 0. (See
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[17] for details about convergence rate for the case without
contact interactions.)

Also, under these conditions we can use Eq. (17) to inte-
grate Eq. (14) over L which results in the following evolu-
tion equation for the the cellular probability density p(r,?)
=[[P(r,L,t)]dL [17,18]:

dip=DyVep = xoVr - [PVic(r,0)], (21)
where X0=—D2,u,ﬁL)(CO)L§,O ) and
L)(CO) = LTX - Jcm/)\x’
L= Ly, ~Jenl\y (22)

correspond to L)(C‘(nyi)“) from (20) provided we neglect chemot-

axis.

Equation (21) together with (3) form a closed set which
coincides with the classical Keller-Segel system [8]. It has a
finite time singularity (collapse) and was extensively used
for modeling aggregation of bacterial colonies [13,14]. We
show below that near singularity contact interactions be-
tween cells could prevent collapse.

Equations similar to (21) and (3) for the case of contact
interactions (excluded volume constraint) has been obtained
in the mean-field approximation [19]. These equations sig-
nificantly slow down collapse in comparison with (23) and
(3). They still have collapsing solutions if initial density is
not small. (These equations are applicable only for small
densities.)

IV. BEYOND MEAN-FIELD APPROXIMATION
AND REGULARIZATION OF COLLAPSE

The main purpose of this paper is to derive macroscopic
equations which do not have collapse (blow up of solutions
in finite time) for arbitrary initial densities and are in good
agreement with microscopic stochastic simulations for large
cellular densities. This requires one to go beyond mean-field
approximation.

We conclude from the preceding section that random
changes of cellular lengths result in random walks of centers
of mass of cells during the time between cell “collisions.”
Significant simplification in comparison with Eq. (6) is that
we have now explicit dependence on s atial coordinate r but
not on L. Below we use notation (L ,Lio)) for the average
size of a cell neglectln% change of that size due to chemot-
axis. In CPM (L, 0),L ) are given by (22). If we neglect
chemotaxis (i.e., set c=0) then during time between collision
cell probability density p(r,7) is described by linear diffusion
equation which follows from Eq. (21):

dp=D,V;p. (23)

In a similar way, two-cell probability density p(r;,r,,?) is
described by linear diffusion in two independent variables
r;,r,

ap=Dy(Vy + Vi )p. (24)
p(r,,r,,1) represents probability density of cells 1 and 2 hav-

ing centers of mass at r; and r, at time 7, respectively. After
making change of variables
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r=r;-r,, R=(r +r,)/2, (25)

where variable r describes relative motion of cells and vari-
able R describes motion of “center of mass” of two cells, Eq.
(24) has the following form:

D
ap=2D,V2p + fvﬁp. (26)

Each collision involving cell 1 or 2 modifies both p(r,z) and
p(ry,ry,1). In other words, it effects random walk of each
colliding cell.

We describe first the effect of collisions due to excluded
volume constraint between cells in the 1D case. Consider a
pair of neighboring cells which in 1D always remain neigh-
bors. We assume that at the time of collision two colliding
cells have the same size. Generally this is not true because
sizes of cells continuously fluctuate with length-scale JL,
~1/ (,6‘1/2)\)1(/2). However, we assume as before that these
fluctuations are small |SL,| <L)(C0) which justifies our ap-
proximation. Collision is defined as two cells being in direct
contact at a given moment of time and one of them trying to
penetrate into another. Collison is prevented by excluded
volume constraint. In the continuous limit e—0 each colli-
sion takes infinitesimally small time. After collision, cells
move away from each other so they are not in direct contact
anymore. Instead of explicitly describing each of these col-
lisions we use an assumption that two cells are identical and
view each collision as exchange of positions of two cells
[41,42]. From this point of view cells do not collide at all but
simply pass through each other. They both experience ran-
dom walk as point objects (cells) without collisions accord-
ing to Egs. (25) and (26) in the domain free from other cells
(free domain). (The volume of such free domain per cell,
which has dimension of length in 1D, is on average [1
~Lp(x.0]/p(x.1).)

This means that we are considering collective diffusion of
cellular density instead of trajectories of individual cells (see,
e.g., Ref. [25] for a review). Another type of diffusion is
self-diffusion which describes mean-square displacement of
an individual cell as a function of time [25]. Self-diffusion
might be important for describing propagation of one cell
type through space occupied by cells of another type. In this
paper we consider only collective diffusion.

There is an important qualitative difference between de-
pendence of collective diffusion and self-diffusion on vol-
ume fraction. It is known from the study of diffusion of
colloids in the hard-sphere model that diffusion coefficient of
self-diffusion decreases with increase of the volume fraction
due to the cage effect [25]. Namely, hard spheres prevent a
given hard sphere from moving at distances larger than a
typical distance between nearest hard spheres. Effect of vol-
ume fraction increase on collective diffusion is the opposite.
Frequent collisions of hard spheres in case of large volume
fractions result in hard spheres moving on average in the
direction of negative density gradient. In that case relative
displacement of neighboring hard spheres is small but
change of the density of hard spheres in the direction of the
density gradient might be large. Collective diffusion also
means that one uses a long wavelength limit of the density
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fluctuations [43]. Decrease of self-diffusion and increase of
collective diffusion with increase of the volume fraction has
been shown in the limit of diluted gas of diffusing hard
spheres in Refs. [44-46]. Tt was also observed in experi-
ments described in, e.g., Refs. [47,48] and many subsequent
studies (see, e.g., [25] for a review). Notice that increase of
collective diffusion of hard spheres in colloidal suspension is
significantly reduced by hydrodynamic interactions [25]. In
this paper we consider biological cells which move at ran-
dom with their shapes also randomly fluctuating which is
different from the mechanism of diffusion in colloidal sus-
pensions. However, we expect that previous results for dif-
fusing hard spheres will qualitatively agree with results for
the collective and self-diffusion of cells.

Note also that the macroscopic model derived in this pa-
per has qualitative analogies with a hydrodynamic limit of
interacting particles and cellular automata (see, e.g., [49,50]).

Because we study collective diffusion and adopt a point of
view that each collision is an exchange of positions of two
cells, we conclude that while trajectories of cells in a free
domain are continuous, positions of cells in physical space
change instantaneously at each collision by L, for the cell
colliding from the left and by —L, for the cell colliding from
the right. The effective rate of cell diffusion is enhanced as
free space becomes smaller with growth of cellular volume
fraction. Let us assume that at the initial time 7=1, centers of
mass of two cells are separated by an average distance
1/p(x,t) and that these two cells collide for the first time
(meaning that the preceding collision of any of these two
cells involved collision with another cell). This yields that
their centers of mass are separated by distance L)(CO) at t=ty. If
a moving reference frame is set at one of the cells then the
other will experience random walk with doubled diffusion
coefficient 2D, [as seen from Eq. (26)], where D, is a diffu-
sion coefficient of each cell in the stationary reference frame.
Relative motion of two cells in a moving reference frame
corresponds to random walk of a pointwise cell with diffu-
sion coefficient 2D,.

Consider continuous random walk in free space. The
number of returns to the initial position x=L§C0) during any
finite time interval after 7, is infinite meaning that the number
of collisions between a given pair of cells in physical space
is infinite. However, successive collisions effectively cancel
each other since they change positions of cells by iLiO)
What really matters is whether the total number of collisions
is even or odd. For an even number of collisions the total
contribution of collisions is zero. While for an odd number
of collisions the contribution to the flux of probability for the
left cell (at time #) OCLio) and for the right cell OC—LfCO). Be-
cause the total number of collisions is infinite, the probabili-
ties of having even or odd number of collisions are equal to
1/2. While the average distance between center of mass of
cells is 1/p(x,t), the average distance between boundaries of
two neighboring cells in the physical domain is

Ax=1/p(x,0) - LY. (27)

When separation between surfaces of two cells after collision
reaches Ax from (27) we determine that “extended collision”
between the pair of cells is over. Namely, two cells are not
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closer to each other than to other neighboring cells anymore.
Therefore, probability of them colliding with each other is
not higher any more than probability of them colliding with
other cells. This extended collision includes infinitely many
“elementary” collisions but its final contribution depends
only on whether the total number of such collisions is even
or odd.

To find the average time of extended collision we solve
the diffusion equation in the moving frame

Gpm=2D2V P, (28)

with reflecting boundary condition d,p,,(L'”,1)=0 at x= L(O)
and absorblng boundary condition pm(L(ﬁ +Ax,1)=0 at x
—L(0 +Ax. Reflecting boundary condition means that the cell
does not cross point x=L, ) Instead of crossing x= L cells
exchange positions at each collision. Absorbing boundary
condition corresponds to the “escape point” of a cell from
the extended collision. Initial condition is p,,(x,7y)=8(x
—L)(CO)) which is defined by initial zero distance between sur-
faces of two cells. Solution of Eq. (28) with these initial and
boundary conditions yields the mean first-passage time (es-
cape time) T, which is equal to the extended collision time
in our case. As shown in the Appendix, the extended colli-
sion time in 1D is given by

(Ax)*
4D,

Tesc,l = (29)

Consider mean-square displacements (Ax)% and (Ax)% of
cells 1 and 2, respectively, in the stationary frame during
extended collision. Using (25) we obtain that (Ax)2+(Ax)2

E&L+2(AX)2 where X=R in 1D. Because of the symmetry
between cells 1 and 2 the following relation holds (Ax);
—(Ax) KML+(AX) Center of mass of two cells experi-
ences random walk with diffusion coefficient D2/2 [see Eq.
(26)] and (AX)P=Te 1 Dy="4" (A} =(A0)3= 55,

Now recall that with probability 1/2 cells exchange posi-
tions during extended collision meaning that in that expres-
sion for (Ax)1 ) w1th probability 1/2 term (Ax)? should be
replaced by (2L )+ Ax)? resulting in the following total
mean-square displacement for cell 1 or 2:

2 (0) 2
(A= 3 A, CEEA0T)

From Egs. (27), (29), and (30) we obtain effective (nonlin-
ear) diffusion coefficient for the cell probability density

(A _ ( 1+ (Li°>>2p2>
2Tesc,1 - (1- L)(CO)P)Z

(30)

(31

1,effective =
In simulations described below we typically use a not very
large number of cells N. In case of finite N each given cell
can collide with N—1 other cells resulting in extra factor

(N-1)/N and allows one to rewrite the effective diffusion
coefficient (31) as follows:

1+(1 -N-‘)(Lff’))sz)
(1= (1=N"HLp)’

Dl,effective = DZ( (32)
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The effective diffusion (32) results in 1D nonlinear diffusion
equation

~ 1+ (1 -N"H(L)2p? )
ﬁ’p'D2V"<(1—(1—N—1)L(° o

= XoVr - [pVyc(r,n)]. (33)

Here we added chemotaxis term from Eq. (21) which is well
justified provided x,>Ax (see also the preceding section).
For example, typical spatial scale of developmental gradients
is x,~0.1-0.5 mm [51]. Which can be large in comparison
with a typical size of eukaryotic cell 2—100 um.

Now consider the 2D case. First we look at cells with a
disk-shaped form instead of cells of rectangular shapes (i.e.,
cellular shapes fluctuating around a disk) with average diam-
eter L)(CO). Assume (as in 1D case) that #, is the time of the first
collision between two given cells. Previous collisions of each
of these cells involved cells other then these two. We also
average over angles relative to the center of one of these two
cells which implies that cells collide at time 7=¢, with equal
probability at every angle. In that approximation there is ro-
tational symmetry in the moving frame and all variables de-
pend only on the radial variable r=|r| but do not depend on
angular variables. Change of variables in Fokker-Planck
equation &,p:ZDZpr results in

p=— 2D2V + 2D2V’,p, (34)

where p=rp. Equation (34) is equivalent to the 1D Fokker-
Planck equation with potential U(r)=—2D, In(r). As shown
in the Appendix, the extended collision time in the 2D case is
given by

Ax(2L? + Ax)  [LO Ax
Tesc 2= - In| 1+ TO) . (35)
: 8D, 4D, L!

We assume again that during extended collision time cells on
average span entire space, i.e.,

Zl—T(L)((O) +Ax)?=p7. (36)

Using Egs. (30), (35), and (36) we obtain the effective dif-
fusion coefficient in 2D (here and below the average disk
diameter is LELiO)),

( )total _ ( L+ 7TL2p )
4Teer  “\1—aL’p+ 7l2p In(wL?p)
(37)

D2,effeclive =

which, after modification to include effect of a finite N simi-
lar to the one used in 1D case, results in
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b _D( 1+(1-N"Y7mL?p ) (38)
Zefleetive =2\ _ (1 =N wL2p + (1 - N al?p In(wL?p) )’
Eq. (38) yields the following nonlinear diffusion equation for cells fluctuating around disk-shaped form
1+ (1-N"YaL?p )
ap=D,V,- V.- [pVic(r,1)]. 39
=2t (1— (=N a2+ (=N Dl n(m2p) ) ~XoVe [PVee(en)] (39)

Notice that both 1D effective diffusion coefficient (32) and 2D effective diffusion coefficient (38) depend only on the volume
fraction ¢ (= L p in 1D and @=wL%p in 2D). Based on that we propose that the effective diffusion coefficient for 2D
rectangles also depends only on the volume fraction ¢= L(0 L( >p, which results in the nonlinear diffusion equation for cells of

rectangular shape

1+(1=-NHLOLOp

dp=D,V,-
P 2 ( —(1-

Numerical simulations in the next section confirm that Eq.
(40) agrees very well with the MC simulations of micro-
scopic dynamics.

In the macroscopic limit, the N> 1 factor (1-N7") is re-
placed by 1 in Egs. (33), (39), and (40), which yields Egs. (1)
and (2).

If the volume fraction ¢— 1 then nonlinear diffusion in
Eqgs. (1) and (2) diverges. Thus, we do not expect any blow
up of the solutions of Egs. (1)—(3). This is in contrast to blow
up in Egs. (21) and (3) in 2D. Global existence of Egs. (1)
and (2) together with Eq. (3) can be studied in a way similar
to [52].

V. NUMERICAL RESULTS AND APPLICATION
TO VASCULOGENESIS

A. One-dimensional cell motion

Figure 3 demonstrates simulation of 1D motion of cells
represented in the form of fluctuating rods. Numerical solu-
tion of the continuous model was obtained using a pseu-
dospectral scheme. For both the CPM simulation and numer-
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FIG. 3. (Color online) Volume fraction ¢= L(O)p(x,tend) for the

1D cellular motion as a function of x. Curve a, Monte Carlo simu-
lations of the CPM. Curve b, solution of Eq. (21). Curve ¢, solution
of Eq. (41). Curve d, solution of the Eq. (33).

NHLOLYp + (1= NHLOLYp n(LOLOp )

) X()Vr : [erC(l',l)]. (40)

ics of the continuous model we used periodic boundary
conditions, simulation time was 7.,4=200 and values of other
parameters were chosen as follows: Ar=1, Ly =L =3, \,
=\,=15, e=0.01J,,=2, B=15, N=8, u=0. Simulation was
performed on the spatial domain 0<<x< 100 and the initial
cell density distribution was p(r,0)=kye =30/ 101" with ko
determined by normalization N=8. Figure 3 shows simula-
tions of the CPM (curve a), numerical solutions of the mac-
roscopic model without excluded volume interactions (21)
(curve b), macroscopic Eq. (41) (curve c), and macroscopic
Eq. (33) (curve d). Here,

1
\Y
“NHLOp)2 P

) - XOVr ! []JVrC(I‘,t)],

(41)

dp=D,V,-
P 2r<(1_(1

was derived from the equation of state for the 1D hard rod
fluid [53] which allows one to determine collective diffusion
coefficient from static structure factor and compressibility
(see, e.g., [25.43)).

Figure 3 demonstrates that solution of Eq. (33) is in much
better agreement with CPM than both Egs. (21) and (41).
While the difference between the CPM simulation and solu-
tions of Egs. (21) and (41) is small but clearly exceeds the
error in MC simulations. The difference between MC simu-
lation and solution of Eq. (33) is within an accuracy of the
MC simulations.

The difference between CPM and Eq. (41) is due to the
fact that the equation of state for the 1D hard rod fluid was
calculated in Ref. [53] from grand canonical partition func-
tion [54] while diffusion of cells is a nonequilibrium phe-
nomenon resulting in the corrections to the equilibrium par-
tition function. Numerous attempts have been made to
describe dynamics of interacting Brownian particles (see
[55] and references therein). Note also that the difference
between CPM and Eq. (21) results is not so dramatic in 1D
as in 2D because in 1D Keller-Segel model does not support
collapse [14].
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FIG. 4. (Color online) p(x,y,) in 2D as a function of (x,y) for
(a) Monte Carlo simulation of CPM, (b) Eq. (21), and (c) Eq. (40).

B. Two-dimensional cell motion with chemotaxis

Figures 4 and 5 demonstrate a very good agreement be-
tween typical CPM simulation and numerical solution of the
continuous model Eq. (40). Both simulations were performed
on a square domain 0<<x,y= 100 over simulation time 7.4
=400. Simulation parameters’ values are as follows: Ar=1,
Ly =Ly =44, \,=N\=15, J.,=2, B=15, u=0.1, €=0.01,
and N=15. Chemical field concentration is chosen in the
form of ¢(x,y)=0.2(1 _e_[(x_65)2+(y_50)2]/144) and does not de-
pend on time. Initial cell density is chosen in the form of
Polx,y) =kge 1G=307+(0=5071100° here ko s a constant that
normalizes the integral of the cell density to N=15. Numeri-
cal solution of the continuous model has been obtained using
pseudo spectral scheme with 200X 200 Fourier modes. A
large number of CPM simulations (600 000) have been run
on a parallel computer cluster to guarantee a representative
statistical ensemble.

Numerics for Eq. (21) significantly differs from CPM
simulations indicating that excluded volume interactions are
important in the chosen range of values of parameters.

C. Application to vasculogenesis

To test the model we studied the effect of the chemical
production rate on the network formation. Our previous re-
sults [19] were limited to relatively small chemical produc-
tion rate a<0.2 in Eq. (3) because otherwise chemotaxis
resulted in cellular density which was too high for applying
mean-field approximation. Here we use macroscopic equa-
tions (40) and (3) and compare numerical results with the

0.254
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0.154

0.104

O Volume Fraction

0.054

0 20 40 60 8 100
Y Location

FIG. 5. (Color online) Cross sections of the volume fraction ¢
:LiO)L;O)p(xo, y,t) in 2D for (a) CPM simulation, (b) Eq. (21), and
(c) Eq. (40). All cross sections are at the same position, xy=57.75.
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Continuous

a=0.5 !

a=3.0 Ty

FIG. 6. (Color online) Simulation of early vascular network for-
mation with different chemical production rates «. Ar=1, Ly,
=LTV=O.6, A =\=15, J,,=0.002, B=15, u=-0.1, D.=0.5, y
=0.014, At,.=€2At=0.01, €=0.1, t,nq=60. In the Monte Carlo CPM
simulation N=15 000 cells were randomly distributed in a domain
0=ux, y=100 with initial chemical field at zero. In the continuous
model, a uniform initial cell density distribution with 5% random
fluctuation was used. Scale bar is in units of the volume fraction ¢.

CPM simulations. Figure 6 shows a series of simulations
with different chemical production rates a=0.5, a=1.5, and
a=3.0. Simulations start with initially dilute populations of
cells moving on a substrate in a chemotactic field, subject to
an excluded volume constraint. Both CPM and continuous
model simulation results indicate that stripe patterns are ob-
tained for high chemical production rates. Higher chemical
production rate, by strengthening the chemotaxis and cell
aggregation process, eventually leads to higher pattern den-
sity with smaller average distance between two neighboring
stripes. Structures of the resulting networks obtained using
discrete and continuous models are very similar to each other
as well as to the one obtained experimentally for a popula-
tion of endothelial cells cultured on a Matrigel film [2].

VI. SUMMARY AND DISCUSSION

We have derived macroscopic continuous Egs. (1) and (2)
coupled with Eq. (3) for describing evolution of cellular den-
sity in the chemical field, from microscopic cellular dynam-
ics. Microscopic cellular model includes many individual
cells moving on a substrate by means of random fluctuations
of their shapes, chemotactic and contact cell-cell interac-
tions. Contrary to classical Keller-Segel model, solutions of
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the obtained Egs. (1)—(3) do not collapse in finite time and
can be used even when relative volume occupied by cells ¢
is quite large. This makes them much more biologically rel-
evant then earlier introduced systems. We compared numer-
ics for macroscopic equations with Monte Carlo simulations
of microscopic cellular dynamics for the CPM and demon-
strated a very good agreement for ¢=0.3. For larger density
we expect transition to a glass state [25]. It was demonstrated
that combination of the CPM and derived continuous model
can be applied to studying network formation in early vas-
culogenesis. We are currently working on an important prob-
lem in vasculogenesis of simulating self-diffusion [25] of
one type of cells through dense population of other types of
cells.

This work was partially supported by NSF Grants No.
DMS 0719895 and No. IBN-0344647.

APPENDIX: CALCULATION OF MEAN
ESCAPE TIME T,

For convenience of the reader we provide here a deriva-
tion of extended collision time 7., which is similar to the
calculation of mean escape time in Ref. [20]. To find T, we
use a backward Fokker-Planck equation

3zll’(x2,fz|x1,l1) =U’ (x1)ﬁxll’(x2,lz|x1,t1) - Dovill’(xz,lﬂxl,tl)
(A1)

(see, e.g., [20]), where p(x,,t,|x;,¢,) is the conditional prob-
ability density for transition from (x;,7;) to (x,,2,). Dy is the
diffusion coefficient and U(x) is an arbitrary potential. In the
ID case U(x)=0 and Dy=2D,.

The probability that a cell remains inside an interval
(0,Ax) at time ¢, provided it was located at x at 1=t, is given
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by G(x,0)=[g"p(x’ .t
random walk p(x',z|x,1))=p(x",0
(A1) that

X,tp)dx’. Using the stationarity of the
X,tp—t) we obtain from

6,G =—U'(x)8,G + DyV>G. (A2)

Mean escape time T, (x) for a cell located at x at t=¢ is

©

Teo(x) =— f ’ (t—10)9,G(x,0)dt = f G(x,t)dt.

0

(A3)

Integrating Eq. (A2) over ¢ from f, to % and using initial
normalization G(x,#,)=1 results in

- U,(x)axTesc(x) + DOV)chesc(x) =-1. (A4)

Reflecting and absorbing boundary conditions for p result in
similar boundary conditions for T, (x),

é’xTesc(x)|x=L(O) =0, Tesc(x)|x=L(0)+Ax =0, (AS)
which allows us to solve boundary value problem (A4) and
(A5) explicitly,

o)

v T

Tesc(x) =D6]J ) CXP[DEIU(X/)]dx’

X

X j o expl— DalU(x”)]dx”. (A6)

L

x

Initial condition implies that T 1=TeSC(L§CO)) and yields ex-
tended collision time in 1D given by Eq. (29).

Radially symmetric Fokker-Planck equation (34) is
equivalent to the 1D Fokker-Planck equation with potential
U(r)=-2D, In(r). Backward Fokker-Planck equation (A1)
with x=r, and the same U(r) yields from Eq. (A6), an ex-
tended collision time (mean escape time) given by Eq. (35).
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