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Segregation induced by phase synchronization in a bidisperse granular layer
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We propose an alternative segregation mechanism where the species-dependent interactions are dynamically
induced by the phase synchronization of beads. Based on this scenario, we report an alternative segregation

among beads of different restitution coefficients by molecular dynamics simulations. Since the beads are of
equal size and mass, this is not related to the Brazilian-nut effect, nor can it be explained by the depletion force.
Instead, this phenomenon derives from the phase synchronization, a concept which helps us determine the
criteria for segregation and the phase boundaries that agree excellently with the simulation results.
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Granular material under external vibrations is a nonequi-
librium system which is characterized by the competition
between external energy input from the vibrating shaker and
internal dissipation due to the inelastic collisions. It exhibits
many rich and intriguing phenomena, such as pattern forma-
tion, segregation, temperature oscillation [1], Maxwell’s de-
mon, non-Gaussian velocity distribution, and nonequiparti-
tion of energy [2]. Among them, segregation is of particular
interest because of its applications in the industry. Mixtures
of granular material are known to segregate by size, mass,
and friction under different energy inputs, including vertical
vibration, horizontal swirling, rotating drum, and other appa-
ratus [3,4]. Several mechanisms have been presented to ex-
plain these segregation phenomena, e.g., void filling [5], con-
vection [6], effects of air [7], depletion force [4], or the
phenomenological effective potential treatments [8].

In this work, we propose an alternative segregation
mechanism where effective interactions are dynamically in-
duced by the phase synchronization of beads. It leads to a
horizontal segregation among beads of different restitution
coefficients but of equal size and mass. In addition to the
event-driven molecular dynamics simulations, we also per-
formed analytic studies to confirm our observation. Since the
horizontal Brazilian-nut [3] and the depletion force [4] are no
longer applicable, we believe that the concept of phase syn-
chronization is crucial to understand this phenomenon. By
analyzing the microscopic trajectories of the vibrated beads,
the criteria for the phase synchronization are analytically de-
rived which predict the correct segregation phase diagram
from the simulations.

In our model, we confine two species of inelastic spheri-
cal granular beads A and B between two horizontal plates on
the x-y plane. To exclude the effect of depletion force and
other possible segregation mechanisms, their mass and diam-
eter are set to be the same, my=mp=1 and ry,=rz=1. How-
ever, as will be explained later, our mechanism is not re-
stricted to this requirement. The plates are separated by a
fixed distance h=1.5 and oscillate vertically along the z di-
rection with trajectories I" sin wr and h+1I sin wf, where
=2f is the angular frequency and I'/f denote the amplitude
and frequency. The unit of time is chosen in such a way that
the gravitational acceleration g pointing in the minus z direc-
tion equals 980. The restitution coefficients between plates
and beads are €,=0.5 and €3=0.8, respectively, and €4,
=0.5, e33=0.8, €,3=0.7 among the beads. The spacing i will

1539-3755/2008/78(6)/061301(5)

061301-1

PACS number(s): 45.70.—n, 05.70.Fh, 05.70.Ln, 83.10.Rs

be replaced by H=h-r,=0.5 in our calculations, which is a
more useful measure of the distance the bead centers can
maneuver in the vertical direction. We only present data for
the frictionless case because the segregation has been
checked to be robust against small slide friction and micro-
scopic roughness on the surface of beads and plates. The way
we include the roughness is by assigning Gaussian white
noise [9] to the tangential velocity along the plane perpen-
dicular to the normal between colliding beads or between the
bead and the plate. The phenomenon has also been checked
to be insensitive to the specific choice of parameters used
here.

When collisions between beads are rare in the dilute limit,
the dynamics of beads can be described separately and the
system becomes similar to the inelastic Fermi-Ulam model
[10]. Previous studies of this model or the other related
bouncer models [11] have shown that under appropriate os-
cillation conditions there exists a special pattern of motion
called the locking phenomenon, where the bead repeats its
motion in the z axis and forms a periodic trajectory with a
period nT where n is an integer and 7=1/f. Here we define
a special case of the locking phenomenon named phase syn-
chronization (PS). It requires the trajectory to be both at n
=1 and behave as a unique stable attractor, into which beads
of the same species but different initial conditions will
gradually evolve. When PS is established, beads of the same
species will automatically synchronize with each other, i.e.,
their altitude and velocity component in the z axis are the
same. Figure 1, obtained by the simulation in the dilute den-
sity limit, shows the time evolution of the altitude of beads A
under PS. As it demonstrates, the different initial values of
altitude and velocity gradually merge into a unique stable
trajectory with n=1, namely, become synchronized with each
other.

In general, PS is not ubiquitous, but only exists for appro-
priate parameters I', f, H, and the bead density. Meanwhile,
the shape of the n=1 trajectory also depends on the mechani-
cal properties of beads which, thus, prohibit the different
species from ever becoming in phase although they can be
both in PS (exemplified in Fig. 2). Since the collisions be-
tween beads have the potential of disrupting the synchroni-
zation, PS is checked to exist only in the submonolayer den-
sity, small gap width H, moderate I', and sufficiently large f
which allow them ample time to return to the n=1 trajectory
between successive collisions with other beads. The histo-
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FIG. 1. Spatiotemporal trajectories for beads in the dilute den-
sity limit. Here the parameters used are I'=0.1 and f=50, where PS
exists. Beads of different initial altitudes and velocities are repre-
sented by separate lines, which gradually evolve into the n=1 tra-
jectory and become synchronized.

gram in Fig. 3 depicts the phase of both plates at the instant
of collision with bead A under different amplitude I'. Tt
shows that a single phase or PS is achieved only in a certain
window of T'.

There are two time scales, 7; and the mean free time 7, in
this granular system. The former measures the time it takes
for each bead to return to the n=1 trajectory after collision,
and in general is a function of I', f, all €’s, and H. When
H=0, all beads collide with angle #=0. As H increases,
larger collision angle 8 becomes possible. This incurs a more
severe change of vertical velocities and causes a larger de-
viation from the n=1 trajectory. Consequently, 7; is a mono-
tonically increasing function of H. On the other hand, 7, is
inversely proportional to the bead density. Phase synchroni-
zation requires 7; <7,, and so the maximum choice of H
depends on I, f, the restitution coefficients, and the bead
density. All claims have been confirmed by our simulations.

Inelastic collisions correspond to a restitution coefficient
less than unity. However, when we project the collision onto
the horizontal x-y plane, the effective restitution coefficient
€.¢1, defined as the ratio of the total horizontal kinetic energy
after and before the collision, can be greater than unity. This
happens when the momentum is transferred from the z axis
to the horizontal directions. The magnitude of €. depends
on the bead velocities, the restitution coefficient and the col-
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FIG. 2. Trajectories of the two species of beads in PS. Note that
A (dark line) and B (gray line) are out of phase. This results in an
effective repulsion during their collisions.
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FIG. 3. Simulation results for the phase histogram of bead A
upon collisions with the upper and lower plates. Plotted in gray and
dark, respectively, they are measured at the instant of collision with
bead A against the vibrating amplitude I". Phase synchronization or
the characteristics of a unique phase is clearly shown to exist only
for 0.06 <I"<0.18 approximately.

lision angle 6 between the horizontal plane, and the line join-
ing the centers of the colliding beads. In the case 6=0, the
collision reduces to the normal type where no momentum is
transferred from the vertical direction and €. is equal to the
normal restitution coefficient. For large 6, the energy transfer
is more efficient and €,;>1 is more likely to happen, as is
shown schematically in the inset of Fig. 4.

Beads in PS are synchronized if they belong to the same
species; otherwise, they will remain out of phase. Therefore,
the 6 between A-A (B-B) collisions are mostly zero and their
€ 1s roughly equal to €,z which is certainly less than
unity. Consequently, being out of phase, beads A and B al-
most always collide at larger 6 and result in the €.4>1 sce-
nario as checked by the simulations and shown in Fig. 4.
Hence, upon reaching the PS, collisions of beads between
different species are statistically more favorable to gain hori-
zontal kinetic energy and recoil faster, while the same spe-
cies detach slower because they dissipate more energy in the
horizontal directions. These species-dependent interactions
lead to the final segregation. Starting from a well mixed ini-
tial state, Fig. 5 shows the evolution of the spatial distribu-
tion of A (dark area) and B (white area) with the parameters
that exhibit PS: I'=0.1, f=50, and a total of 3136 beads with
equal A and B confined in a square box of length 60. Under
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FIG. 4. Simulation results for the distribution of the A-A, B-B,
and A-B collision angles during segregation are denoted by the
solid, dashed, and dotted lines, respectively. The inset shows the
effective restitution coefficient as a function of the collision angle.
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FIG. 5. Projections of bead distribution on the x-y plane show
that the spatial patterns develop from mixed to segregated states.
The black and white circles represent type-A and -B beads of equal
size and mass when I'=0.1 and f=50. There are totally 3136 beads
confined in the square box of length 60 (in units of bead diameter)
with the periodic boundary condition. Starting from a well mixed
initial state, the snapshots were taken at the moments 0, 15, 30, 50,
80, and 90, which show the evolution of segregation.

PS, the species-dependent interactions were turned on and
finally caused the separation. The effective repulsive interac-
tion between A and B will push them apart, and the domains
which are rich in A or B grow continuously, until their
boundary shrinks to a minimum and a full segregation ap-
pears (see the right inset of Fig. 6). For parameters where PS
is not allowed, the full segregation is impossible and beads
remain in a homogeneous mixed state, depicted in the
bottom inset of Fig. 6.

The pattern formation of this segregation is very similar
to the well-studied problem of “phase-ordering dynamics” in
the nonequilibrium statistical mechanics which refers to a
two-phase mixture that evolves out of the homogeneous
phase when quenched below the critical coexistence tem-
perature [12,13]. The order parameter, defined as the local
difference in densities between the two segregating species,
is a function of position and time, which is normalized to
between —1 to +1 with each limit corresponding to either the
A- or B-rich phase. It is generally accepted that the coarsen-
ing domains are characterized by a unique, time-dependent
length scale which is approximately equal to the average
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FIG. 6. Time evolution of the characteristic length scale for
segregated (in black, I'=0.1) and mixed states (in gray, I'=0.25)
accompanied by their spatial distributions with f=50. Error bars are
deduced from over ten different initial conditions. The black (gray)
data in the left inset show the mobility versus the order parameter in
the early (late) stage of the segregation.
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thickness of the coarsening domain. We project the whole
system onto the x-y plane and calculate the projected two-
dimensional order parameter and deduce the characteristic
length. Figure 6 shows two typical evolutions of the charac-
teristic length where the black (gray) bars correspond to the
segregated (mixed) cases. The power-law exponents range
between 1/20 and 1/4 for various parameters. Different
from the famous exponents such as 1/2 in Lifshitz-Cahn-
Allen growth [12] or 1/3 of Lifshitz-Slyozov growth [12],
some features in our system could be identified as follows.
(1) The left inset of Fig. 6 shows the mobility (defined as the
average horizontal kinetic energy) versus the order parameter
in the segregated case, with the black (gray) data points rep-
resenting the early (late) stage of the segregation. The high
mobility near the zero order parameter is a consequence of
A-B collisions being out of phase. (2) Furthermore, since the
A-B collisions become less frequent as the characteristic
length grows during the segregation, the mobility decreases
from the black curve to the gray one in the left inset. (3) The
most significant difference from the thermodynamic phase
separation is the species-dependent mobility, which can be
understood by the asymmetric energy dissipation of the A-B
and B-B collisions.

The synchronized trajectories of beads A (black line) and
B (gray line) are plotted in Fig. 2, where T (7,) denotes the
ascending (descending) time for bead Aand ¢; (¢,) the
phase of the bottom (top) plate at the instant of collision with
bead A with the vertical velocity V, (V,,;). Obviously, PS
requires that (i) the velocity after each period has to resume
the value of V,, (ii) the vertical displacement for ascent must
exactly cancel that of descent, and (iii) the magnitude of this
displacement equals the difference in altitude between ¢,
and ¢,. These three conditions can be expressed as the fol-
lowing three equations, respectively:

(1-€)V,=(1-e)TwC, - (1 + )T wC, + €,gT, — gT>
X[(1+ )T w(C, - €4C,) + €V, + €8T 1T

8
= E(T% + T%) —[(1+ e)l'wC; - €,V,]T,

X[(l + GA)F(UCI - EAVn]Tl - gT%

=H+ F(S2—Sl),

where T,+T,=T, and C;, and S;, correspond to cos(¢; ,)
and sin(¢, ,). Furthermore, the following constraints must
also be fulfilled: V,<0, V,,;—Aw cos(¢,) >0, and the bead
cannot fall outside the plates at all times. These conditions
determine the valid range of parameters I, f, H, and €, for
synchronized trajectories. However, stability analysis has to
be checked to guarantee the existence or uniqueness of the
solution (¢;, ¢,,V,). The evolution of perturbations dV and
d¢ to V, and ¢, after one period is governed by

WA

The elements of matrix D can be determined by performing
the linear stability analysis. This is done by Tayler expanding
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the trajectories of both plates to the second order at ¢; and
¢,. Afterward, we trace the evolution of the perturbations dV
and d¢ analytically via the equation of motion for a bead
under the gravity. After doing the calculations, the elements
of matrix D are obtained as

1
Dy=—"——1- —(1+ )l *s,]T:
22 TwC, - Vn{ elg—( e)l oS ]T,
+(TwC,-V,)B+ Bleag— (1 + eA)szSz]Tz},
D 2 €4 |: T lNnC,-V,
=— | € -
2 T chl - Vn A%2 F(DC2— Vn+1 !
GAg - (1 + EA)F(U2S2 T :|
TwC,-V,+1 2]
(1+¢,)(g-TwS,)
Dy =€ gDy - A

€T,
TwCy =V,

2
Dyy= 7’7{(1 +e)(g-Tw’S,)B

—€elg— (1+ €)1 - gDy},

where B is defined as

_ F(l)Cl - Vn+1 - (1 + EA)szSlTl

p FoCy -V,

The solution is stable if and only if both eigenvalues of D
have an absolute magnitude smaller than unity. In general,
PS exists for moderate I" and sufficiently large f. Further
increase in I" first leads to bifurcation where two stable tra-
jectories coexist, and then more and more stable solutions
appear before the motion eventually becomes chaotic. Note
that we only analyze n=1 because simulations reveal that the
stable n>1 trajectories only exist in the large I and nearly
elastic regime [10].

In Fig. 7, we present the phase diagram for the segregated
and mixed states in the I'-f plane by simulation. The dark
region characterizes PS for all beads. In contrast, only beads
A are in PS, while B suffers from bifurcation, in the light
gray region. When I' is not large, the presence of beads A
helps B pick out one of the attractors and become effectively
PS.

In the limit Tw?>g, an extra symmetry 7,=T, greatly
simplifies the above equations. Analytic solutions become
possible, which determine the window for PS as me’(eA)
<I'< I‘max,(EA) where
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FIG. 7. The stars (triangles) denote the segregated (mixed) state
by the simulations. All beads are maintained in PS in the dark
region, while beads B experience bifurcation in the gray area. As
described in the text, the collisions of beads may help drive B

toward one of its two attractors. When this happens, segregation can
still happen.

H

e e
A

r H\1607% + 7
max,(e,) = ma

where 20,=m(1+¢€,)/(1—€4). Similar treatments for B give
us a second window for B. The overlap between these two
guarantees segregation and refers to the upper black region
in Fig. 7. The part of the gray region where beads B are
forced out of bifurcation and become effectively PS refers to
Fmax’(EB) <I'< Fmax,(EA). We mark the segregation region con-
sisting of these two windows by the dashed lines in Fig. 7,
which again is in good agreement with the simulation when
lFw*>g.

In summary, we have performed both simulations and
analytic analysis to confirm the existence of an alternative
segregation mechanism. The subject of our study is a non-
equilibrium system consisting of two species of beads con-
fined between two vibrating plates. When the motion of
beads is in harmony with that of the plates, we observe that
segregation can be induced by the phase synchronization of
beads. It creates an effective repulsion (attraction) between
different (same) species of beads. We believe this phenom-
enon is general in systems whenever the same (different)
species become in (out of) phase.
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