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A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an
infinite system of moment equations obtained from Callaway’s model of the Boltzmann-Peierls equation.
Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux,
this method is used to derive various systems of hydrodynamic equations for the energy density and the drift
velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it
is found that the first three levels of the expansion �i.e., the zeroth-, first-, and second-order approximations�
yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved
either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic
Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog
expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized
equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave
solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are
used in their proper range of validity.
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I. INTRODUCTION

In Ref. �1�, we considered the phonon gas with nondis-
persion and isotropy in the frequency spectrum and derived
the nonlinear second-order parabolic equations for the en-
ergy density and the drift velocity by means of the Chapman-
Enskog method as applied to Callaway’s model �2,3� of the
Boltzmann-Peierls equation �4,5�. There, it was assumed that
the effective relaxation time for normal processes ��N� is
much smaller than the effective relaxation time for resistive
processes ��R�. In this regime, during the first time period,
normal processes cause the phonon gas to approach the dis-
placed Planck distribution �i.e., the distribution function with
a drift velocity different from zero�, and then during a longer
time period, resistive processes return it to the equilibrium
Planck distribution �6,7�. Consequently, instead of using the
traditional Chapman-Enskog method of solution of phonon
kinetic equations which is based on an expansion about an
equilibrium Planck distribution, we developed systematically
a modification of the traditional method so as to allow for an
expansion about the displaced Planck distribution. This
modification was effectively realized by expanding the phase
density in powers of �N and 1 /�R and by including the spatial
derivatives of the relevant hydrodynamic variables in the ex-
pansion. Since the displaced Planck distribution is a highly
nonlinear function of the drift velocity �8,9�, one obtains in
this manner a system of parabolic equations which, unlike
the usual set of parabolic equations for a phonon gas, does
not restrict the magnitude of the individual components of
the drift velocity or the heat flux in any way. This system is
linearly stable at all wavelengths and is also fully consistent
with the second law of thermodynamics in the sense that

there exists a macroscopic entropy density which depends
locally on the hydrodynamic variables and satisfies the bal-
ance equation with a non-negative entropy production due to
both resistive and normal processes.

The method of Ref. �1�, which consists in directly ex-
panding the phase density about a displaced Planck distribu-
tion, was used to obtain and discuss the second-order para-
bolic equations for the energy density and the drift velocity.
The analysis was based on a particularly simple kinetic
theory of Callaway in order to allow for illustration of the
general concepts without the technical complications in-
volved in using the full Boltzmann-Peierls equation. Under
the assumption that normal processes dominate over resistive
ones, our aim here is to further study the Chapman-Enskog
expansion for a phonon gas using the infinite system of mo-
ment equations derived from Callaway’s model of the
Boltzmann-Peierls equation. Since this system is formally
equivalent to Callaway’s equation, the Chapman-Enskog ex-
pansion of the moment equations must give the same results
as the Chapman-Enskog expansion of Callaway’s equation
itself. Of course, any finite set of moment equations is not
closed. However, the equations for the energy density, the
heat flux, and the next two moments of the distribution func-
tion already contain enough elements of Callaway’s model to
reproduce correctly the first-order result of Ref. �1�, namely,
a closed-form expression for the deviatoric part of the flux of
the heat flux in terms of the energy density, the drift velocity,
and the first spatial derivatives of these variables. In this
paper, we consider additional moment equations and con-
tinue the Chapman-Enskog expansion to higher orders. For
the sake of simplicity, the expansion is presented only within
the framework of one-dimensional flow problems.

The main new results can be stated as follows. The pho-
non dynamic equations derived from the second-order ap-
proximation are linearly stable at all wavelengths, so that
higher-order Chapman-Enskog expansions do not necessarily
lead to unstable equations. However, the next order in the
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Chapman-Enskog expansion yields the equations of hydro-
dynamics which are unstable to some perturbations. Pre-
cisely speaking, the linearized equations of motion that de-
scribe the propagation of small disturbances in the flow have
unstable plane-wave solutions in the short-wavelength limit
of the dispersion relations. This poses no problem if the
method is used in the proper range of its applicability, i.e., in
the region where the spatial gradients of the energy density
and the drift velocity are sufficiently small.

There are two basic methods to prove that solutions of the
nonlinear equations of hydrodynamics are linearly stable,
one via the examination of the dispersion relations for linear
plane waves and one via the explicit construction of a qua-
dratic Lyapunov entropy functional. Each comes with its
own benefits and drawbacks. Both require dealing with linear
equations governing the evolution of the perturbation fields.
This paper discusses these two methods. The first method—
and possibly the more common—is to verify the sign of the
imaginary parts of the dispersion relations. The second
method, which is the one we develop in Sec. VI, is based on
defining the Lyapunov entropy functional for the linear per-
turbation equations which satisfies an H theorem �entropy
inequality�. There is no general procedure for finding the
Lyapunov functionals for nonlinear partial differential sys-
tems, but for linear partial differential equations, the proce-
dure partly reduces to the algebraic problem of choosing ap-
propriate coefficients of the characteristic polynomial of a
certain matrix �10�. However, for reasons to be explained in
the discussion directly after Eq. �6.12�, this very interesting
procedure cannot be used here. Consequently, we propose a
different algorithm for computing the Laypunov functional
based on a suitably chosen entropy function.

Note that the idea of studying the detailed structure of the
Chapman-Enskog method for the moment equations of a
phonon gas is not entirely new. In Refs. �11–14�, it was used
to sum up the Chapman-Enskog series exactly, thereby pro-
viding for the first time the basis to avoid instabilities inher-
ent in some low-order terms of the expansion and to compare
various approximations in extending the hydrodynamic de-
scription beyond the first-order approximation. However,
since the formalities are known to be rather awkward for the
full moment system, the discussion was simplified in that the
linear finite-moment equations were considered as the mini-
mal kinetic models where the Chapman-Enskog series can be
summed up exactly in a closed form. Mostly due to the lin-
earizing assumption, the zeroth-order expansion terms1 given
in Refs. �11–14� differ from those deduced here. More ex-
plicitly, the former vanish identically because they corre-
spond to the equilibrium Planck distribution, whereas the
latter are nonlinear functions of the drift velocity because
they are related to the displaced Planck distribution. As a
consequence, although the present approach to the moment
system has the disadvantage that it does not enable one to
sum up the Chapman-Enskog series explicitly, the advantage
of using this approach is that no limitations are introduced on

the magnitudes of the drift velocity or the heat flux, i.e.,
these quantities are incorporated into the model in a nonper-
turbative manner.

One final word concerning the expository part of the pa-
per: We follow the traditional introduction of the Chapman-
Enskog expansion. This is mostly due to the fact that our aim
is to study the evolution of a phonon gas in the setting of
weakly nonlocal hydrodynamics. Governing equations of
this hydrodynamics involve higher-order derivatives with re-
spect to the position coordinate. However, the disadvantage
of the traditional approach is that it remains not very clear
what we are looking for, because the answer is not a solution
of the initial kinetic equation or the equivalent set of moment
equations, but generalized hydrodynamic equations for the
reduced set of variables. Fortunately, after Fenichel and
Jones published the papers in which the geometric singular
perturbation theory took the definite form �15,16�, a new
approach was clearly formulated �17,18�: Singular perturba-
tion series like the Hilbert and Chapman-Enskog expansions
give us slow invariant manifolds for either kinetic or moment
equations. In Sec. III B, we briefly explain why this modern
geometric framework of the Chapman-Enskog method is
more seminal than the traditional one.

The outline of this paper is as follows. Section II recalls
the more relevant aspects of Callaway’s model. Section III
defines the moment system corresponding to Callaway’s
model and formulates the Chapman-Enskog expansion of
this system. Section IV discusses the Chapman-Enskog
method in further detail. Specifically, this section provides
the hydrodynamic description beyond the zeroth-order level.
Section V shows that the phonon dynamic equations ob-
tained from the zeroth-, first-, and second-order approxima-
tions are linearly stable at all wavelengths. Section VI proves
the existence of Lyapunov entropy functionals for the linear
perturbation systems derived in Sec. V. Section VII analyzes
the next order in the Chapman-Enskog expansion; it is dem-
onstrated that the short-wavelength instability is present at
the level of this approximation. Section VIII is for final re-
marks. The Appendix makes use of the results of Ref. �1�
with the aim of verifying that the first-order hydrodynamic
equations obtained in Sec. IV A can also be obtained from
the first-order hydrodynamic equations for three-dimensional
flow.

The units are defined by setting �=kB=1. No distinction
is made between longitudinal and transverse phonons. The
dispersion relation has the form �D=c�p�, where c is the
constant Debye speed and p is the momentum of a phonon
particle. Since �=1, this momentum can also be interpreted
as the phonon wave vector. The components of p range from
−� to +�. For the sake of simplicity, the effective relaxation
times �R and �N are assumed to be constant quantities.

II. THE MODEL KINETIC EQUATION

For our purposes, we introduce the distribution function
f�t ,x ,p� defined in such a way that f�t ,x ,p�d3x d3p is the
number of phonons at time t in the volume element d3x d3p
around �x ,p�. The evolution of this function is governed by a
kinetic equation of the form

1These terms are the initial terms in the expansion of some suit-
ably defined symmetric traceless moments of the distribution func-
tion. For further details, see our discussion in Secs. III A and III B.
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�t f + cgi�i f = JR�f� + JN�f� , �2.1�

where �gi� are the components of gªp / �p�, ��t ,�i� denote
differentiation with respect to �t ,xi�, and JR�f� ,JN�f� stand
for the collision terms due to resistive and normal processes,
respectively. The actual construction of JR�f� ,JN�f� is a mat-
ter of great difficulty, and in any event most expressions for
JR�f� ,JN�f� involve functional integrals of f itself, as for ex-
ample in the original Boltzmann-Peierls equation �4�. In or-
der to simplify the kinetic theory of a phonon gas, Callaway
�2� has made use of the model collision terms

JR�f� =
1

�R
�F − f�, JN�f� =

1

�N
�Fd − f� . �2.2�

Here ��R ,�N� are the effective relaxation times, which can
depend on momentum if desired, but are often left constant
�as we shall do�, and �F ,Fd� are the equilibrium and dis-
placed Planck distributions defined by

F ª

y

exp�cp/T� − 1
, Fd ª

y

exp��cp/Td��1 − v · g�� − 1
,

where

y ª 3�2��−3, p ª �p�, g ª p/�p�, �v� � 1.

Note that y specifies the smallest element of the phase space
that can accommodate a phonon. The scalar functions T
=T�t ,x� and Td=Td�t ,x� represent two different temperature
fields and the vector function v=v�t ,x� represents the drift
velocity of a phonon gas. Precisely speaking, we refer to v as
the dimensionless drift velocity. The physical drift velocity is
obtained by multiplying v by c. Clearly, the temperature and
velocity fields are not arbitrary. They are chosen so that re-
lations �2.4� below hold true. We first observe that the gen-
eral collision terms satisfy the following conditions:2

� pJR�f�d3p = 0, �2.3a�

� pJN�f�d3p = 0, � pJN�f�d3p = 0 . �2.3b�

Any model collision terms must satisfy these conditions as
well. For Callaway’s model with effective relaxation times
�R and �N independent of p, we thus have

c� pF d3p = c� pFdd3p = e ª c� pf d3p , �2.4a�

c2� pFdd3p = q ª c2� pf d3p , �2.4b�

where e is the �actual� energy density and q is the �actual�
heat flux. Direct evaluation of the integrals in �2.4� then
yields an expression for T in terms of e and expressions for

�Td ,v� in terms of �e ,q�. Conditions �2.4� are important be-
cause they ensure that Callaway’s model satisfies the Boltz-
mann H theorem �for more details, see, e.g., Ref. �19�, Sec.
VI A�

We now simplify the discussion by assuming the one-
dimensional, rotationally symmetric geometry. In this geom-
etry, the distribution function depends only on time, a single
spatial coordinate xªx1, and the momentum in the x direc-
tion px:

f = f�t,x,px� . �2.5�

The displaced Planck distribution takes the form

Fd ª
y

exp��cp/Td��1 − vg�� − 1
,

where

v ª vx � �− 1,1�, g ª px/p � �− 1,1� .

Because of �2.5�, the energy density is a function of t and x.
The heat flux in the x direction q�t ,x� may vary; the heat
fluxes in the orthogonal directions vanish. Equations �2.4�
make it possible to relate T to e and �Td ,v� to �e ,q�. Explic-
itly, if the flow remains one-dimensional, these equations
give

T = � e

3�
�1/4

, Td = � e

�3 + u���
1/4

�1 − u�3/4, �2.6a�

v =
3q

2ce + 	4c2e2 − 3q2
, q =

4cev
3 + u

, �2.6b�

where

� ª �2/�30c3�, u ª v2.

According to Eqs. �2.6�, the temperature Td depends on the
energy density e and the heat flux q. Formally, this tempera-
ture is a crucial part of the definition of Callaway’s model
and Sec. IV A shows that a less formal explanation of the
meaning of Td is possible only within the framework of first-
order hydrodynamic equations. In this case, we can provide a
simple physical argument congruent with a current discus-
sion on the concept of temperature for systems far from equi-
librium �see, for example, Refs. �20,21��.

Observing that Eq. �2.5� can also be written as

f = f�t,x,pg� ,

we introduce the distribution function which depends on
�t ,x ,g� and does not depend on p:

	 ª c��
0

�

p3f�t,x,pg�dp .

This distribution function reduces to

	 = 
 ª

3

4
�T4 =

1

4
e

if f equals F and to

2Equation �2.3a� shows that resistive processes conserve energy,
while Eq. �2.3b� shows that normal processes conserve energy and
momentum.
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	 = 
d ª
3��Td�4

4�1 − vg�4 =
3e�1 − u�3

4�3 + u��1 − vg�4 �2.7�

if f equals Fd. Based on these preparatory definitions and
assumptions, we may easily verify that Eqs. �2.1� and �2.2�
yield the following model equation for 	:

�t	 + cg�x	 =
1

�R
�
 − 	� +

1

�N
�
d − 	� . �2.8�

Finally, in order to allow the effective relaxation time �N to
become small and the effective relaxation time �R to become
large, it will be convenient to take Eq. �2.8� with the formal
small parameter � inserted:

�t	 + cg�x	 =
�

�R
�
 − 	� +

1

��N
�
d − 	� . �2.9�

With the help of �, we can speak of the regime �7,22� where
normal processes dominate over resistive ones. Equation
�2.9� and the suitable moment system derived from it will be
of interest to us subsequently.

III. CHAPMAN-ENSKOG EXPANSION

A. The moment system

With w0ª1 and w1ªg, the first two moments of 	 define
the energy density and the heat flux:

�0 ª e = 2�
−1

1

w0	 dg, �1 ª q = 2c�
−1

1

w1	 dg .

�3.1�

The higher moments of 	 are given by

�n ª
2cnn!

�2n − 1�!!�−1

1

wn	 dg ,

where n=2,3 ,4 , . . . ,� and

n! ª 1 
 2 
 3 
 ¯ 
 n ,

�2n − 1�!! ª 1 
 3 
 5 
 ¯ 
 �2n − 1� , �3.2�

wn ª 

l=0

�n/2�

�− 1�l �2n − 2l − 1�!!
2ll!�n − 2l�!

gn−2l. �3.3�

Here �n /2� means the largest integer less than or equal to
n /2. Let Mi1i2¯in, n�2, be the symmetric traceless moments
of 	 defined by

Mi1i2¯in
ª 2cn�

−1

1

g�i1�gi2
¯ g�in�	 dg , �3.4�

where g�i1gi2
¯gin� is the traceless part of gi1gi2

¯gin. Then

�2 = M11, �3 = M111, �4 = M1111, etc. �3.5�

From Eqs. �3.1�, �3.4�, and �3.5� it follows that �n�0 if 	
=
d and that �n=0 if 	=
 and n�1. The moments �n and
Mi1i2¯in with n�2 have no direct physical meaning, even

though the moment �2 can be used as a basis for the repre-
sentation of the deviatoric part of the flux of the heat flux:

�2 = M11 = − 2M22 = − 2M33, Mij = 0 �i � j� .

Setting

�̄n ª
2cnn!

�2n − 1�!!�−1

1

wn
ddg �n � 2� �3.6�

and observing that

�
−1

1

w0
ddg = e/2, �
−1

1

w1
ddg = q/�2c� ,

we find from

�
−1

1

w0
 dg = e/2, �
−1

1

wn
 dg = 0 �n � 1� �3.7�

and �2.9� that the equations for �e ,q� and �n�n�2� assume
the forms

�te + �xq = 0, �3.8a�

�tq + �x�2 +
c2

3
�xe = −

�

�R
q , �3.8b�

�t�n + �x�n+1 +
c2n2

4n2 − 1
�x�n−1 = −

�

�R
�n −

1

��N
��n − �̄n� .

�3.8c�

Using �2.7�, Eq. �3.6� becomes

�̄n =
3cnn!

2�2n − 1�!!
e�1 − u�3

3 + u
�

−1

1 wn

�1 − vg�4dg �n � 2� .

�3.9�

After specifying an integer n�2, the integration over g can

be carried out explicitly and then Eq. �3.9� gives �̄n as an
explicit function of e and v. For example, if n=2, a short
calculation leads to

�̄2 =
8c2eu

3�3 + u�
. �3.10�

Recalling Eqs. �3.7� and the definition of 
d, one can also

show that �̄n vanishes when v=0.

We mention that hierarchy �3.8� with �=1 and �̄n=0, as
well as the use of a displaced Planck distribution to prove the
Boltzmann H theorem for Callaway’s model, is also found in

Ref. �23� �see Eqs. �3.44� and �3.58�–�3.60��. If �̄n=0, the
principle of superposition of solutions applies and then it is
possible to use Laplace transforms analytically with a nu-
merical evaluation of the inverse Laplace transformation.
Technically, hierarchy �3.8� follows from a study of the one-
dimensional, rotationally symmetric reduction of the three-
dimensional hierarchy. See Ref. �24�, Eqs. �4.4�, for the defi-
nition of this more general hierarchy and Ref. �23� for the
explicit description of a reduction process.
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In view of �2.6b�, it is possible to transform Eqs. �3.8a�
and �3.8b� to a system of equations for �e ,v�. This system
written in full is

�te +
4cv

3 + u
�xe +

4ce�3 − u�
�3 + u�2 �xv = 0, �3.11a�

�tv +
3c�1 − u�2

4e�3 − u�
�xe +

8cuv
9 − u2�xv +

�3 + u�2

4ce�3 − u�
�xN

= −
��3 + u�v
�3 − u��R

, �3.11b�

where

N ª �2 − �̄2. �3.12�

Any formulation based on finitely many moment equations
always results in an excess of unknowns compared to the
number of equations, which denotes a closure problem. In
this paper, we address the problem of closure of the system
�3.11�. Precisely speaking, we use the Chapman-Enskog
method as applied to Eqs. �3.8c� and �3.11� in order to ex-
press the excessive unknown N in terms of the energy den-
sity, the dimensionless drift velocity, and the spatial deriva-
tives of these variables.

B. General structure of the method

We start with the expansions

�n = 

l=0

�

�l�n�l �n � 2� . �3.13�

The expansion coefficients �n�l are assumed to depend on
�t ,x� through the hydrodynamic variables �e ,v� and their
spatial derivatives up to order l:

�n�l = �n�l�e,�xe,�x
2e, . . . ,�x

l e;v,�xv,�x
2v, . . . ,�x

lv� .

�3.14�

Using Eq. �3.13� with n=2 and recalling Eq. �3.12�, we find
that

N = �2�0 − �̄2 + 

l=1

�

�l�2�l. �3.15�

The time derivative is likewise expressed as a power series in
�. Precisely speaking, since Eqs. �3.11� link space and time
derivatives, it is necessary to introduce an expansion of the
time derivatives of �� ,v� as follows:

�te = 

l=0

�

�lEl, �tv = 

l=0

�

�lVl. �3.16�

Substituting Eqs. �3.15� and �3.16� into Eqs. �3.11� and
equating the terms that have like powers of � yields

E0 = −
4cv

3 + u
�xe −

4ce�3 − u�
�3 + u�2 �xv , �3.17a�

El = 0 �l � 1� , �3.17b�

V0 = −
3c�1 − u�2

4e�3 − u�
�xe −

8cuv
9 − u2�xv −

�3 + u�2

4ce�3 − u�
�x��2�0 − �̄2� ,

�3.17c�

V1 = −
�3 + u�2

4ce�3 − u�
�x�2�1 −

�3 + u�v
�3 − u��R

, �3.17d�

Vl = −
�3 + u�2

4ce�3 − u�
�x�2�l �l � 2� . �3.17e�

In view of �3.13�, �3.14�, and �3.16�, and

�t�x
ne = �x

n�te, �t�x
nv = �x

n�tv ,

we easily verify that

�t�n = 

l=0

�

�l�n�l �n � 2� , �3.18�

where

�n�l ª 

m=0

l



r=0

m � ��n�m

���x
re�

�x
rEl−m +

��n�m

���x
rv�

�x
rVl−m� .

�3.19�

The precise meaning of the expansion coefficients in �3.13�
is obtained by inserting Eqs. �3.13� and �3.18� into �3.8c� and
equating like powers of �. Given the auxiliary equation

�x�1 = �xq =
4cv

3 + u
�xe +

4ce�3 − u�
�3 + u�2 �xv ,

which is a consequence of �2.6b� and �3.1�, we arrive at

�n�0 = �̄n �n � 2� , �3.20a�

�2�1 = − �N��2�0 + �x�3�0 +
16c3v

15�3 + u�
�xe +

16c3�3 − u�e
15�3 + u�2 �xv� ,

�3.20b�

�2�l+1 = − �N��2�l + �x�3�l +
1

�R
�2�l−1� , �3.20c�

�n�1 = − �N��n�0 + �x�n+1�0 +
c2n2

4n2 − 1
�x�n−1�0� �n � 3� ,

�3.20d�

�n�l+1 = − �N��n�l + �x�n+1�l +
c2n2

4n2 − 1
�x�n−1�l +

1

�R
�n�l−1�

�n � 3� , �3.20e�

where l�1. This is a set of recurrent equations in which the
explicit expressions for �x�n�l are provided by
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�x�n�l = 

m=0

l � ��n�l

���x
me�

�x
m+1e +

��n�l

���x
mv�

�x
m+1v�

and in which �n�0 is identified with �̄n. Because of �3.20a�,
expansion �3.15� becomes

N = 

l=1

�

�l�2�l �3.21�

and Eq. �3.17c� simplifies to

V0 = −
3c�1 − u�2

4e�3 − u�
�xe −

8cuv
9 − u2�xv . �3.22�

When we come to a study of system �3.20� in Sec. IV, we
shall confirm that this system can indeed be used to calculate

the basic excessive quantity N explicitly in various approxi-
mations.

All the above assumes, either explicitly or implicitly, the
following picture. There exists a manifold of slow motion in
the state space X of a dynamical system. Here, the state
space X is the set of all possible states of system �3.8�; each
state of this system corresponds to a unique point in X and is
represented by a sequence �ª 
e ,v ,�n �n�2� composed of
continuous and differentiable functions of x. From the gen-
eral initial condition ��t0��X the system goes quickly into a
small neighborhood of the manifold of slow motion, and
after that moves slowly along this manifold �see, for ex-
ample, Refs. �15–18,25��. The manifold of slow motion must
be positively invariant: if the motion starts on the manifold at
t0, then it stays on the manifold at t� t0. Under the assump-
tion that system �3.8� has a positively invariant manifold
M��X parametrized by the slow variables �e ,v�, this mani-
fold can be realized as the graph of a function �� defined by

���e,v� ª �

l=0

�

�l�n�l�e,�xe,�x
2e, . . . ,�x

l e;v,�xv,�x
2v, . . . ,�x

l v�; n � 2� .

Similarly, the graphs of the functions

�0�e,v� ª 
�̄n�e,v�; n � 2�

and

��,m�e,v� ª �

l=0

m

�l�n�l�e,�xe,�x
2e, . . . ,�x

l e;v,�xv,�x
2v, . . . ,�x

l v�; n � 2� �m � 1� .

can be used to define the initial manifold M0 and the ap-
proximate invariant manifolds M�,m. We thus see that singu-
lar perturbation techniques like the Hilbert and Chapman-
Enskog expansions were in essence developed for the
construction of M� and M�,m for both kinetic and moment
equations.

Write Eqs. �3.11� and �3.8c� for �ª 
e ,v ,�n �n�2� in the
abstract form

�t� = Q���� . �3.23�

The manifold M� is invariant with respect to system �3.23�,
which means that Q�����T�M� for all ��M�, where
T�M� is the tangent space at the point ��M�. The invari-
ance condition for the manifold M� also reads

P�„G����… − G���� = 0, �3.24�

where P�(G����) is the projection of G���� onto T�M�. This
projection depends in a nontrivial way on ��M� and is
uniquely determined by the chosen parametrization of M�.
In Ref. �17�, condition �3.24� was considered as an equation
for M� that can be solved approximately, starting with the
initial manifold M0. The approximation was based on New-
ton’s iteration rather than a series expansion in a smallness

parameter. The Newton method provides a good estimation
of M� already after one iteration and is also convenient for
obtaining the explicit formulas. We stress that, even if in the
limit the Newton iteration method and the Chapman-Enskog
expansion method lead to the same results, they can give
different approximations on the way. As an illustration, using
the first iteration of the Newton method, nonlocal hydrody-
namic equations were derived from the classical Boltzmann
equation �17�. These equations are linearly stable at all wave-
lengths. It may thus be important to understand the modern
geometric framework of the Chapman-Enskog method, be-
cause this framework produces many new versions of
asymptotic methods such as, e.g., the relaxation method
based on a film extension of the original dynamical system
�18,26�, the Newton iteration method subject to incomplete
linearization �17,25�, and the method of natural projectors
yielding new equations for the post-Navier-Stokes hydrody-
namics �18�.

Equations �3.11� are exact; we now analyze these equa-
tions to lowest order in �. Expansion �3.21� implies that N is
O��1�. The left-hand side of �3.11b� is O��0�, while the right-
hand side is O��1�. Hence to O��0� we may replace �3.11b�
by
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�tv +
3c�1 − u�2

4e�3 − u�
�xe +

8cuv
9 − u2�xv = 0. �3.25�

From �3.11a� and �3.25� we then obtain a system of hyper-
bolic differential equations for the energy density and the
dimensionless drift velocity. This system is consistent with
the nonlinear model of Nielsen and Shklovskii �22�. The only
difference is that Eq. �3.25� does not contain the source term.
However, this source term is recovered when the first-order
approximation is concerned.

IV. HYDRODYNAMICS BEYOND THE ZEROTH-ORDER
LEVEL

A. The first-order approximation

We may, to leading order in �, replace expansion �3.21�
by

N = ��2�1. �4.1�

The formal small parameter � is set equal to one ��=1� in the
subsequent expressions for N. Let n=2 and l=0 in �n�l. By
�3.19� we have

�2�0 =
��̄2

�e
E0 +

��̄2

�v
V0, �4.2�

where we have used �2�0= �̄2. The next step is to substitute
Eq. �4.2� into �3.20b�. Use of Eqs. �3.10�, �3.17a�, �3.17c�,
�3.20a�, and �4.1� then gives

N = �2�1 = c3�N�4�1 + 3u�v
5�9 − u2�

�xe −
48�1 − 4u − u2�e
5�3 + u��9 − u2�

�xv

− �x�̄3� . �4.3�

Here, we recall that uªv2. The integral formula for �̄3 can
be obtained from Eqs. �3.9�, �3.2�, and �3.3� in the form

�̄3 =
3c3e�1 − u�3

10�3 + u� �
−1

1 �5g2 − 3�g
�1 − vg�4 dg . �4.4�

In order to help the calculation of the integral in �4.4�, let us
define A by

A ª

1

u2� �1 − u�2

2	u
ln�1 + 	u

1 − 	u
� +

1

3
�5u − 3�� . �4.5�

This quantity is well behaved as a function of u near u=0
and u=1:

lim
u→0+

A =
8

15
, lim

u→1−

A =
2

3
.

After performing the integration over v, Eq. �4.4� reduces to

�̄3 =
c3e�8v − 15�1 − u��vA��

5�3 + u�
. �4.6�

To get an explicit expression for �2�1, it need only be noted
that

��vA�
�v

=
4�2 − 3A�
3�1 − u�

.

The substitution from Eq. �4.6� into �4.3� then yields

N = �2�1 = −
4c3�NH

9 − u2 �3�1 + u�e
3 + u

�xv −
1

4
�1 − u�v�xe� ,

�4.7�

where

H ª 3�3 − u�A − 4. �4.8�

Inspection shows that

lim
u→0+

H =
4

5
, lim

u→1−

H = 0.

The integral expression for H is

H =
3�1 − u�2

2�3 − u� �−1

1 ��3 − u�g2 − 4	ug + 3u − 1�2

�1 − 	ug�5
dg .

Since 0�u�1, it follows from this expression that H is a
positive function of u:

H � 0. �4.9�

Setting �=1 in �3.11b�, the system of equations for �� ,v� can
be written as

�te +
4cv

3 + u
�xe +

4ce�3 − u�
�3 + u�2 �xv = 0, �4.10a�

�tv +
3c�1 − u�2

4e�3 − u�
�xe +

8cuv
9 − u2�xv +

�3 + u�2

4ce�3 − u�
�xN

= −
�3 + u�v
�3 − u��R

, �4.10b�

where, of course, N is given by �4.7�. As demonstrated in
Sec. VI, system �4.10� is entropy consistent in the sense that
there exists a macroscopic entropy density s which depends
locally on the hydrodynamic variables �e ,q� and which sat-
isfies the balance equation with a non-negative entropy pro-
duction due to both resistive and normal processes. This en-
tropy density is obtained by substituting the displaced Planck
distribution Fd into the Boltzmann entropy functional given
by Eq. �6.8�. Now, according to the general ideas presented
in Ref. �20�, the thermodynamic temperature T for a phonon
gas described by system �4.10� may by defined as

T ª � �s

�e
�−1

.

We then obtain the result T=Td. This result shows us very
clearly that the true thermodynamic temperature for system
�4.10� is not the temperature appearing in the equilibrium
Planck distribution, but the temperature appearing in the dis-
placed Planck distribution.

It is significant to observe that system �4.10� involves two
relaxation times. The first relaxation time ��R� appears on the
right-hand side of Eq. �4.10b�, whereas the second relaxation
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time ��N� appears on the left-hand side of this equation in the
expression for N. This expression is linear in the energy den-
sity, nonlinear in the dimensionless drift velocity,3 and linear
in the spatial derivatives of these hydrodynamic variables.
With the exception of the obvious inequalities �v��1 and
�q��ce, there are effectively no limitations on the magni-
tudes of v and q, i.e., one can handle problems with large
values of the drift velocity and the heat flux. This is a definite
improvement over traditional approaches which only make
allowances for small deviations in the drift velocity and the
heat flux from zero. As demonstrated in Ref. �22�, the con-
ditions under which the values of �v� and �q /ce� are compa-
rable to 1 may be attained experimentally.

A final remark should be made concerning the fact that
the flow was assumed to be one dimensional. In Ref. �1�,
starting with Callaway’s model and the Chapman-Enskog ex-
pansion for the distribution function, we presented a system-
atic derivation of the equations for the energy density and the
dimensionless drift velocity without imposing any restric-
tions on the geometry of the flow. Consequently, it is impor-
tant to verify that system �4.10� with the quantity N in the
form �4.7� can also be obtained from the one-dimensional,
rotationally symmetric reduction of the three-dimensional
hydrodynamic equations. The Appendix is devoted to the
study of this problem.

B. The second-order approximation

Neglecting the third- and higher-order terms in expansion
�3.21�, we obtain

N = ��2�1 + �2�2�2, �4.11�

where �2�1 is given by �4.7� and �2�2 is calculated from

�2�2 = − �N��x�3�1 +
1

�R
�̄2� − �N� ��̄2

�v
V1 +

��2�1

�e
E0

+
��2�1

�v
V0� − �N� ��2�1

���xe�
�xE0 +

��2�1

���xv�
�xV0� ,

�3�1 = − �N� ��̄3

�e
E0 +

��̄3

�v
V0 +

9c2

35
�x�̄2 + �x�̄4� ,

�3.10�, �3.17a�, �3.17d�, �3.22�, and �4.6�–�4.8�,

�̄4 =
3c4e�1 − u�3

70�3 + u� �
−1

1 35g4 − 30g2 + 3

�1 − vg�4 dg ,

and

�
−1

1 35g4 − 30g2 + 3

�1 − vg�4 dg =
8�8�7 − 6u� − 105�1 − u�A�

3�1 − u�3 .

Setting �=1 in �4.11�, it can be checked by straightforward if
tedious working that

N = −
4c3�NH

9 − u2 �3�1 + u�e
3 + u

�xv −
1

4
�1 − u�v�xe�

+
2c4�N

2 �1 − u�
9 − u2 �3�1 − u��

3 − u
�x

2e +
2e�v
9 − u2�x

2v� + ¯ ,

�4.12�

where the coefficients � and � are defined by

� ª 2�1 − u� − 3H, � ª

1

u
��u2 + 54u + 45�H − 36�1 − u2�� ,

�4.13�

and the ellipsis stands for terms that play no role when a
linear stability analysis is performed on the system com-
prised of Eqs. �4.10� and �4.12�. Note that

18�1 + u�� + u� = − �9 − u2�H � 0 �4.14�

and

lim
u→0+

� = −
2

5
, lim

u→1−

� = 0, lim
u→0+

� =
72

35
, lim

u→1−

� = 0.

�4.15�

Because of �4.15�, there is no true singularity in �4.13� and
the coefficients � and � are regular, continuously differen-
tiable functions of u.

V. LINEAR STABILITY ANALYSIS

In this section, assuming that N vanishes or is defined by
either �4.7� or �4.12�, we derive the linearized equations of
motion for perturbations about an equilibrium state of the
phonon gas. We then solve these equations for exponential
plane waves on a constant background state. The dispersion
relations for these waves are analyzed and are found to con-
tain no growing modes.

The difference between the actual value of a field W at a
given spacetime point and the value which W has in the
background equilibrium state will be denoted by �W. The
quantities �e and �v are the fields that describe the perturba-
tions of a phonon gas about its equilibrium state. Fields that
do not include the prefix � will henceforth refer to the back-
ground configuration. This configuration is assumed to sat-
isfy Eqs. �3.11�, in addition to being constant. The equations
of motion for the perturbation fields �e and �v are obtained
by linearizing system �3.11� about the equilibrium state.

A. The case of the vanishing source term

If �R=�, the background drift velocity is arbitrary and the
equations for �e and �v can be written as

�t�e +
4cv

3 + u
�x�e +

4ce�3 − u�
�3 + u�2 �x�v = 0, �5.1a�

�t�v +
3c�1 − u�2

4e�3 − u�
�x�e +

8cuv
9 − u2�x�v +

�3 + u�2

4ce�3 − u�
�x�N = 0.

�5.1b�

Here �N is defined by

3The dimensionless drift velocity is, in turn, a highly nonlinear
function of the energy density and the heat flux; see Eq. �2.6b�.
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�N = −
4c3�NĤ

9 − u2 �3�1 + u�e
3 + u

�x�v −
1

4
�1 − u�v�x�e�

+
2c4�N

2 �1 − u�
9 − u2 �3�1 − u��̂

3 − u
�x

2�e +
2e�̂v
9 − u2�x

2�v� ,

�5.2�

where

�Ĥ,�̂,�̂� ª ��0,0,0� in the calculation to order �0,

�H,0,0� in the calculation to order �1,

�H,�,�� in the calculation to order �2.
�
�5.3�

We look for exponential plane-wave solutions to the pertur-
bation equations, i.e., we assume that

�e = �X exp� i

�N
��t −

k

c
x��, �v = �Y exp� i

�N
��t −

k

c
x�� ,

�5.4�

where ��X ,�Y� is the complex constant amplitude of the
wave, � is its frequency, and k is its wave number. Substi-
tuting �5.4� into Eqs. �5.2� and �5.1�, we obtain the system of
equations for ��X ,�Y�

�� −
4vk

3 + u
��X −

4�3 − u�ek

�3 + u�2 �Y = 0, �5.5a�

k

4�3 − u�
�3�1 − u�2 + �3 + u�2�P − ivkF���X

− e�� −
8uvk

9 − u2 −
�3 + u�2k

4�3 − u�
�vR + ikU���Y = 0,

�5.5b�

in which

P ª −
6�1 − u�2�̂k2

�3 − u��9 − u2�
, F ª

�1 − u�Ĥ
9 − u2 , �5.6a�

R ª −
4�1 − u��̂k2

�9 − u2�2 , U ª

12�1 + u�Ĥ
�3 + u��9 − u2�

. �5.6b�

This system can be expressed compactly in matrix form as

�b11��,k� b12��,k�
b21��,k� b22��,k� ���X

�Y
� = �0

0
� . �5.7�

There will exist exponential plane-wave solutions of Eqs.
�5.1� whenever � and k have values that satisfy the condition

�b11��,k� b12��,k�
b21��,k� b22��,k�

� = 0. �5.8�

The resulting relation between � and k is called the disper-
sion relation. Given Eqs. �5.5� and �5.7�, we easily verify that
condition �5.8� is equivalent to the following quadratic equa-
tion for �:

4�3 − u��2 − �16v + �3 + u�2�vR + ikU��k� + 4��3 + u��uR

+ ivkU� − �3 − u��P − ivkF� − 1 + 3u�k2 = 0. �5.9�

The dispersion relations are the roots of this equation.

When �Ĥ , �̂ , �̂�= �0,0 ,0�, then F=P=R=U=0 and Eq.
�5.9� becomes

4�3 − u��2 − 16vk� − 4�1 − 3u�k2 = 0.

This yields the dispersion relations for linear plane waves
that travel in the x direction without damping:

� =
�2v � 	3�1 − u��k

3 − u
.

When �Ĥ , �̂ , �̂�= �H ,0 ,0� or �Ĥ , �̂ , �̂�= �H ,� ,��, from Eq.
�5.9� we find for the real and imaginary parts of �

Re��� =
k

8�3 − u�
�16v + �3 + u�2vR � 	2	A2 + B2 − 2B� ,

�5.10a�

Im��� =
k

8�3 − u�
��3 + u�2kU � sgn�A�	2	A2 + B2 + 2B� ,

�5.10b�

where

A ª 16�3 − u�2Fvk + �3 + u��24�1 − u� −
1

2
�3 + u�3R�Uvk ,

�5.11a�

B ª

1

4
�3 + u�4k2U2 −

1

4
�3 + u�4uR2 − 16�3 − u�2P

+ 24�1 − u���3 + u�uR − 2�1 − u�� , �5.11b�

and sgn�A� is the function of A defined formally as

sgn�A� ª �1 if A � 0,

− 1 if A � 0.
�

Stability requires that Im����0, i.e.,

�1 ª �3 + u�2�k�U − 	2	A2 + B2 + 2B � 0.

Note that �1 is a continuous function of u and �k� since U,
A2, and B are continuous functions of u and �k�. In view of

�1 = �2 ª �3 + u�2�k�U −
2�A�

	2	A2 + B2 − 2B
�A � 0� ,

�5.12a�

an equivalent statement to A�0, �1�0, is A�0, �2�0.

The insertion of Ĥ=H into the second equation in �5.6b�
gives, with �4.9�, the inequality

U =
12�1 + u�H

�3 + u��9 − u2�
� 0. �5.12b�

Let
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Z ª �3 + u�8�A2 + B2�k4U4 − �2A2 + �3 + u�4Bk2U2�2.

�5.13�

It is evident from �5.12a� and �5.12b� and the aforementioned
continuity property of �1 that �1�0 if Z�0. The key to the
proof of Z�0 consists of substituting Eqs. �5.11� into �5.13�.
A little algebra, aided by Eqs. �5.6� with Ĥ=H, shows that

Z = Z1Z2,

where

Z1 ª
�16�1 − u�Hk�4�2�9 + u��3 − u�2 + 3�1 + u��̂k2�2u

�3 + u��3 − u�8 ,

Z2 ª �3 + u��3 − u�3 − 3�1 + u��18�1 + u��̂ + u�̂�k2.

If 18�1+u��+u� is expressed in the form �4.14�, then

Z2

=��3 + u��3 − u�3 for ��̂,�̂� = �0,0� ,

�9 − u2���3 − u�2 + 3�1 + u�Hk2� for ��̂,�̂� = ��,�� ,
�

which yields Z2�0. Also, the inequality Z�0 is implied,
since Z=Z1Z2 and Z1�0. This completes the proof that the
dispersion relations defined by �5.10� contain no growing
modes.

B. The case of a nonzero source term

If �R��, the background drift velocity is zero and the
equations for �e and �v are

�t�e +
4

3
ce�x�v = 0, �5.14a�

�t�v +
c

4e
�x�e +

3

4ce
�x�N = −

1

�R
��v , �5.14b�

where4

�N = −
4c3�N

45
�4�e�x�v + �c�N�x

2�e� , �5.15�

with

��,�� ª ��0,0� in the calculation to order �0,

�1,0� in the calculation to order �1,

�1,1� in the calculation to order �2.
�

Inserting �5.4� into Eqs. �5.15� and �5.14�, we obtain

��X −
4

3
ek�Y = 0,

1

4
k�1 +

4

15
�k2��X − e�� − i�� −

4

15
�k2i��Y = 0,

where �ª�N /�R. The dispersion relation appears in the form

� � −
4

3
ek

1

4
k�1 +

4

15
�k2� − e�� − i�� −

4

15
�k2i� � = 0;

that is,

3�2 − 3��� +
4

15
�k2��i − k2�1 +

4

15
�k2� = 0.

�5.16�

Equation �5.16� is a quadratic equation for �, yielding two
values that may be regarded, for prescribed �� ,� ,��, as func-
tions of k:

� = ���� ª
i

2
�W � 	W2 − Z� , �5.17�

where

W ª �� +
4

15
�k2, Z ª

4

3
k2�1 +

4

15
�k2� .

It follows from this that

Im���+�� �
1

2
��� +

4

15
�k2� � 0,

0 � Im���−�� �
1

2
��� +

4

15
�k2� .

Hence, the modes represented by Eqs. �5.17� are found to be
stable for all wave numbers.

VI. H THEOREM AND ITS RELATION TO STABILITY

In order to list the explicit form of an H theorem for the
system made up of Eqs. �5.1� and �5.2�, we require some
preliminary definitions:

�̂ ª −
18�1 + u��̂ + u�̂

9 − u2 ,

� ª 12e�1 + u��v − �1 − u��3 + u�v�e ,

� ª �1 − u��3 + u��4e�15 − u��v − 3���e

− 16e2�3 − 14u − u2�v��v�2,

� ª 72e�1 − u2��3 + u��̂��v�x
2�e − ��x�e���x�v��

+ 24e2�1 + u��̂v�2�v�x
2�v − ��x�v�2� − 4e�1 − u��3

+ u�u�̂�e�x
2�v − 3�1 − u�2�3 + u�2�̂v�2�e�x

2�e

− ��x�e�2� + 2�1 − u��3 + u�3�̂v��x�e�2.

4In the case when v approaches zero and e and the first and second
spatial derivatives of �e and �v are arbitrarily fixed, Eq. �5.2� sim-
plifies to �5.15�.
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Given the definition of �̂, it follows from Eqs. �5.3�, �4.14�,
and �4.9� that

�̂ = �0 in the calculation to order �0,

0 in the calculation to order �1,

H � 0 in the calculation to order �2.
�

Now, we introduce the non-negative and strictly convex en-
tropy density

H ª

3�1 − u�2�3 + u�2

8e�3 − u�
��e�2 − �1 − u��3 + u�v�e�v

+ 6e�1 + u���v�2 +
c2�N

2 �1 − u�2�3 + u�4�̂

8e�3 − u�3 ��x�e�2,

�6.1�

take its time derivative, and replace the time derivatives of
�e, �v, and �x�e by means of Eqs. �5.1� to obtain the balance
law for entropy—the second law—as

�tH + �x = ! , �6.2�

with the entropy flux

 ª

c

8e�3 − u�
�� −

c�N

3 − u
Ĥ�x�

2 +
2c2�N

2 �1 − u�
�3 − u�2 ��

and the bulk entropy generation rate

! ª −
c2�N

4e�3 − u�2Ĥ��x��2,

which is either zero �then Ĥ=0 or �x�=0� or strictly nega-

tive �then Ĥ=H and �x��0�.
As regards Eqs. �5.14� and �5.15�, these equations also

ensure consistency with the entropy balance law in the form
�6.2� provided that H,  , and ! are given by

H ª

9

8e
��e�2 + 6e��v�2 +

3

10e
�c2�N

2 ��x�e�2, �6.3a�

 ª 3c�e�v −
8

5
�ec2�N�x��v�2 −

4

5
�c3�N

2 ��v�x
2�e − ��x�e�


��x�v�� , �6.3b�

! ª −
12

�R
�e��v�2 −

16

5
�ec2�N��x�v�2. �6.3c�

Let �a ,b�, a�b, be a closed bounded interval in R and
suppose that �e�t ,x�, �v�t ,x� is a nonzero solution of system
�5.1� or system �5.14� such that  �t ,a�= �t ,b�=0 for t
� �0,��. Then we arrive at the H theorem

d

dt
�

a

b

H�t,x�dx = �
a

b

!�t,x�dx � 0, �6.4�

which shows the stability of systems �5.1� and �5.14� if

�Ĥ ,��= �0,0�,

�
a

b

!�t,x�dx = 0,

and asymptotic stability of these systems if �Ĥ ,��= �H ,1�,

�
a

b

!�t,x�dx � 0.

Moreover, using the inner product

�	,
� ª �
a

b

	�x�
�x�dx

and the norm �	�ª	�	 ,	�, we see from Eqs. �6.1�, �6.3a�,
and �6.4� that

L ª

3�1 − u�2�3 + u�2

8e�3 − u�
��e�2 − �1 − u��3 + u�v��e,�v�

+ 6e�1 + u���v�2 +
c2�N

2 �1 − u�2�3 + u�4�̂

8e�3 − u�3 ��x�e�2

�6.5�

is the Lyapunov entropy functional for system �5.1� defined
on �0,��
 �a ,b� and

L ª

9

8e
��e�2 + 6e��v�2 +

3

10e
�c2�N

2 ��x�e�2 �6.6�

is the Lyapunov entropy functional for system �5.14� defined
on �0,��
 �a ,b�.

At first sight, it may seem that the quantity H and the
corresponding Lyapunov entropy functional L are postulated

ad hoc. However, at least in the cases �Ĥ , �̂ , �̂ , �̂�
= �H ,0 ,0 ,0� and �� ,��= �1,0�, it is possible to relate H di-
rectly to the second differential of the true entropy density.
Namely, it was shown in Ref. �1� that the nonlinear system
comprised of Eqs. �A1� and �A3� has an entropy function

s ª
4�1 − u�

3 + u

e

Td
�6.7�

that satisfies the balance law with a non-negative entropy
production. This entropy function is identical with the en-
tropy of the Nielsen-Shklovskii model �22,27� and is ob-
tained by substituting f =Fd into the following well-known
kinetic-theory expression for the entropy functional �5�:

s�f� ª y� ��1 +
f

y
�ln�1 +

f

y
� −

f

y
ln� f

y
��d3p . �6.8�

Equation �6.7� also defines the entropy function for Eqs.
�4.7� and �4.10� because these equations can be derived from
the one-dimensional, rotationally symmetric reduction of
Eqs. �A1� and �A3�. In view of �2.6�, we may evaluate s
explicitly as a function of either �e ,q� or �e ,v�. Let �s and
�2s be the first and second differentials of the entropy func-
tion s̄ªs�e+�e ,q+�q� evaluated at �e ,q�:

�s ª
�s

�e
�e +

�s

�q
�q =

�s

�e
�e +

�s

�v
�v ,
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�2s ª
�2s

�e2 ��e�2 + 2
�2s

�e�q
�e�q +

�2s

�q2 ��q�2.

If the perturbation of the background state �e ,q� is small,
then the entropy function s̄ can be approximated as

s̄ � s̃ ª s + �s + �2s . �6.9�

The equations

�2s

�2e
= −

�1 + 5u��3 + u�2s

16�3 − u��1 − u�2e2 ,
�2s

�e�q
=

�5 + u��3 + u�2sv
16�3 − u��1 − u�2ce2 ,

�2s

�2q
= −

3�1 + u��3 + u�2s

16�3 − u��1 − u�2c2e2 ,

�q =
4cv

3 + u
�e +

4ce�3 − u�
�3 + u�2 �v ,

and system �5.1� imply that the second differential of s̄ and
the time derivative of s+�s take the forms

�2s = − CH, �t�s + �s� = − �x 0, �6.10�

where C

C ª

�3 − u�s
2�1 − u�2�3 + u�2e

,  0 ª
�s

�e
�q +

�s

�q
� c2

3
�e + �N� .

Note that C is a positive constant uniquely determined by the
background quantities e and uªv2. Using �6.9� and �6.10�,
the formal entropy balance law �6.2� can now be reformu-
lated in terms of the true approximate entropy density s̃ as

�ts̃ + �x� 0 − C � = − C! � 0.

Moreover, the Laypunov entropy functional L may be put in
the form

L = �
a

b

H dx = −
1

C�a

b

�2s dx ,

from which it is seen to be exactly proportional to the inte-
gral of �2s over �a ,b�.

For a general system of linear partial differential equa-
tions, say

�tw" = 

#=1

k

p"#�Dx�w# �" = 1, . . . ,k� , �6.11�

where Dxª �� /�x1 , . . . ,� /�xm� and p"#�$� are polynomials in
$ª �$1 . . . ,$m� with real constant coefficients, it is not easy to
construct or find a Lyapunov candidate functional which
proves the stability of an equilibrium state, and the inability
to find a Lyapunov functional is inconclusive with respect to
stability, which means that not finding a Lyapunov functional
does not mean that the system is unstable. However, for sys-
tem �6.11� with

p"#�Dx� = A"#�
2,

where �2 denotes the Laplacian operator on Rm and A"# are
real constants, Zhang �10� has derived formulas of explicit

quadratic Lyapunov functionals by choosing appropriate co-
efficients of the characteristic polynomial of a matrix
�A"#�k
k. If �Ĥ , �̂ , �̂�= �H ,0 ,0� and �� ,��= �1,0�, we obtain
the differential equations in the form

�tw" = 

#=1

2

�A"#�
2w# + B"# � w# + C"#w#� �" = 1,2� ,

�6.12�

where �=�x. Since the matrix �A"#�2
2 derived from system
�5.1� or system �5.14� is degenerate in that it has only one
strictly positive eigenvalue, the method of Zhang cannot be
directly used. In this case, as shown above, the alternative
method based on the entropy function �6.7� provides a more
successful algorithm for computing the Lyapunov functional.
If �Ĥ , �̂ , �̂�= �H ,� ,�� and �� ,��= �1,1�, we obtain linear
partial differential equations for ��e ,�v� which are third or-
der with respect to x. Then the method of Zhang also cannot
be used. The same observation concerns the method based on
Eq. �6.7�. Consequently, in this case, finding Eqs. �6.5� and
�6.6� with ��̂ ,��= �H ,1� might be a matter of luck, i.e., trial
and error is one of the methods to use when testing various
Lyapunov candidate functionals on some equilibrium solu-
tions.

Analogous problems are encountered when considering
the Chapman-Enskog method as applied to classical gases
described by the Boltzmann equation. There, the results of
the computations made for Maxwellian molecules and rigid
spheres show that the solutions of the conventional Burnett
equations �28� are unstable with respect to short-wavelength
perturbations �29,30� and violate the second law of thermo-
dynamics �31�, while the Euler and Navier-Stokes equations
are linearly stable at all wavelengths and provide entropy
consistent results. Moreover, it was demonstrated by Boby-
lev �32� that the linear version of the so-called hyperbolic
Burnett equations satisfies an H theorem and possesses an
explicit quadratic Lyapunov functional for the determination
of asymptotic stability of solutions. The hyperbolic Burnett
equations are not to be confused with the conventional Bur-
nett equations �28� or the augmented Burnett equations �33�.
Due to the instability paradox, in the terminology of Jin and
Slemrod �34�, the classical Chapman-Enskog procedure does
not work at the level of conventional Burnett equations �the
next step after the Navier-Stokes equations�. The hyperbolic
Burnett equations were derived from the Boltzmann equation
by modifying the classical Chapman-Enskog procedure �32�.
Here, we do not modify the method because we use the
Callaway model. Then the instability paradox does not ap-
pear at the level corresponding to the Burnett level of ap-
proximation. Surprisingly enough, the Burnett equations of
the standard Bhatnagar-Gross-Krook �BGK� model ��35�,
Pr=1� are linearly stable at all wavelengths �28,36�, indicat-
ing that the stability of the BGK-Burnett equations is related
to the value of the Prandtl number Pr.

VII. THE THIRD-ORDER APPROXIMATION

A. Instability of the solutions of linearized equations

When �R=�, the investigation of the stability problem can
proceed as in Sec. V A in that Eqs. �5.1� still apply. Now,
however, from
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N = ��2�1 + �2�2�2 + �3�2�3 �7.1�

and �3.20�,

�N = −
4c3�NH

9 − u2 �3�1 + u�e
3 + u

�x�v −
1

4
�1 − u�v�x�e�

+
2c4�N

2 �1 − u�
9 − u2 �3�1 − u��

3 − u
�x

2�e +
2e�v
9 − u2�x

2�v�
+

6c5�N
3

�3 − u��9 − u2�� �1 − u�%v
2�3 − u�

�x
3�e −

2e&

9 − u2�x
3�v� ,

�7.2�

where5

% ª

1

u
�4�17u − 15��1 − u�2 + �75 − u��1 − u�2H

− 2u�1 + u�H2� ,

& ª

1

u
�4�2u3 + 49u2 − 12u − 27��1 − u�2

+ �7u2 + 222u + 135��1 − u�2H − 6u�1 + u�2H2�;

so the introduction of the notation

P ª −
6�1 − u�2�k2

�3 − u��9 − u2�
, F ª

1 − u

9 − u2�H −
3%k2

�3 − u�2� ,

�7.3a�

R ª −
4�1 − u��k2

�9 − u2�2 ,

U ª

12

�3 + u��9 − u2���1 + u�H −
&k2

�3 − u�2� �7.3b�

enables the equations for �X and �Y to be written as Eqs.
�5.5�, which clearly yield �5.10� if A and B are defined by
�5.11a� and �5.11b�, respectively.

Since the dispersion relations are rather complicated, it is
informative to examine their limiting forms in order to obtain
some insight into these modes. We first consider the k→0
limit. This limit corresponds to the regime in which the per-
turbations vary slowly in space. Expanding Eqs. �5.10� about
k=0 in a Taylor series in k, we find that the leading terms in
the expansion of the dispersion relations are given by

� �
�2v � 	3�1 − u��k

3 − u
+

	3�	3 � v�Hk2i

6�	3 � v�2
.

The imaginary part of � is strictly positive, so that the modes
are damped at lowest order in k.

Another way to see that the third-order approximation
predicts inhibition of the instability at sufficiently small
wave numbers is to apply the following inequalities to Eqs.
�7.3�:

H�1 − k2� � H −
3%k2

�3 − u�2 � H�1 +
116

105
k2� ,

�1 + u�H�1 − k2� � �1 + u�H −
&k2

�3 − u�2

� �1 + u�H�1 −
1

20
k2� .

Evidently, when k2 can be neglected compared with unity,
these equations are much the same as Eqs. �5.6� with

�Ĥ , �̂ , �̂�= �H ,� ,��, and instability is absent.
Next, we consider the short-wavelength ��k�→�� limit of

the dispersion relations, even though this limit is not relevant
for a hydrodynamic theory because the derivation of Eq.
�7.2� from �3.20� and �7.1� is generally not valid when the
perturbation fields �e and �v are assumed to vary rapidly in
space. As a matter of fact, to lowest order in an expansion in
powers of k−2, we may replace Eqs. �5.10� by

��1� = k3�'r�1� + O�k−2�� − ik4�'i�1� + O�k−2�� ,

��2� = k�'r�2� + O�k−2�� + i�'i�2� + O�k−2�� ,

where

'r�1� ª −
�1 − u��v
�3 − u�3 , 'r�2� ª

�1 − u��6& + �3 − u�2%�v
�9 − u2�&

,

'i�1� ª
3&

�3 − u�4 , 'i�2� ª
�1 − u�2�3 − u�2�6�& + u�%�

3�3 + u�&2 .

Let us look at some of the implications of these equations.
It is clear that the sign of 'i�1� is the same as that of &, and
that the sign of 'i�2� is the same as that of �6�&+u�%� /&2.
Hence, if k2 is sufficiently large, Im���1�� is positive or nega-
tive according as & is negative or positive, and Im���2�� is
positive or negative according as �6�&+u�%� /&2 is positive
or negative. Figure 1 shows & and �6�&+u�%� /&2 plotted
against u. Since &�0 for all values of u, it follows that the
short-wavelength ��k�→�� mode represented by 'r�1� and

5In the limit u→0+, we have %=−464 /175 and &=408 /175. In
the limit u→1−, we obtain %=&=0.

–2

–1

0

1

2

3

0.2 0.4 0.6 0.8 1

u

FIG. 1. & and �6�&+u�%� /&2 as functions of u. The solid curve
refers to &, while the dashed curve corresponds to �6�&+u�%� /&2.
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'i�1� grows exponentially with time. Consequently, this
mode is an unstable mode. It also follows that the second
mode is unstable if u is smaller than uc�0.2838.

We finally consider the case where �R��, so that v=0.
With Eq. �5.15� changed to

�N = −
4c3�N

45
�c�N�x

2�e + 4e��x�v +
34c2�N

2

105
�x

3�v��
�7.4�

the system of equations for �X and �Y is seen to be

��X −
4

3
ek�Y = 0,

1

4
k�1 +

4

15
k2��X − e�� − i� −

4

15
k2�1 −

34

105
k2�i��Y = 0,

where �ª�N /�R. Thus,

� = ���� ª
i

2
�W � 	W2 − Z� , �7.5�

where

W ª � +
4

15
k2 −

136

1575
k4, Z ª

4

3
k2�1 +

4

15
k2� .

This gives

lim
k→0

��+� = �i, lim
k→��

��+� = −
35

34
i,

lim
k→0

� 1

k2��−�� =
1

3�
i, lim

k→��
� 1

k4��−�� = −
136

1575
i,

implying the existence of an instability in the large-wave-
number limit.

The third-order equations yield the hydrodynamic model
at the level corresponding to the super-Burnett level of ap-
proximation. What are the implications of the instability of
the third-order equations for the use of these equations to
describe the heat transport in nanosystems? Let l be the mean
free path �lªc�N(c�R� and assume that the characteristic
length is defined by

L ª

1

2
�� 1

�e
�x�e�−1

+ � 1

�v
�x�v�−1� . �7.6�

The heat transfer in nanosystems is significantly different
from that in macrosystems. In particular, the ratio between
the mean free path and the characteristic length, Kª l /L,
becomes comparable to or higher than 1. Substituting Eqs.
�5.4� into Eq. �7.6�, we obtain L= l / �k�. Then the quantity K
is effectively the dimensionless wave number: K= �k�. The
simplest third-order system consists of Eqs. �5.14� and �7.4�,
where �=1. For this system, assuming that the wave number
is such that W�0, the dispersion relation �7.5� gives
Im����0. Hence, we conclude that the instability is absent
when K is smaller than

Kc ª	105

68
�1 +	7�R + 34�N

7�R
� .

If, say, �N=�R /10, then Kc�1.8510. The stable region with
K�1 is defined by

1 � K � Kc.

Whether or not the third-order equations can be applied to
the description of a phonon system in this region is an open
problem that remains to be seen. The instability paradox has
led some workers in the field to use a higher number of
equations in the hierarchy, instead of truncating the expan-
sion of the system �see, e.g., Ref. �37��. Other authors have
proposed the regularization of the Chapman-Enskog expan-
sion �38� or introduced the partial summation technique
�11–14�.

B. More on the cause of instability

We first present an ad hoc method to avoid instability. In
Eqs. �7.2� and �7.3� we make the replacement

% → − ), & → − 3�1 + u�) , �7.7�

assuming that ) is an arbitrary non-negative function of u.
This replacement can be seen to give

U =
12�1 + u�

�3 + u��9 − u2��H +
3)k2

�3 − u�2� �7.8�

and

F =
�1 − u��3 + u�U

12�1 + u�
. �7.9�

We now check that the quantities U and Z defined, respec-
tively, by �7.8� and �5.13�, satisfy the inequalities U�0 and
Z�0, since the stability of solutions of system �5.5� is a
direct consequence of these inequalities:

�U � 0, Z � 0� ⇒ Im��� � 0. �7.10�

The inequality U�0 follows trivially from �4.9�, )�0, and
�7.8�. In order to show that Z�0, we substitute �5.11� into
�5.13�. Then Z can be evaluated with the aid of �7.3�, �7.9�,
and �4.14�; we obtain

Z =
�4�1 − u��3 + u�2Uk�4��3 − u�2 + 3�1 + u�Hk2�

81�3 − u�3�1 + u�4


 �2�9 + u��3 − u�2 + 3�1 + u��k2�2u � 0.

This result, in conjuction with U�0, implies that the imagi-
nary part of � is non-negative.

The replacement �7.7� can be generalized to a replace-
ment of the form

% → − ) + H*, & → − 3�1 + u�) ,

where ) and * are functions of u with the properties to be
specified below. The explicit expression for Z is now
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Z = 16u�3 − u��1 − u�2k4�a0 + a1k2 + a2k4 + a3k6�


 ��3 + u�4RU − 48�1 − u��3 + u�U − 32�3 − u�2F�2,

�7.11�

where

a0 ª 16H2, �7.12�

a1 ª
96u�9 + u�H2*

�3 + u��3 − u�3 +
48H��1 + u�H2 + 2)�

�3 − u�2 ,

�7.13�

a2 ª
144u"0H*

�3 + u�2�3 − u�5 +
144)�2�1 + u�H2 + )�

�3 − u�4 ,

�7.14�

a3 ª
432�1 + u�"1H)

�3 + u��3 − u�7 , �7.15�

with

"0 ª 2�3 + u��9 + u�) + �1 + u��3 + u�H� − �3 − u�2H* ,

"1 ª �9 − u2�) + u�* .

Then, choosing the functions ) and * such that

"0 � 0, "1 � 0, �7.16�

imposing the additional conditions

) � 0, * � 0, �7.17�

and also using Eqs. �7.8� and �7.11�–�7.15�, we obtain the
inequalities

U � 0, Z � 0,

from which, again with the help of �7.10�, system �5.5� can
be shown to have no unstable solutions.

Our conclusions are simply these. The Callaway model of
the collision integrals and the first four terms of the
Chapman-Enskog expansion of the distribution function
form the basis of the third-order system of equations for the
energy density and the drift velocity. The cause that this sys-
tem is linearly unstable can be attributed to the fact that the
functions ) and * defined by

) ª −
&

3�1 + u�
, * ª

1

H
�% −

&

3�1 + u��
do not satisfy conditions �7.16� and �7.17�. Specifically, these
functions are strictly negative for all values of u. Among
other things, this implies that U�0 and

�3 + u�2�k�U − 	2	A2 + B2 + 2B � 0

when

�k� � kc ª	�3 − u�2H

3�)�
.

As a result, in the case �k � �kc, there exists at least one root
of the quadratic equation �5.9� which violates the stability
condition

Im��� =
k

8�3 − u�
��3 + u�2kU � sgn�A�	2	A2 + B2 + 2B�

� 0.

VIII. FINAL REMARKS

The traditional way of deriving the equations of phonon
hydrodynamics is based on the use of a small parameter,
which is inserted into Callaway’s model as follows �39�:

�t f + cgi�i f =
1

��R
�F − f� +

1

��N
�Fd − f� .

The zeroth-order distribution function is obtained by consid-
ering the first term of the Chapman-Enskog expansion

f = 

l=0

�

�l f l = f0 + �f1 + �2f2 + ¯ �8.1�

and by solving the equation

1

�R
�F − f0� +

1

�N
�Fd − f0� = 0 �8.2a�

and conditions �2.4� with f = f0:

� pF d3p =� pFdd3p =� pf0d3p ,

� pFdd3p =� pf0d3p . �8.2b�

Since the solution of �8.2a� and �8.2b� leads to f0=F, we see
that such a Chapman-Enskog technique develops the distri-
bution function as a perturbative expansion about the equi-
librium Planck distribution. Beyond the first order, expansion
�8.1� then augments the heat flux expression in the diffusive
equation with terms that contain higher-order spatial deriva-
tives of the energy density and products of these derivatives.
It therefore appears that, while the traditional Chapman-
Enskog method uses the equilibrium Planck distribution and
aims to derive the higher-order equations governing the evo-
lution of the energy density, the present modification of this
method is based on a perturbative expansion of the distribu-
tion function about the displaced Planck distribution and
aims to derive the equations for the energy density and the
drift velocity �or the energy density and the heat flux�.

Some interesting descriptions of the Chapman-Enskog
method valid in the case when resistive bulk processes may
be neglected have previously appeared, particularly those of
Sussmann and Thellung �6� and Nielsen and Shklovskii �7�
�see also the book by Gurevich �5��. The approach of Suss-
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mann and Thellung cannot be compared directly with ours
because these authors do not assume the validity of the so-
called compatibility conditions �1�,

� pfld
3p = 0, � pf ld

3p = 0 �l � 1� ,

which guarantee that each order of the expansion of the dis-
tribution function yields the same energy density and heat
flux. Concerning the work of Nielsen and Shklovskii, the key
difference boils down to expanding the displaced Planck dis-
tribution in powers of the drift velocity and truncating the
expansion by retaining only the first three terms �see �7� Eq.
�4��. Consequently, the Nielsen-Shklovskii method of deriv-
ing the hydrodynamic equations for the energy density and
the drift velocity requires that the phonon gas be close to
local equilibrium.

Instead of using Eq. �2.9� or Eq. �A2�, we can also use the
equation

�t f + cgi�i f =
1

�R
�F − f� +

1

��N
�Fd − f� �8.3�

to begin a perturbative derivation of closed systems of equa-
tions for the energy density and the drift velocity. Another
possible way to start the Chapman-Enskog expansion of Cal-
laway’s model is to insert the two small parameters into this
model:

�t f + cgi�i f =
�1

�R
�F − f� +

1

�2�N
�Fd − f� . �8.4�

If we apply the Chapman-Enskog procedure to Eq. �8.3�,
then we will find that the first-order distribution function,
namely, the function

f = f0 + �f1,

yields the hydrodynamic equations violating the second law
of thermodynamics. In order to overcome this problem, we
have developed in Ref. �1� an alternative strategy for modi-
fying the Chapman-Enskog technique based on model �A2�.
The use of the first-order distribution function then results in
the equations consistent with the second law of thermody-
namics. Moreover, the next order in the Chapman-Enskog
expansion leads to the equations which are linearly stable at
all wavelength.

In the case of model �8.4�, the Chapman-Enskog proce-
dure begins by expanding the distribution function in powers
of both �1 and �2:

f = 

l=0

�



m=0

�

�1
l �2

mfl,m. �8.5�

After identifying f0,0 with the displaced Planck distribution,
the next step is to look for expansion �8.5� such that the first-
and higher-order terms are chosen so they have no contribu-
tion to the moments expressed in Eqs. �2.4�:

� pfl,md3p = 0, � pf l,md3p = 0 �l + m � 1� .

The first-order truncation formally requires a knowledge of
the functions f1,0 and f0,1,

f = Fd + �1f1,0 + �2f0,1,

and can be shown to give Eqs. �A1� and �A3� when the fact
that f1,0 equals zero is used. The second-order distribution
function, which is defined by

f = Fd + �2f0,1 + �1
2f2,0 + �1�2f1,0 + �2

2f0,2,

gives, in turn, the results of Sec. IV B when the equations for
three-dimensional flow are specialized to the one-
dimensional, rotationally symmetric geometry. The conclu-
sion then is that, although model �8.4� more clearly empha-
sizes the difference between resistive and normal processes,
it yields results which in practice do not differ from those
obtained by inserting only one small parameter into Calla-
way’s equation.

We finally mention that the Chapman-Enskog expansion
method, which we employ in this paper, simultaneously re-
quires both sufficiently rare resistive �momentum-
destroying� phonon collisions and sufficiently frequent nor-
mal �momentum-conserving� ones. Recently, Koreeda et al.
�40� considered the temperature dependence of �N and �R in
SrTiO3. They demonstrated that several temperature ranges
may be defined according to the relation between �N and �R.
Below approximately 50 K, �N gradually deviates from �R,
seemingly suggesting the existence of a temperature region
where the present Chapman-Enskog expansion method can
eventually be used.
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APPENDIX: FIRST-ORDER HYDRODYNAMIC
EQUATIONS FOR THREE-DIMENSIONAL FLOW

Using the Callaway model in the form �2.1�, it is possible
to derive the following equations for the energy density e
and the dimensionless drift velocity v:

�te +
4c

3 + u
v j� je +

4ce

3 + u
� jv

j −
4ce

�3 + u�2v j� ju = 0,

�A1a�

�tv
i +

c�1 − u�
4e

�ij� je −
c�1 − u�

2e�3 − u�
viv j� je −

c�1 − u�
3 − u

vi� jv
j

+ cv j� jv
i −

c

3 + u
�ij� ju +

2c

9 − u2viv j� ju +
3 + u

4ce
� jN

ij

+
3 + u

2ce�3 − u�
viv j�kN

jk = −
�3 + u�vi

�3 − u��R
, �A1b�
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where �ij is the Kronecker delta, uª �v�2, and

Nij
ª c3� pg�i�g�j��f − Fd�d3p .

In Eqs. �A1�, the Einstein summation rule, according to
which a repeated index implies summation over all values of
that index, is used. Angular brackets denote the symmetric
traceless part, e.g.,

g�i�g�j�
ª gigj −

1

3
�ij ,

g�i�gjg�k�
ª gigjgk −

1

5
�gi� jk + gj�ik + gk�ij� .

We also adopt the convention, whereby the indices are low-
ered and raised with the Kronecker �’s e.g., viª�ijv j. If the
model kinetic equation, namely,

�t f + cgi�i f =
�

�R
�F − f� +

1

��N
�Fd − f� , �A2�

is solved in the first-order Chapman-Enskog approximation,
then we find �1�

Nij = −
3c3e�N

3 + u
�A"ij + Bvk"

k�i�v�j� + C"klv
kvlv�i�v�j�� ,

�A3�

where A is defined by �4.5� and

"ij ª �1 − u����i�v�j� −
1

4e
v�i���j�e� +

5 + u

2�3 + u�
v�i���j�u ,

B ª

2

u
�8

3
− 5A�, C ª

8�4u − 21� + 105�3 − u�A
6u2�3 − u�

.

In the case when �v� approaches zero and the values of e, �ie,
and �iv are arbitrarily fixed, Eq. �A3� simplifies to

Nij = −
8

15
c3e�N��i�v�j�.

Putting together Eqs. �A1� and �A3�, we get a system of
linearly stable entropy-consistent first-order hydrodynamic
equations for a phonon gas where there are effectively no
limitations on the magnitude of the individual components of
the drift velocity. For more details, see Ref. �1�.

We are now ready to present a study of the one-
dimensional, rotationally symmetric reduction of Eqs. �A1�
and �A3�. We first observe that

"klvkvl = −
1

6e
�1 − u�uvk�ke −

1

3
�1 − u�u�kv

k

+
9 + 4u − u2

3�3 + u�
vkvl�kv

l, �A4a�

Nklvkvl = −
3c3e�N

3 + u
�A +

2

3
uB +

2

3
u2C�"klvkvl

= −
6c3e�NH

9 − u2 "klvkvl, �A4b�

where H is defined by Eq. �4.8�. In the one-dimensional,
rotationally symmetric geometry, all variables are functions
of time and a single spatial coordinate x. Moreover, we have

v ª v1 � 0, v2 = v3 = 0, �A5a�

N ª N11 = − 2N22 = − 2N33 � 0, Nij = 0 �i � j� .

�A5b�

Substitution from �A5� into �A4� gives

N = −
4c3�NH

9 − u2 �3�1 + u�e
3 + u

�xv −
1

4
�1 − u�v�xe� ,

which is identical with �4.7�; and the substitution of �A5� in
�A1� gives equations for �e ,v� which are identical with Eqs.
�4.10�.
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