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Heat conduction in the disordered Fermi-Pasta-Ulam chain
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We address the question of the effect of disorder on heat conduction in an anharmonic chain with interac-
tions given by the Fermi-Pasta-Ulam (FPU) potential. In contrast to the conclusions of an earlier paper [Phys.
Rev. Lett. 86, 63 (2001)], which found that disorder could induce a finite thermal conductivity at low tem-
peratures, we find no evidence of a finite-temperature transition in conducting properties. Instead, we find that
at low temperatures, small system-size transport properties are dominated by disorder but the asymptotic
system size dependence of current is given by the usual FPU result J~ 1/N*3. We also present interesting

results on the binary-mass ordered FPU chain.
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It is now generally believed that heat conduction in one-
dimensional (1D) linear momentum-conserving systems is
anomalous [1,2]. In the absence of an external pinning po-
tential, as is the case in most realistic situations, one finds
that Fourier’s law is not satisfied [3]. One of the predictions
from Fourier’s law is the scaling form of heat current J with
system size N for a system with a fixed applied temperature
difference. From Fourier’s law one gets J~1/N. The con-
clusion, from a large number of studies of 1D momentum-
conserving systems, seems to be

1

J~ Nl—a’

a#0. (1)

The main results on the exponent « can be summarized as
follows: (i) for a pure harmonic chain J~ N° [4], (ii) for a
disordered harmonic chain « depends on the spectral prop-
erties of the bath and on boundary conditions [5-7], and (iii)
for a nonlinear system without disorder & seems to be inde-
pendent of properties of heat baths and the results from the
most recent simulations indicate a universal value of a=%
[2,8].

Transport in systems with both disorder and interactions
has recently attracted a lot of interest both theoretically
[9-13] and experimentally [14]. The main interest is to un-
derstand the transition from an insulating state governed by
the physics of Anderson localization to a conducting state as
one increases interactions. In the context of oscillator chains,
we note that the physics of the disordered harmonic chain is
dominated by localization physics, which has its strongest
effect in 1D systems. The question of the effect of anharmo-
nicity on localization was recently addressed for a system in
which the harmonic part of the Hamiltonian included an ex-
ternal pinning potential and the anharmonicity was a quartic
on-site potential [12]. In this case, in the absence of the an-
harmonic term, J~ ¢~V. Surprisingly it was found that add-
ing a small amount of anharmonicity leads to a conducting
(Fourier-like) behavior with a power-law decay J~ 1/N and
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no transition to the insulating state was found on decreasing
the anharmonicity. An important feature seen was that with
decreasing anharmonicity one had to go to larger system
sizes to see the true asymptotic behavior of the current.

In the present paper, we investigate the same question,
namely that of the effect of interactions (phonon-phonon) on
localization, but in the absence of any external pinning po-
tential. We study the mass disordered Fermi-Pasta-Ulam
(FPU) model with interactions put in through a quartic inter-
particle potential. In the absence of pinning, for the harmonic
case, low-frequency modes with w=< 1/N"? remain extended
and this gives rise to a power-law dependence of J on N
[5-7]. On the other hand, for the pure FPU chain also, low-
frequency modes are believed to play an important role in
transport and give rise to anomalous transport. An earlier
study by Li ef al. [9] on this model concluded that this model
showed a transition, from a Fourier-like scaling J~1/N at
low temperatures to a pure FPU-like behavior with J
~1/N%7 at high temperatures. Our study suggests that this
conclusion may not be correct. We do not find any evidence
of a finite-temperature transition. Instead we find that a small
amount of anharmonicity leads to the same system-size de-
pendence as seen in the pure system. We discuss possible
sources of error in the conclusions of Li et al. We also
present results on the ordered binary mass FPU chain, in-
cluding nontrivial scaling properties of the system-size de-
pendence of current.

I. MODEL

We consider the following FPU Hamiltonian:

HZ%P_?fE”((x,—;,_l)Z J""f*“), o

=1 2myp o

where {x;,p;} denotes the position and momenta of particles
and we use fixed boundary conditions xy=xy,;=0. The inter-
particle harmonic spring constant has been set to 1 and v
denotes the strength of the quartic interaction. We consider a
binary random alloy and set the masses of half of the par-
ticles, at randomly chosen sites, to m; and the rest to m,. The
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FIG. 1. (Color online) Plot of the heat current J versus system
size in the binary mass ordered chain for different values of the
mass ratio A=1.0, 1.1, 1.22, and 1.5.

particles at the two ends of the chain are connected to sto-
chastic white noise heat baths at different temperatures. The
equations of motion of the chain are then given by

myiy == (2x; = x1 = x41) = Y (x —x1—1)3 +(x; —X1+1)3]
- YxX+ 7, (3)

with 7= 5.6, 1+ 7RO, N, V1= Y61+ 5, ), and where the noise
terms satisfy the fluctuation dissipation relations
() 1 (¢')) =29k T, St =1"), (mg(t) (e )) =2 ¥k TSt ~1"),
kg being Boltzmann’s constant. The heat current is given by
J=2Kf1,_1%)/ (N—1), where f;;_, is the force exerted by the
(I-1)th particle on the Ith particle and (- - -) denotes a steady-
state average. We will denote by [J] an average over disor-
der. As noted in [12], Egs. (3) are invariant under the trans-
formation Tj z—sTp, {x}—{s"?x}, and v—wv/s. This
implies the scaling relation J(sT;,sTg, v)=sJ(T;,Tg,sv) and
thus the effect of changing v can be equivalently studied by
changing T;,Tg. In the present study, we will fix tempera-
tures and consider the effect of changing v.

Let us consider first the harmonic case v=0. In this case,
it is known from detailed numerical work and analytic argu-
ments that the exponent « depends on the properties of the
bath and on boundary conditions. For white noise baths one
finds a:—% for fixed boundaries and a:% for free bound-
aries. In the presence of anharmonicity it is expected, and
indeed we have verified in simulations, that a does not de-
pend on boundary conditions. Here we use fixed boundary
conditions only.

Before presenting the results of simulations for the
binary-mass disordered anharmonic chain, it is important to
know the value of « for the binary ordered chain. Let us thus
discuss this first. This case was studied earlier in [8], where it
was found that the temperature profile showed oscillations
with an amplitude that decreased as N-!2. Let us denote the
mass ratio m;/m,=A. For A=1, the simulations in [8] gave
strong evidence for an exponent a=%. However, for the
value A=2.62 a clear convergence could not be obtained.
Here we will argue that the exponent remains unchanged
from the A=1 value. In Fig. 1, we present simulation results
for the N dependence of the current J in the binary-mass
ordered chain for different values of the parameter A, all
corresponding to the same average mass (m;+m,)/2=1. Re-
markably we find that at large enough system sizes the actual
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FIG. 2. (Color online) Plot of the heat current J versus system
size for the binary mass ordered chain, for different values of v and
with the mass ratio A=1.5 (a). (b) shows the same data plotted with
a scaled x axis.

values of the currents for different A tend to converge to the
same value as the A=1 value. Thus clearly the exponent a
remains unchanged for any value of A. However, for a large
mass ratio one has to go to large system sizes to see the true
exponent. A similar effect was seen in Ref. [2] for the binary
hard-particle gas. In our simulations, we used the velocity-
Verlet algorithm with time steps dr=0.005 [15]. For small
system sizes we used O(107)—0(10%) steps for relaxation
and the same number of steps for averaging, while for larger
systems, up to O(10°) steps were used. In all our simulations,
we used T,=1.25, Tr=0.75, and y=1.0.

For the disordered anharmonic case, we wish to study the
cases with weak and strong anharmonicity and see if there is
a transition in the value of a. For small v we expect the
system’s behavior to be close to a harmonic one, and so one
would have to go to very large system sizes to see the effect
of anharmonicity and the correct exponent. It then becomes
necessary to try and understand the data using some sort of a
scaling analysis. Let us first do this for the ordered case. We
fix the value of A=1.5 and look at the N dependence of the
current for different values of v. The results are shown in
Fig. 2(a). For small system sizes, we find a flat region, which
is expected since for system sizes smaller than the phonon-
phonon scattering length scale we expect the system to be-
have as a harmonic chain. The scattering length should be
larger for smaller v, and this can be seen in the plot. At large
enough system sizes all curves tend to show the same decay
coefficient a:%. To see this clearly, we scale the system size
by a length factor €(v). Figure 2(b) shows a nice collapse of
the data and the value of the exponent is confirmed. We find
empirically that the v dependence of the length parameter is
given by €(v)=1/tanh(2v). We note the interesting and
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FIG. 3. (Color online) Plot of the temperature profiles in the (a)
ordered and (b) disordered lattices for »=0.1 and for different sys-
tem sizes.

somewhat surprising point that for any given system size, the
value of the current saturates as we keep increasing v. In Fig.
3(a), we show the temperature profiles for different system
size for v=0.1. As noted earlier in [8], we see the large
oscillations in temperature. An interesting general feature of
temperature profiles in FPU chains is the following. A
coarse-grained temperature profile obtained by averaging
over many particles would be smooth and monotonic. How-
ever, the temperature gradient is nonmonotonic and this ap-
pears to be true even for small temperature differences. This
implies that it may not even be possible to write a phenom-
enological relation such as J=—xy(T)VT.

Finally, we now give the results for the disordered anhar-
monic case. We take averages over 50-100 samples N
<1024, 10 samples for N=1024—16 384, and 2 samples for
N=32768 and 65 536. In Fig. 4, we plot the results of simu-
lations for [J] for v=0.004 and 0.02. Also we show the result
for »=0.0. For small values of v we see that, at small system
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FIG. 4. (Color online) Plot of heat current versus system size,
for the disordered anharmonic chain, for different values of v and
with m;=1.2, m,=0.8. The data in the inset correspond to param-
eters (T;,Tk)=(0.001,0.0005) with Gaussian white noise bath for
v=1 (WN) and v=0, and Nose-Hoover bath (NH) for v=1. The
error bars corresponding to numerical errors and disorder averaging
are smaller than the size of the points.
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FIG. 5. (Color online) Plot of scaled heat current versus scaled
system size, for the binary-mass ordered (J) and disordered ([J],)
anharmonic chains, for different values of v and with m;=1.2, m,
=0.8. The error bars corresponding to numerical errors and disorder
averaging are smaller than the size of the points.

sizes the current value is close to the v=0 value. As ex-
pected, one has to go to large system sizes to see the effect of
the weak anharmonicity. At sufficiently large N, we find the
same system-size dependence of [J] as obtained for the or-
dered FPU chain, namely that given by a=%. In fact, by
scaling the current by appropriate factors we find that the
data for the disordered case can be made to collapse on to the
binary-mass ordered case. This is shown in Fig. 5 (for v
=0.02,0.1,2.0). Thus our results show that the asymptotic
power-law dependence of the current is always dominated by
anharmonicity while disorder only decreases the overall con-
ductance of a sample. In Fig. 3(b), we plot the temperature
profile for ¥=0.1 and find that the asymptotic profile is simi-
lar to the ordered case. We now shed some light on the rea-
sons that led to the erroneous conclusions in [9], of a transi-
tion in conducting properties at low temperatures (or
equivalently small anharmonicity). Consider the data for
[JIN plotted in Fig. 4 for »=0.004. We see that at around
N~ 1000-2000 the data seem to flatten, and if one had just
looked at data in this range, as was done by [9], one would
conclude that Fourier’s law is valid. However, the behavior
changes drastically when one looks at larger system sizes
and one again gets the usual FPU behavior. To verify that
this is indeed what happens for the particular case studied by
Li et al., we have repeated simulations with their set of pa-
rameters but for much larger system sizes, and the results are
shown in the inset of Fig. 4. This case corresponds to a much
smaller value of v and so it is expected that it will follow the
v=0 curve up to very long length scales, and this is clearly
seen. However, at around N=16 384 we see a tendency for
the curve to turn up and we expect that the same asymptotic
behavior will eventually show up. While a transition cannot
be ruled out at even lower temperatures, this seems unlikely.
Also, if there is such a transition, one would expect that at
low temperatures the effect of anharmonicity would be neg-
ligible and so one would see only the effect of disorder. In
that case, one should see the corresponding exponent for the
disordered harmonic chain, which gives [J]~ 1/N>2,

II. TEMPERATURE DEPENDENCE OF CONDUCTIVITY

The scaling property of the current, mentioned earlier [af-
ter Eq. (3)], implies that the thermal conductivity has the
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form k=x(vT). For small anharmonicity (v<<1), our earlier
results imply that at large system sizes k ~N'317%3 and from
the scaling property this immediately gives x~ 7% at low
temperatures. However, at small system sizes [N<{(v)], we
expect the system to behave like a harmonic system with «
~T9. At high temperatures, the conductivity will saturate to
a constant value.

III. DISCUSSION

Our main conclusion is that there is no change in the
asymptotic power-law dependence of the current on system
size on decreasing the temperature in the disordered FPU
problem. At low temperatures, one has to go to much larger
system sizes to see the true exponent, whose value (a:%) is
the same as that for the ordered FPU chain. While we have
mostly presented results from simulations with Langevin
baths, we have also done some simulations with Nose-
Hoover baths, and the conclusions are similar. We also find
several interesting results for the binary-mass ordered FPU
chain: (i) the exponent « is independent of the mass ratio A
and is the same as the A=1 value, (ii) the data for different
values of v can be collapsed by scaling the system size by a
v-dependent length scale. Also we make the interesting and
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somewhat surprising observation that for a finite FPU chain,
J—const#0 as v— o,

Experiments measuring heat conduction in quasi-1D sys-
tems such as individual nanowires, nanotubes [16], are now
being done. The predictions of anomalous thermal conduc-
tion and diverging conductivity have most recently been
verified in an experiment on individual nanotubes [17]. In
this experiment, on samples of carbon and boron nitride
nanotubes, it was found that even at length scales much
larger than phonon mean free paths, the conductivity kept
increasing with length. One expects that a detailed verifica-
tion of the predicted exponent will also soon be possible.
Interestingly, the boron nitride sample is isotopically disor-
dered, and so the two systems studied correspond precisely
to the ordered and disordered FPU chains studied here. Our
prediction, namely that disorder will lower the current in a
wire while the system-size dependence of [J] is unaffected,
is consistent with current experimental results [17,18]. Ex-
perimentally, the temperature dependence of the thermal con-
ductivity may be easier to measure and one can verify if this
is unaffected by disorder.
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